Windows2000/private/ntos/config/i386/init386.c
2020-09-30 17:12:32 +02:00

733 lines
29 KiB
C

/*++
Copyright (c) 1990, 1991 Microsoft Corporation
Module Name:
init386.c
Abstract:
This module is responsible to build any x86 specific entries in the hardware tree of registry.
Author:
Ken Reneris (kenr) 04-Aug-1992
Environment:
Kernel mode.
Revision History:
shielint - add BIOS date and version detection.
--*/
#include "cmp.h"
#include "stdio.h"
#ifdef _WANT_MACHINE_IDENTIFICATION
#include "string.h"
#include "stdlib.h"
#include "ntverp.h"
#include "rules.h"
#endif
// Title Index is set to 0.
// (from ..\cmconfig.c)
#define TITLE_INDEX_VALUE 0
extern PCHAR SearchStrings[];
extern PCHAR BiosBegin;
extern PCHAR Start;
extern PCHAR End;
extern UCHAR CmpID1[];
extern UCHAR CmpID2[];
extern WCHAR CmpVendorID[];
extern WCHAR CmpProcessorNameString[];
extern WCHAR CmpFeatureBits[];
extern WCHAR CmpMHz[];
extern WCHAR CmpUpdateSignature[];
extern WCHAR CmPhysicalAddressExtension[];
extern UCHAR CmpCyrixID[];
extern UCHAR CmpIntelID[];
extern UCHAR CmpAmdID[];
// Bios date and version definitions
#define BIOS_DATE_LENGTH 11
#define MAXIMUM_BIOS_VERSION_LENGTH 128
#define SYSTEM_BIOS_START 0xF0000
#define SYSTEM_BIOS_LENGTH 0x10000
#define INT10_VECTOR 0x10
#define VIDEO_BIOS_START 0xC0000
#define VIDEO_BIOS_LENGTH 0x8000
#define VERSION_DATA_LENGTH PAGE_SIZE
// Extended CPUID function definitions
#define CPUID_PROCESSOR_NAME_STRING_SZ 49
#define CPUID_EXTFN_BASE 0x80000000
#define CPUID_EXTFN_PROCESSOR_NAME 0x80000002
// CPU Stepping mismatch.
UCHAR CmProcessorMismatch;
#define CM_PROCESSOR_MISMATCH_VENDOR 0x01
#define CM_PROCESSOR_MISMATCH_STEPPING 0x02
#define CM_PROCESSOR_MISMATCH_L2 0x04
extern ULONG CmpConfigurationAreaSize;
extern PCM_FULL_RESOURCE_DESCRIPTOR CmpConfigurationData;
BOOLEAN CmpGetBiosVersion (PCHAR SearchArea, ULONG SearchLength, PCHAR VersionString);
BOOLEAN CmpGetBiosDate (PCHAR SearchArea, ULONG SearchLength, PCHAR DateString, BOOLEAN SystemBiosDate);
ULONG Ke386CyrixId (VOID);
#ifdef _WANT_MACHINE_IDENTIFICATION
VOID CmpPerformMachineIdentification(IN PLOADER_PARAMETER_BLOCK LoaderBlock);
#endif
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT,CmpGetBiosDate)
#pragma alloc_text(INIT,CmpGetBiosVersion)
#pragma alloc_text(INIT,CmpInitializeMachineDependentConfiguration)
#ifdef _WANT_MACHINE_IDENTIFICATION
#pragma alloc_text(INIT,CmpPerformMachineIdentification)
#endif
#endif
BOOLEAN CmpGetBiosDate (PCHAR SearchArea, ULONG SearchLength, PCHAR DateString, BOOLEAN SystemBiosDate)
/*++
Routine Description:
This routine finds the most recent date in the computer/video card's ROM.
When GetRomDate encounters a datae, it checks the previously found date to see if the new date is more recent.
Arguments:
SearchArea - the area to search for a date.
SearchLength - Length of search.
DateString - Supplies a pointer to a fixed length memory to receive the date string.
Return Value:
NT_SUCCESS if a date is found.
