Windows2000/private/windbg64/lib/intrncvt.c
2020-09-30 17:12:32 +02:00

703 lines
12 KiB
C

/*
* intrncvt.c - internal floating point conversions
* Copyright (c) 1992-1992, Microsoft Corporation. All rights reserved.
*Purpose:
* All fp string conversion routines use the same core conversion code
* that converts strings into an internal long double representation
* with an 80-bit mantissa field. The mantissa is represented
* as an array (man) of 32-bit unsigned longs, with man[0] holding
* the high order 32 bits of the mantissa. The binary point is assumed
* to be between the MSB and MSB-1 of man[0].
* Bits are counted as follows:
* +-- binary point
* |
* v MSB LSB
* ---------------- ------------------ --------------------
* |0 1 .... 31| | 32 33 ... 63| | 64 65 ... 95|
* ---------------- ------------------ --------------------
* man[0] man[1] man[2]
* This file provides the final conversion routines from this internal
* form to the single, double, or long double precision floating point
* format.
* All these functions do not handle NaNs (it is not necessary)
*Revision History:
* 04-29-92 GDP written
* 05-26-92 GWK Windbg srcs
*/
#include <assert.h>
#include "mathsup.h"
#define INTRNMAN_LEN 3 /* internal mantissa length in int's */
// internal mantissaa representation
// for string conversion routines
typedef u_long *intrnman;
typedef struct {
int max_exp; // maximum base 2 exponent (reserved for special values)
int min_exp; // minimum base 2 exponent (reserved for denormals)
int precision; // bits of precision carried in the mantissa
int exp_width; // number of bits for exponent
int format_width; // format width in bits
int bias; // exponent bias
} FpFormatDescriptor;
static FpFormatDescriptor
DoubleFormat = {
0x7ff - 0x3ff, // 1024, maximum base 2 exponent (reserved for special values)
0x0 - 0x3ff, // -1023, minimum base 2 exponent (reserved for denormals)
53, // bits of precision carried in the mantissa
11, // number of bits for exponent
64, // format width in bits
0x3ff, // exponent bias
};
static FpFormatDescriptor
FloatFormat = {
0xff - 0x7f, // 128, maximum base 2 exponent (reserved for special values)
0x0 - 0x7f, // -127, minimum base 2 exponent (reserved for denormals)
24, // bits of precision carried in the mantissa
8, // number of bits for exponent
32, // format width in bits
0x7f, // exponent bias
};
// function prototypes
int _RoundMan (intrnman man, int nbit);
int _ZeroTail (intrnman man, int nbit);
int _IncMan (intrnman man, int nbit);
void _CopyMan (intrnman dest, intrnman src);
void _CopyMan (intrnman dest, intrnman src);
void _FillZeroMan(intrnman man);
void _Shrman (intrnman man, int n);
INTRNCVT_STATUS _ld12cvt(_ULDBL12 *pld12, void *d, FpFormatDescriptor *format);
/*
* _ZeroTail - check if a mantissa ends in 0's
*Purpose:
* Return TRUE if all mantissa bits after nbit (including nbit) are 0,
* otherwise return FALSE
*Entry:
* man: mantissa
* nbit: order of bit where the tail begins
*Exit:
*Exceptions:
*/
int _ZeroTail (intrnman man, int nbit)
{
int nl = nbit / 32;
int nb = 31 - nbit % 32;
// |<---- tail to be checked --->
// -- ------------------------ ----
// |... | | ... |
// -- ------------------------ ----
// ^ ^ ^
// | | |<----nb----->
// man nl nbit
u_long bitmask = ~(MAX_ULONG << nb);
if (man[nl] & bitmask)
return 0;
nl++;
for (;nl < INTRNMAN_LEN; nl++)
if (man[nl])
return 0;
return 1;
}
/*
* _IncMan - increment mantissa
*Purpose:
*Entry:
* man: mantissa in internal long form
* nbit: order of bit that specifies the end of the part to be incremented
