Windows2000/private/inet/urlmon/compress/gzip/infdyna.c
2020-09-30 17:12:32 +02:00

675 lines
19 KiB
C

// infdyna.c
// Decompress a dynamically compressed block
#include <stdio.h>
#include <crtdbg.h>
#include "inflate.h"
#include "infmacro.h"
#include "maketbl.h"
#define OUTPUT_EOF() (output_curpos >= context->end_output_buffer)
// This is the slow version, which worries about the input running out or the output
// running out. The trick here is to not read any more bytes than we need to; theoretically
// the "end of block" code could be 1 bit, so we cannot always assume that it is ok to fill
// the bit buffer with 16 bits right before a table decode.
BOOL DecodeDynamicBlock(t_decoder_context *context, BOOL *end_of_block_code_seen)
{
const byte * input_ptr;
const byte * end_input_buffer;
byte * output_curpos;
byte * window;
unsigned long bufpos;
unsigned long bitbuf;
int bitcount;
int length;
long dist_code;
unsigned long offset;
t_decoder_state old_state;
BYTE fCanTryFastEncoder = TRUE;
*end_of_block_code_seen = FALSE;
// Store these variables locally for speed
top:
output_curpos = context->output_curpos;
window = context->window;
bufpos = context->bufpos;
end_input_buffer = context->end_input_buffer;
LOAD_BITBUF_VARS();
_ASSERT(bitcount >= -16);
old_state = context->state;
context->state = STATE_DECODE_TOP; // reset state
switch (old_state)
{
case STATE_DECODE_TOP:
break;
case STATE_HAVE_INITIAL_LENGTH:
length = context->length;
goto reenter_state_have_initial_length;
case STATE_HAVE_FULL_LENGTH:
length = context->length;
goto reenter_state_have_full_length;
case STATE_HAVE_DIST_CODE:
length = context->length;
dist_code = context->dist_code;
goto reenter_state_have_dist_code;
case STATE_INTERRUPTED_MATCH:
length = context->length;
offset = context->offset;
goto reenter_state_interrupted_match;
default:
_ASSERT(0); // error, invalid state!
}
do
{
// The first time we're at the top of this loop, check whether we can use the
// fast encoder; we will do this if the input and output buffers are nowhere
// near the end, which allows the fast encoder to be a little more relaxed
// about checking for these conditions
// If we cannot enter the fast encoder when we first check, then we will not
// be able to enter it again while we're in this function (the amount of
// input/output available is not going to get any larger), so don't check
// again.
if (fCanTryFastEncoder)
{
if (context->output_curpos + MAX_MATCH < context->end_output_buffer &&
context->input_curpos + 12 < context->end_input_buffer)
{
SAVE_BITBUF_VARS();
context->output_curpos = output_curpos;
context->bufpos = bufpos;
if (FastDecodeDynamicBlock(context, end_of_block_code_seen) == FALSE)
return FALSE;
if (*end_of_block_code_seen)
return TRUE;
goto top;
}
else
{
// don't check again
fCanTryFastEncoder = FALSE;
}
}
// decode an element from the main tree
// we must have at least 1 bit available
_ASSERT(bitcount >= -16);
if (bitcount == -16)
{
if (input_ptr >= end_input_buffer)
break;
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
retry_decode_literal:
// assert that at least 1 bit is present
_ASSERT(bitcount > -16);
// decode an element from the literal tree
length = context->literal_table[bitbuf & LITERAL_TABLE_MASK];
while (length < 0)
{
unsigned long mask = 1 << LITERAL_TABLE_BITS;
do
{
length = -length;
if ((bitbuf & mask) == 0)
length = context->literal_left[length];
else
length = context->literal_right[length];
mask <<= 1;
} while (length < 0);
}
// If this code is longer than the # bits we had in the bit buffer (i.e.
// we read only part of the code - but enough to know that it's too long),
// read more bits and retry
if (context->literal_tree_code_length[length] > (bitcount+16))
{
// if we run out of bits, break
if (input_ptr >= end_input_buffer)
break;
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
goto retry_decode_literal;
}
DUMPBITS(context->literal_tree_code_length[length]);
_ASSERT(bitcount >= -16);
// Is it a character or a match?
if (length < 256)
{
// it's an unmatched symbol
window[bufpos] = *output_curpos++ = (byte) length;
bufpos = (bufpos + 1) & WINDOW_MASK;
}
else
{
// it's a match
int extra_bits;
length -= 257;
// if value was 256, that was the end-of-block code
if (length < 0)
{
*end_of_block_code_seen = TRUE;
break;
}
// Get match length
// These matches are by far the most common case.