--*/
{
CHAR prevDate[BIOS_DATE_LENGTH]; // Newest date found so far (CCYY/MM/DD)
CHAR currDate[BIOS_DATE_LENGTH]; // Date currently being examined (CCYY/MM/DD)
PCHAR start; // Start of the current search area.
PCHAR end; // End of the search area.
ULONG year; // YY
ULONG month; // MM
ULONG day; // DD
ULONG count;
#define IS_DIGIT(c) ((c) >= '0' && (c) <= '9')
// Initialize previous date
RtlZeroMemory(prevDate, BIOS_DATE_LENGTH);
// We need to look ahead 5 characters to determine the validity of the date pattern.
start = SearchArea + 2;
end = SearchArea + SearchLength - 5;
// Process the entire search area.
while (start < end) {
// We consider the following byte pattern as a potential date.
// We are assuming the following date pattern Month/Day/Year.
// "n/nn/nn" where n is any digit. We allow month to be single digit only.
if ( start[0] == '/' && start[3] == '/' && IS_DIGIT(*(start - 1)) && IS_DIGIT(start[1]) && IS_DIGIT(start[2]) && IS_DIGIT(start[4]) && IS_DIGIT(start[5])) {
// Copy MM/DD part into the currDate.
RtlMoveMemory(&currDate[5], start - 2, 5);
// Handle single digit month correctly.
if (!IS_DIGIT(currDate[5])) {
currDate[5] = '0';
}
// Copy the year YY into currDate
currDate[2] = start[4];
currDate[3] = start[5];
currDate[4] = currDate[7] = currDate[10] = '\0';
// Do basic validation for the date.
// Only one field (YY) can be 0.
// Only one field (YY) can be greater than 31.
// We assume the ROM date to be in the format MM/DD/YY.
year = strtoul(&currDate[2], NULL, 16);
month = strtoul(&currDate[5], NULL, 16);
day = strtoul(&currDate[8], NULL, 16);
// Count the number of fields that are 0.
count = ((day == 0)? 1 : 0) + ((month == 0)? 1 : 0) + ((year == 0)? 1 : 0);
if (count <= 1) {
// Count number of field that are greater than 31.
count = ((day > 0x31)? 1 : 0) + ((month > 0x31)? 1 : 0) + ((year > 0x31)? 1 : 0);
if (count <= 1) {
// See if the ROM already has a 4 digit date. We do this only for System ROM
// since they have a consistent date format.
if (SystemBiosDate && IS_DIGIT(start[6]) && IS_DIGIT(start[7]) && (memcmp(&start[4], "19", 2) == 0 || memcmp(&start[4], "20", 2) == 0)) {
currDate[0] = start[4];
currDate[1] = start[5];
currDate[2] = start[6];
currDate[3] = start[7];
} else {
// Internally, we treat year as a 4 digit quantity
// for comparison to determine the newest date.
// We treat year YY < 80 as 20YY, otherwise 19YY.
if (year < 0x80) {
currDate[0] = '2';
currDate[1] = '0';
} else {
currDate[0] = '1';
currDate[1] = '9';
}
}
// Add the '/' delimiters into the date.
currDate[4] = currDate[7] = '/';
// Compare the dates, and save the newer one.
if (memcmp (prevDate, currDate, BIOS_DATE_LENGTH - 1) < 0) {
RtlMoveMemory(prevDate, currDate, BIOS_DATE_LENGTH - 1);
}
// Next search should start at the second '/'.
start += 2;
}
}
}
start++;
}
if (prevDate[0] != '\0') {
// Convert from the internal CCYY/MM/DD format to return MM/DD//YY format.
RtlMoveMemory(DateString, &prevDate[5], 5);
DateString[5] = '/';
DateString[6] = prevDate[2];
DateString[7] = prevDate[3];
DateString[8] = '\0';
return (TRUE);
}
// If we did not find a date, return an empty string.
DateString[0] = '\0';
return (FALSE);
}
BOOLEAN CmpGetBiosVersion (PCHAR SearchArea, ULONG SearchLength, PCHAR VersionString)
/*++
Routine Description:
This routine finds the version number stored in ROM, if any.