*Exit:
* returns 1 on overflow, 0 otherwise
*Exceptions:
*/
int _IncMan (intrnman man, int nbit)
{
int nl = nbit / 32;
int nb = 31 - nbit % 32;
// |<--- part to be incremented -->|
// -- --------------------------- ----
// |... | | ... |
// -- --------------------------- ----
// ^ ^ ^
// | | |<--nb-->
// man nl nbit
u_long one = (u_long) 1 << nb;
int carry;
carry = __addl(man[nl], one, &man[nl]);
nl--;
for (; nl >= 0 && carry; nl--) {
carry = (u_long) __addl(man[nl], (u_long) 1, &man[nl]);
}
return carry;
}
/*
* _RoundMan - round mantissa
*Purpose:
* round mantissa to nbit precision
*Entry:
* man: mantissa in internal form
* precision: number of bits to be kept after rounding
*Exit:
* returns 1 on overflow, 0 otherwise
*Exceptions:
*/
int _RoundMan (intrnman man, int precision)
{
int i,rndbit,nl,nb;
u_long rndmask;
int nbit;
int retval = 0;
// The order of the n'th bit is n-1, since the first bit is bit 0
// therefore decrement precision to get the order of the last bit
// to be kept
nbit = precision - 1;
rndbit = nbit+1;
nl = rndbit / 32;
nb = 31 - rndbit % 32;
// Get value of round bit
rndmask = (u_long)1 << nb;
if ((man[nl] & rndmask) &&
!_ZeroTail(man, rndbit+1)) {
// round up
retval = _IncMan(man, nbit);
}
// fill rest of mantissa with zeroes
man[nl] &= MAX_ULONG << nb;
for(i=nl+1; i<INTRNMAN_LEN; i++) {
man[i] = (u_long)0;
}
return retval;
}
/*
* _CopyMan - copy mantissa
*Purpose:
* copy src to dest
*Entry:
*Exit:
*Exceptions:
*/
void _CopyMan (intrnman dest, intrnman src)
{
u_long *p, *q;
int i;
p = src;
q = dest;
for (i=0; i < INTRNMAN_LEN; i++) {
*q++ = *p++;
}
}
/*
* _FillZeroMan - fill mantissa with zeroes
*Purpose:
*Entry:
*Exit:
*Exceptions:
*/
void _FillZeroMan(intrnman man)
{
int i;
for (i=0; i < INTRNMAN_LEN; i++)
man[i] = (u_long)0;
}
/*
* _IsZeroMan - check if mantissa is zero
*Purpose:
*Entry:
*Exit:
*Exceptions:
*/
int _IsZeroMan(intrnman man)
{
int i;
for (i=0; i < INTRNMAN_LEN; i++)
if (man[i])
return 0;
return 1;
}
/*
* _ShrMan - shift mantissa to the right
*Purpose:
* shift man by n bits to the right
*Entry:
*Exit:
*Exceptions:
*/
void _ShrMan (intrnman man, int n)
{
int i, n1, n2, mask;
int carry_from_left;
// declare this as volatile in order to work around a C8
// optimization bug
volatile int carry_to_right;
n1 = n / 32;
n2 = n % 32;
mask = ~(MAX_ULONG << n2);
// first deal with shifts by less than 32 bits
carry_from_left = 0;
for (i=0; i<INTRNMAN_LEN; i++) {
carry_to_right = man[i] & mask;
man[i] >>= n2;
man[i] |= carry_from_left;
carry_from_left = carry_to_right << (32 - n2);
}
// now shift whole 32-bit ints
for (i=INTRNMAN_LEN-1; i>=0; i--) {
if (i >= n1) {
man[i] = man[i-n1];
}
else {
man[i] = 0;
}
}
}
/*
* _ld12tocvt - _ULDBL12 floating point conversion
*Purpose:
* convert a internal _LBL12 structure into an IEEE floating point
* representation
*Entry:
* pld12: pointer to the _ULDBL12
* format: pointer to the format descriptor structure
*Exit:
* *d contains the IEEE representation
* returns the INTRNCVT_STATUS
*Exceptions:
*/
INTRNCVT_STATUS _ld12cvt(_ULDBL12 *pld12, void *d, FpFormatDescriptor *format)
{
u_long man[INTRNMAN_LEN];
u_long saved_man[INTRNMAN_LEN];
u_long msw;
unsigned int bexp; // biased exponent
int exp_shift;
int exponent, sign;
INTRNCVT_STATUS retval;
exponent = (*U_EXP_12(pld12) & 0x7fff) - 0x3fff; // unbias exponent
sign = *U_EXP_12(pld12) & 0x8000;
// bexp is the final biased value of the exponent to be used
// Each of the following blocks should provide appropriate
// values for man, bexp and retval. The mantissa is also