if (length < 8)
{
// no extra bits
// match length = 3,4,5,6,7,8,9,10
length += 3;
}
else
{
int extra_bits;
reenter_state_have_initial_length:
extra_bits = g_ExtraLengthBits[length];
if (extra_bits > 0)
{
// make sure we have this many bits in the bit buffer
if (extra_bits > bitcount + 16)
{
// if we run out of bits, break
if (input_ptr >= end_input_buffer)
{
context->state = STATE_HAVE_INITIAL_LENGTH;
context->length = length;
break;
}
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
// extra_length_bits will be no more than 5, so we need to read at
// most one byte of input to satisfy this request
}
length = g_LengthBase[length] + (bitbuf & g_BitMask[extra_bits]);
DUMPBITS(extra_bits);
_ASSERT(bitcount >= -16);
}
else
{
/*
* we know length > 8 and extra_bits == 0, there the length must be 258
*/
length = 258; /* g_LengthBase[length]; */
}
}
// Get match distance
// decode distance code
reenter_state_have_full_length:
// we must have at least 1 bit available
if (bitcount == -16)
{
if (input_ptr >= end_input_buffer)
{
context->state = STATE_HAVE_FULL_LENGTH;
context->length = length;
break;
}
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
retry_decode_distance:
// assert that at least 1 bit is present
_ASSERT(bitcount > -16);
dist_code = context->distance_table[bitbuf & DISTANCE_TABLE_MASK];
while (dist_code < 0)
{
unsigned long mask = 1 << DISTANCE_TABLE_BITS;
do
{
dist_code = -dist_code;
if ((bitbuf & mask) == 0)
dist_code = context->distance_left[dist_code];
else
dist_code = context->distance_right[dist_code];
mask <<= 1;
} while (dist_code < 0);
}
// If this code is longer than the # bits we had in the bit buffer (i.e.
// we read only part of the code - but enough to know that it's too long),
// read more bits and retry
if (context->distance_tree_code_length[dist_code] > (bitcount+16))
{
// if we run out of bits, break
if (input_ptr >= end_input_buffer)
{
context->state = STATE_HAVE_FULL_LENGTH;
context->length = length;
break;
}
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
_ASSERT(bitcount >= -16);
goto retry_decode_distance;
}
DUMPBITS(context->distance_tree_code_length[dist_code]);
// To avoid a table lookup we note that for dist_code >= 2,
// extra_bits = (dist_code-2) >> 1
// Old (intuitive) way of doing this:
// offset = distance_base_position[dist_code] +
// getBits(extra_distance_bits[dist_code]);
reenter_state_have_dist_code:
_ASSERT(bitcount >= -16);
extra_bits = (dist_code-2) >> 1;
if (extra_bits > 0)
{
// make sure we have this many bits in the bit buffer
if (extra_bits > bitcount + 16)
{
// if we run out of bits, break
if (input_ptr >= end_input_buffer)
{
context->state = STATE_HAVE_DIST_CODE;
context->length = length;
context->dist_code = dist_code;
break;
}
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
// extra_length_bits can be > 8, so check again
if (extra_bits > bitcount + 16)
{
// if we run out of bits, break
if (input_ptr >= end_input_buffer)
{
context->state = STATE_HAVE_DIST_CODE;
context->length = length;
context->dist_code = dist_code;
break;
}
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
}
offset = g_DistanceBasePosition[dist_code] + (bitbuf & g_BitMask[extra_bits]);
DUMPBITS(extra_bits);
_ASSERT(bitcount >= -16);
}
else
{
offset = dist_code + 1;
}
// copy remaining byte(s) of match
reenter_state_interrupted_match:
do
{
window[bufpos] = *output_curpos++ = window[(bufpos - offset) & WINDOW_MASK];
bufpos = (bufpos + 1) & WINDOW_MASK;
if (--length == 0)
break;
} while (output_curpos < context->end_output_buffer);
if (length > 0)
{
context->state = STATE_INTERRUPTED_MATCH;
context->length = length;
context->offset = offset;
break;
}
}
// it's "<=" because we end when we received the end-of-block code,
// not when we fill up the output, however, this will catch cases
// of corrupted data where there is no end-of-output code
} while (output_curpos < context->end_output_buffer);
_ASSERT(bitcount >= -16);
SAVE_BITBUF_VARS();
context->output_curpos = output_curpos;
context->bufpos = bufpos;
return TRUE;
}
// This is the fast version, which assumes that, at the top of the loop:
// 1. There are at least 12 bytes of input available at the top of the loop (so that we don't