Arguments:
SearchArea - the area to search for the version.
SearchLength - Length of search
VersionString - Supplies a pointer to a fixed length memory to receive the version string.
Return Value:
TRUE if a version number is found. Else a value of FALSE is returned.
--*/
{
PCHAR String;
USHORT Length;
USHORT i;
CHAR Buffer[MAXIMUM_BIOS_VERSION_LENGTH];
PCHAR BufferPointer;
if (SearchArea != NULL) {
// If caller does not specify the search area, we will search the area left from previous search.
BiosBegin = SearchArea;
Start = SearchArea + 1;
End = SearchArea + SearchLength - 2;
}
while (1) {
// Search for a period with a digit on either side
String = NULL;
while (Start <= End) {
if (*Start == '.' && *(Start+1) >= '0' && *(Start+1) <= '9' && *(Start-1) >= '0' && *(Start-1) <= '9') {
String = Start;
break;
} else {
Start++;
}
}
if (Start > End) {
return(FALSE);
} else {
Start += 2;
}
Length = 0;
Buffer[MAXIMUM_BIOS_VERSION_LENGTH - 1] = '\0';
BufferPointer = &Buffer[MAXIMUM_BIOS_VERSION_LENGTH - 1];
// Search for the beginning of the string
String--;
while (Length < MAXIMUM_BIOS_VERSION_LENGTH - 8 && String >= BiosBegin && *String >= ' ' && *String <= 127 && *String != '$') {
--BufferPointer;
*BufferPointer = *String;
--String, ++Length;
}
++String;
// Can one of the search strings be found
for (i = 0; SearchStrings[i]; i++) {
if (strstr(BufferPointer, SearchStrings[i])) {
goto Found;
}
}
}
Found:
// Skip leading white space
for (; *String == ' '; ++String)
;
// Copy the string to user supplied buffer
for (i = 0; i < MAXIMUM_BIOS_VERSION_LENGTH - 1 && String <= (End + 1) && *String >= ' ' && *String <= 127 && *String != '$'; ++i, ++String) {
VersionString[i] = *String;
}
VersionString[i] = '\0';
return (TRUE);
}
NTSTATUS CmpInitializeMachineDependentConfiguration(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
/*++
Routine Description:
This routine creates x86 specific entries in the registry.
Arguments:
LoaderBlock - supplies a pointer to the LoaderBlock passed in from the OS Loader.
Returns:
NTSTATUS code for sucess or reason of failure.
--*/
{
NTSTATUS Status;
ULONG VideoBiosStart;
UNICODE_STRING KeyName;
UNICODE_STRING ValueName;
UNICODE_STRING ValueData;
ANSI_STRING AnsiString;
OBJECT_ATTRIBUTES ObjectAttributes;
ULONG Disposition;
HANDLE ParentHandle;
HANDLE BaseHandle, NpxHandle;
HANDLE CurrentControlSet;
CONFIGURATION_COMPONENT_DATA CurrentEntry;
PUCHAR VendorID;
UCHAR Buffer[MAXIMUM_BIOS_VERSION_LENGTH];
PKPRCB Prcb;
ULONG i, Junk;
ULONG VersionsLength = 0, Length;
PCHAR VersionStrings, VersionPointer;
UNICODE_STRING SectionName;
ULONG ViewSize;
LARGE_INTEGER ViewBase;
PVOID BaseAddress;
HANDLE SectionHandle;
USHORT DeviceIndexTable[NUMBER_TYPES];
ULONG CpuIdFunction;
ULONG MaxExtFn;
PULONG NameString = NULL;
ULONG P0L2Size = 0;
ULONG ThisProcessorL2Size;
struct {
union {
UCHAR Bytes[CPUID_PROCESSOR_NAME_STRING_SZ];
ULONG DWords[1];
} u;
} ProcessorNameString;
#ifdef _WANT_MACHINE_IDENTIFICATION
HANDLE BiosInfo;
#endif
for (i = 0; i < NUMBER_TYPES; i++) {
DeviceIndexTable[i] = 0;
}
InitializeObjectAttributes( &ObjectAttributes, &CmRegistryMachineSystemCurrentControlSetControlSessionManagerMemoryManagement, OBJ_CASE_INSENSITIVE, NULL, NULL);
Status = NtOpenKey( &BaseHandle, KEY_READ | KEY_WRITE, &ObjectAttributes);
if (NT_SUCCESS(Status)) {
ULONG paeEnabled;
if (SharedUserData->ProcessorFeatures[PF_PAE_ENABLED] == FALSE) {
paeEnabled = 0;
} else {
paeEnabled = 1;
}
RtlInitUnicodeString( &ValueName, CmPhysicalAddressExtension );
NtSetValueKey( BaseHandle, &ValueName, TITLE_INDEX_VALUE, REG_DWORD, &paeEnabled, sizeof(paeEnabled) );
NtClose( BaseHandle );
}
InitializeObjectAttributes( &ObjectAttributes, &CmRegistryMachineHardwareDescriptionSystemName, OBJ_CASE_INSENSITIVE, NULL, NULL);
Status = NtOpenKey( &ParentHandle, KEY_READ, &ObjectAttributes);
if (!NT_SUCCESS(Status)) {
// Something is really wrong...