// shifted to the right, leaving space for the exponent
// and sign to be inserted
if (exponent == 0 - 0x3fff) {
// either a denormal or zero
bexp = 0;
if (_IsZeroMan(man)) {
retval = INTRNCVT_OK;
}
else {
_FillZeroMan(man);
// denormal has been flushed to zero
retval = INTRNCVT_UNDERFLOW;
}
}
else {
man[0] = *UL_MANHI_12(pld12);
man[1] = *UL_MANLO_12(pld12);
man[2] = *U_XT_12(pld12) << 16;
// save mantissa in case it needs to be rounded again
// at a different point (e.g., if the result is a denormal)
_CopyMan(saved_man, man);
if (_RoundMan(man, format->precision)) {
exponent ++;
}
if (exponent < format->min_exp - format->precision ) {
// underflow that produces a zero
_FillZeroMan(man);
bexp = 0;
retval = INTRNCVT_UNDERFLOW;
}
else if (exponent <= format->min_exp) {
// underflow that produces a denormal
// The (unbiased) exponent will be MIN_EXP
// Find out how much the mantissa should be shifted
// One shift is done implicitly by moving the
// binary point one bit to the left, i.e.,
// we treat the mantissa as .ddddd instead of d.dddd
// (where d is a binary digit)
int shift = format->min_exp - exponent;
// The mantissa should be rounded again, so it
// has to be restored
_CopyMan(man,saved_man);
_ShrMan(man, shift);
_RoundMan(man, format->precision); // need not check for carry
// make room for the exponent + sign
_ShrMan(man, format->exp_width + 1);
bexp = 0;
retval = INTRNCVT_UNDERFLOW;
}
else if (exponent >= format->max_exp) {
// overflow, return infinity
_FillZeroMan(man);
man[0] |= (1 << 31); // set MSB
// make room for the exponent + sign
_ShrMan(man, (format->exp_width + 1) - 1);
bexp = format->max_exp + format->bias;
retval = INTRNCVT_OVERFLOW;
}
else {
// valid, normalized result
bexp = exponent + format->bias;
// clear implied bit
man[0] &= (~( 1 << 31));
// shift right to make room for exponent + sign
_ShrMan(man, (format->exp_width + 1) - 1);
retval = INTRNCVT_OK;
}
}
exp_shift = 32 - (format->exp_width + 1);
msw = man[0] |
(bexp << exp_shift) |
(sign ? 1<<31 : 0);
if (format->format_width == 64) {
*UL_HI_D(d) = msw;
*UL_LO_D(d) = man[1];
}
else if (format->format_width == 32) {
*(u_long *)d = msw;
}
return retval;
}
/*
* _ld12tod - convert _ULDBL12 to double
*Purpose:
*Entry:
*Exit:
*Exceptions:
*/
INTRNCVT_STATUS _ld12tod(_ULDBL12 *pld12, UDOUBLE *d)
{
return _ld12cvt(pld12, d, &DoubleFormat);
}
/*
* _ld12tof - convert _ULDBL12 to float
*Purpose:
*Entry:
*Exit:
*Exceptions:
*/
INTRNCVT_STATUS _ld12tof(_ULDBL12 *pld12, FLOAT *f)
{
return _ld12cvt(pld12, f, &FloatFormat);
}
/*
* _ld12told - convert _ULDBL12 to 80 bit long double
*Purpose:
*Entry:
*Exit:
*Exceptions:
*/
void _ld12told(_ULDBL12 *pld12, _ULDOUBLE *pld)
{
// This implementation is based on the fact that the _ULDBL12 format is
// identical to the long double and has 2 extra bytes of mantissa
u_short exp, sign;
u_long man[INTRNMAN_LEN];
exp = *U_EXP_12(pld12) & (u_short)0x7fff;
sign = *U_EXP_12(pld12) & (u_short)0x8000;
man[0] = *UL_MANHI_12(pld12);
man[1] = *UL_MANLO_12(pld12);
man[2] = *U_XT_12(pld12) << 16;
if (_RoundMan(man, 64))
exp ++;
*UL_MANHI_LD(pld) = man[0];
*UL_MANLO_LD(pld) = man[1];
*U_EXP_LD(pld) = sign | exp;
}
void _atodbl(UDOUBLE *d, char *str)
{
char *EndPtr;
_ULDBL12 ld12;
__strgtold12(&ld12, &EndPtr, str, 0 );
_ld12tod(&ld12, d);
}
void _atoldbl(_ULDOUBLE *ld, char *str)
{
char *EndPtr;
_ULDBL12 ld12;
__strgtold12(&ld12, &EndPtr, str, 0 );
_ld12told(&ld12, ld);
}
void _atoflt(FLOAT *f, char *str)
{
char *EndPtr;
_ULDBL12 ld12;
__strgtold12(&ld12, &EndPtr, str, 0 );
_ld12tof(&ld12, f);
}