// have to check input EOF several times in the middle of the loop)
// and
// 2. There are at least MAX_MATCH bytes of output available (so that we don't have to check
// for output EOF while we're copying matches)
// The state must also be STATE_DECODE_TOP on entering and exiting this function
BOOL FastDecodeDynamicBlock(t_decoder_context *context, BOOL *end_of_block_code_seen)
{
const byte * input_ptr;
const byte * end_input_buffer;
byte * output_curpos;
byte * window;
unsigned long bufpos;
unsigned long bitbuf;
int bitcount;
int length;
long dist_code;
unsigned long offset;
*end_of_block_code_seen = FALSE;
// Store these variables locally for speed
output_curpos = context->output_curpos;
window = context->window;
bufpos = context->bufpos;
end_input_buffer = context->end_input_buffer;
LOAD_BITBUF_VARS();
_ASSERT(context->state == STATE_DECODE_TOP);
_ASSERT(input_ptr + 12 < end_input_buffer);
_ASSERT(output_curpos + MAX_MATCH < context->end_output_buffer);
// make sure there are at least 16 bits in the bit buffer
while (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
do
{
// decode an element from the main tree
// decode an element from the literal tree
length = context->literal_table[bitbuf & LITERAL_TABLE_MASK];
while (length < 0)
{
unsigned long mask = 1 << LITERAL_TABLE_BITS;
do
{
length = -length;
if ((bitbuf & mask) == 0)
length = context->literal_left[length];
else
length = context->literal_right[length];
mask <<= 1;
} while (length < 0);
}
DUMPBITS(context->literal_tree_code_length[length]);
if (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
if (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
}
// Is it a character or a match?
if (length < 256)
{
// it's an unmatched symbol
window[bufpos] = *output_curpos++ = (byte) length;
bufpos = (bufpos + 1) & WINDOW_MASK;
}
else
{
// it's a match
int extra_bits;
length -= 257;
// if value was 256, that was the end-of-block code
if (length < 0)
{
*end_of_block_code_seen = TRUE;
break;
}
// Get match length
// These matches are by far the most common case.
if (length < 8)
{
// no extra bits
// match length = 3,4,5,6,7,8,9,10
length += 3;
}
else
{
int extra_bits;
extra_bits = g_ExtraLengthBits[length];
if (extra_bits > 0)
{
length = g_LengthBase[length] + (bitbuf & g_BitMask[extra_bits]);
DUMPBITS(extra_bits);
if (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
if (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
}
}
else
{
/*
* we know length > 8 and extra_bits == 0, there the length must be 258
*/
length = 258; /* g_LengthBase[length]; */
}
}
// Get match distance
// decode distance code
dist_code = context->distance_table[bitbuf & DISTANCE_TABLE_MASK];
while (dist_code < 0)
{
unsigned long mask = 1 << DISTANCE_TABLE_BITS;
do
{
dist_code = -dist_code;
if ((bitbuf & mask) == 0)
dist_code = context->distance_left[dist_code];
else
dist_code = context->distance_right[dist_code];
mask <<= 1;
} while (dist_code < 0);
}
DUMPBITS(context->distance_tree_code_length[dist_code]);
if (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
if (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
}
// To avoid a table lookup we note that for dist_code >= 2,
// extra_bits = (dist_code-2) >> 1
// Old (intuitive) way of doing this:
// offset = distance_base_position[dist_code] +
// getBits(extra_distance_bits[dist_code]);
extra_bits = (dist_code-2) >> 1;
if (extra_bits > 0)
{
offset = g_DistanceBasePosition[dist_code] + (bitbuf & g_BitMask[extra_bits]);
DUMPBITS(extra_bits);
if (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
if (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
}
}
else
{
offset = dist_code + 1;
}
// copy remaining byte(s) of match
do
{
window[bufpos] = *output_curpos++ = window[(bufpos - offset) & WINDOW_MASK];
bufpos = (bufpos + 1) & WINDOW_MASK;
} while (--length != 0);
}
} while ((input_ptr + 12 < end_input_buffer) && (output_curpos + MAX_MATCH < context->end_output_buffer));
// make sure there are at least 16 bits in the bit buffer
while (bitcount <= 0)
{
bitbuf |= ((*input_ptr++) << (bitcount+16));
bitcount += 8;
}
SAVE_BITBUF_VARS();
context->output_curpos = output_curpos;
context->bufpos = bufpos;
return TRUE;
}