return Status;
}
#ifdef _WANT_MACHINE_IDENTIFICATION
InitializeObjectAttributes( &ObjectAttributes, &CmRegistryMachineSystemCurrentControlSetControlBiosInfo, OBJ_CASE_INSENSITIVE, NULL, NULL);
Status = NtCreateKey( &BiosInfo, KEY_ALL_ACCESS, &ObjectAttributes, 0, NULL, REG_OPTION_NON_VOLATILE, &Disposition);
if (!NT_SUCCESS(Status)) {
// Something is really wrong...
return Status;
}
#endif
// On an ARC machine the processor(s) are included in the hardware configuration passed in from bootup. Since there's no standard
// way to get all the ARC information for each processor in an MP machine via pc-ROMs the information will be added here (if it's not already present).
RtlInitUnicodeString( &KeyName, L"CentralProcessor");
InitializeObjectAttributes(&ObjectAttributes, &KeyName, 0, ParentHandle, NULL);
ObjectAttributes.Attributes |= OBJ_CASE_INSENSITIVE;
Status = NtCreateKey(&BaseHandle, KEY_READ | KEY_WRITE, &ObjectAttributes, TITLE_INDEX_VALUE, &CmClassName[ProcessorClass], 0, &Disposition);
NtClose (BaseHandle);
if (Disposition == REG_CREATED_NEW_KEY) {
// The ARC rom didn't add the processor(s) into the registry.
// Do it now.
CmpConfigurationData = (PCM_FULL_RESOURCE_DESCRIPTOR)ExAllocatePool(PagedPool, CmpConfigurationAreaSize);
// if (CmpConfigurationData == 0) {
// <do something useful>
// Note: we don't actually use it so it doesn't matter for now
// since it isn't used until the free. go figure.
// }
for (i=0; i < (ULONG)KeNumberProcessors; i++) {
Prcb = KiProcessorBlock[i];
RtlZeroMemory (&CurrentEntry, sizeof CurrentEntry);
CurrentEntry.ComponentEntry.Class = ProcessorClass;
CurrentEntry.ComponentEntry.Type = CentralProcessor;
CurrentEntry.ComponentEntry.Key = i;
CurrentEntry.ComponentEntry.AffinityMask = 1 << i;
CurrentEntry.ComponentEntry.Identifier = Buffer;
if (Prcb->CpuID == 0) {
// Old style stepping format
sprintf (Buffer, CmpID1, Prcb->CpuType, (Prcb->CpuStep >> 8) + 'A', Prcb->CpuStep & 0xff);
} else {
// New style stepping format
sprintf (Buffer, CmpID2, Prcb->CpuType, (Prcb->CpuStep >> 8), Prcb->CpuStep & 0xff);
}
CurrentEntry.ComponentEntry.IdentifierLength = strlen (Buffer) + 1;
Status = CmpInitializeRegistryNode(&CurrentEntry, ParentHandle, &BaseHandle, -1, (ULONG)-1, DeviceIndexTable);
if (!NT_SUCCESS(Status)) {
return(Status);
}
if (KeI386NpxPresent) {
RtlZeroMemory (&CurrentEntry, sizeof CurrentEntry);
CurrentEntry.ComponentEntry.Class = ProcessorClass;
CurrentEntry.ComponentEntry.Type = FloatingPointProcessor;
CurrentEntry.ComponentEntry.Key = i;
CurrentEntry.ComponentEntry.AffinityMask = 1 << i;
CurrentEntry.ComponentEntry.Identifier = Buffer;
if (Prcb->CpuType == 3) {
// 386 processors have 387's installed, else use processor identifier as the NPX identifier
strcpy (Buffer, "80387");
}
CurrentEntry.ComponentEntry.IdentifierLength = strlen (Buffer) + 1;
Status = CmpInitializeRegistryNode(&CurrentEntry, ParentHandle, &NpxHandle, -1, (ULONG)-1, DeviceIndexTable);
if (!NT_SUCCESS(Status)) {
NtClose(BaseHandle);
return(Status);
}
NtClose(NpxHandle);
}
// If processor supports Cpu Indentification then go obtain that information for the registry
VendorID = Prcb->CpuID ? Prcb->VendorString : NULL;
// Move to target processor and get other related
// processor information for the registery
KeSetSystemAffinityThread(Prcb->SetMember);
if (!Prcb->CpuID) {
// Test for Cyrix processor
if (Ke386CyrixId ()) {
VendorID = CmpCyrixID;
}
} else {
// If this processor has extended CPUID functions, get the ProcessorNameString. Although the Intel books
// say that for CpuID functions > than the valued returned for function 0 will return undefined results,
// we have a guarantee from Intel that that result will never have the highest order bit set. This enables
// us to determine if the extended functions are supported by issuing CpuID function 0x80000000.
// Note: It is not known that this is true for all x86 clones. If/when we find exceptions we will support
// them. In the mean time we are asking the clone makers to guarantee this behavior.
CPUID(CPUID_EXTFN_BASE, &MaxExtFn, &Junk, &Junk, &Junk);
if (MaxExtFn >= (CPUID_EXTFN_PROCESSOR_NAME + 2)) {
// This processor supports extended CPUID functions up to and (at least) including processor name string.
// Each CPUID call for the processor name string will return 16 bytes, 48 bytes in all, zero terminated.
NameString = &ProcessorNameString.u.DWords[0];
for (CpuIdFunction = CPUID_EXTFN_PROCESSOR_NAME; CpuIdFunction <= (CPUID_EXTFN_PROCESSOR_NAME+2); CpuIdFunction++) {
CPUID(CpuIdFunction, NameString, NameString + 1, NameString + 2, NameString + 3);
NameString += 4;
}
// Enforce 0 byte terminator.
ProcessorNameString.u.Bytes[CPUID_PROCESSOR_NAME_STRING_SZ-1] = 0;
}
}
ThisProcessorL2Size = KeGetPcr()->SecondLevelCacheSize;
// Restore thread's affinity to all processors
KeRevertToUserAffinityThread();
if (NameString) {
// Add Processor Name String to the registery
RtlInitUnicodeString(&ValueName, CmpProcessorNameString);
RtlInitAnsiString(&AnsiString, ProcessorNameString.u.Bytes);
RtlAnsiStringToUnicodeString(&ValueData, &AnsiString, TRUE);
Status = NtSetValueKey(BaseHandle, &ValueName, TITLE_INDEX_VALUE, REG_SZ, ValueData.Buffer, ValueData.Length + sizeof( UNICODE_NULL ));
RtlFreeUnicodeString(&ValueData);
}
if (VendorID) {
// Add Vendor Indentifier to the registery
RtlInitUnicodeString(&ValueName, CmpVendorID);
RtlInitAnsiString(&AnsiString, VendorID);
RtlAnsiStringToUnicodeString(&ValueData, &AnsiString, TRUE);
Status = NtSetValueKey(BaseHandle, &ValueName, TITLE_INDEX_VALUE, REG_SZ, ValueData.Buffer, ValueData.Length + sizeof( UNICODE_NULL ));
RtlFreeUnicodeString(&ValueData);
}
if (Prcb->FeatureBits) {
// Add processor feature bits to the registery
RtlInitUnicodeString(&ValueName, CmpFeatureBits);
Status = NtSetValueKey(BaseHandle, &ValueName, TITLE_INDEX_VALUE, REG_DWORD, &Prcb->FeatureBits, sizeof (Prcb->FeatureBits));
}
if (Prcb->MHz) {
// Add processor MHz to the registery
RtlInitUnicodeString(&ValueName, CmpMHz);
Status = NtSetValueKey(BaseHandle, &ValueName, TITLE_INDEX_VALUE, REG_DWORD, &Prcb->MHz, sizeof (Prcb->MHz));
}
if (Prcb->UpdateSignature.QuadPart) {
// Add processor MHz to the registery
RtlInitUnicodeString(&ValueName, CmpUpdateSignature);
Status = NtSetValueKey(BaseHandle, &ValueName, TITLE_INDEX_VALUE, REG_BINARY, &Prcb->UpdateSignature, sizeof (Prcb->UpdateSignature));
}
NtClose(BaseHandle);
// Check processor steppings.
if (i == 0) {
P0L2Size = ThisProcessorL2Size;
} else {
// Check all processors against processor 0. Compare
// CPUID supported,
// Vendor ID String
// Family and Stepping
// L2 cache size.
if (Prcb->CpuID) {
if (strcmp(Prcb->VendorString, KiProcessorBlock[0]->VendorString)) {
CmProcessorMismatch |= CM_PROCESSOR_MISMATCH_VENDOR;
}
if (ThisProcessorL2Size != P0L2Size) {
CmProcessorMismatch |= CM_PROCESSOR_MISMATCH_L2;
}
if ((Prcb->CpuType != KiProcessorBlock[0]->CpuType) || (Prcb->CpuStep != KiProcessorBlock[0]->CpuStep)) {
CmProcessorMismatch |= CM_PROCESSOR_MISMATCH_STEPPING;
}
} else {
// If this processor doesn't support CPUID, P0
// shouldn't support it either.
if (KiProcessorBlock[0]->CpuID) {
CmProcessorMismatch |= CM_PROCESSOR_MISMATCH_STEPPING;
}
}
}
}
if (0 != CmpConfigurationData) {
ExFreePool((PVOID)CmpConfigurationData);
}
}
// Next we try to collect System BIOS date and version strings.
// BUGBUG This code should be moved to ntdetect.com after product 1.
// Open a physical memory section to map in physical memory.
RtlInitUnicodeString(&SectionName, L"\\Device\\PhysicalMemory");
InitializeObjectAttributes(&ObjectAttributes, &SectionName, OBJ_CASE_INSENSITIVE, (HANDLE) NULL, (PSECURITY_DESCRIPTOR) NULL);
Status = ZwOpenSection(&SectionHandle, SECTION_ALL_ACCESS, &ObjectAttributes);
if (!NT_SUCCESS(Status)) {
goto AllDone;// If fail, forget the bios data and version
}
// Examine the first page of physical memory for int 10 segment address.
BaseAddress = 0;
ViewSize = 0x1000;
ViewBase.LowPart = 0;
ViewBase.HighPart = 0;
Status =ZwMapViewOfSection(SectionHandle, NtCurrentProcess(), &BaseAddress, 0, ViewSize, &ViewBase, &ViewSize, ViewUnmap, MEM_DOS_LIM, PAGE_READWRITE);
if (!NT_SUCCESS(Status)) {
VideoBiosStart = VIDEO_BIOS_START;
} else {
VideoBiosStart = (*((PULONG)BaseAddress + INT10_VECTOR) & 0xFFFF0000) >> 12;
VideoBiosStart += (*((PULONG)BaseAddress + INT10_VECTOR) & 0x0000FFFF);
VideoBiosStart &= 0xffff8000;
if (VideoBiosStart < VIDEO_BIOS_START) {
VideoBiosStart = VIDEO_BIOS_START;
}
Status = ZwUnmapViewOfSection(NtCurrentProcess(), BaseAddress);
}
VersionStrings = ExAllocatePool(PagedPool, VERSION_DATA_LENGTH);
BaseAddress = 0;
ViewSize = SYSTEM_BIOS_LENGTH;
ViewBase.LowPart = SYSTEM_BIOS_START;
ViewBase.HighPart = 0;
Status =ZwMapViewOfSection(SectionHandle, NtCurrentProcess(), &BaseAddress, 0, ViewSize, &ViewBase, &ViewSize, ViewUnmap, MEM_DOS_LIM, PAGE_READWRITE);
if (NT_SUCCESS(Status)) {
if (CmpGetBiosDate(BaseAddress, SYSTEM_BIOS_LENGTH, Buffer, TRUE)) {
// Convert ascii date string to unicode string and store it in registry.
RtlInitUnicodeString(&ValueName, L"SystemBiosDate");
RtlInitAnsiString(&AnsiString, Buffer);
RtlAnsiStringToUnicodeString(&ValueData, &AnsiString, TRUE);
Status = NtSetValueKey(ParentHandle, &ValueName, TITLE_INDEX_VALUE, REG_SZ, ValueData.Buffer, ValueData.Length + sizeof( UNICODE_NULL ));
RtlFreeUnicodeString(&ValueData);
#ifdef _WANT_MACHINE_IDENTIFICATION
memcpy(Buffer, (PCHAR)BaseAddress + 0xFFF5, 8);
Buffer[8] = '\0';
RtlInitAnsiString( &AnsiString, Buffer);
Status = RtlAnsiStringToUnicodeString( &ValueData, &AnsiString, TRUE);
if (NT_SUCCESS(Status)) {
Status = NtSetValueKey( BiosInfo, &ValueName, TITLE_INDEX_VALUE, REG_SZ, ValueData.Buffer, ValueData.Length + sizeof( UNICODE_NULL ));
RtlFreeUnicodeString(&ValueData);
}
NtClose (BiosInfo);
#endif
}
if (VersionStrings && CmpGetBiosVersion(BaseAddress, SYSTEM_BIOS_LENGTH, Buffer)) {
VersionPointer = VersionStrings;
do {
// Try to detect ALL the possible BIOS version strings.
// Convert them to unicode strings and copy them to our VersionStrings buffer.
RtlInitAnsiString(&AnsiString, Buffer);
RtlAnsiStringToUnicodeString(&ValueData, &AnsiString, TRUE);
Length = ValueData.Length + sizeof(UNICODE_NULL);
RtlMoveMemory(VersionPointer, ValueData.Buffer, Length);
VersionsLength += Length;
RtlFreeUnicodeString(&ValueData);
if (VersionsLength + (MAXIMUM_BIOS_VERSION_LENGTH + sizeof(UNICODE_NULL)) * 2 > PAGE_SIZE) {
break;
}
VersionPointer += Length;
} while (CmpGetBiosVersion(NULL, 0, Buffer));
if (VersionsLength != 0) {
// Append a UNICODE_NULL to the end of VersionStrings
*(PWSTR)VersionPointer = UNICODE_NULL;
VersionsLength += sizeof(UNICODE_NULL);
// If any version string is found, we set up a ValueName and initialize its value to the string(s) we found.
RtlInitUnicodeString(&ValueName, L"SystemBiosVersion");
Status = NtSetValueKey(ParentHandle, &ValueName, TITLE_INDEX_VALUE, REG_MULTI_SZ, VersionStrings, VersionsLength);
}
}
ZwUnmapViewOfSection(NtCurrentProcess(), BaseAddress);
}
// Next we try to collect Video BIOS date and version strings.
BaseAddress = 0;
ViewSize = VIDEO_BIOS_LENGTH;
ViewBase.LowPart = VideoBiosStart;
ViewBase.HighPart = 0;
Status =ZwMapViewOfSection(SectionHandle, NtCurrentProcess(), &BaseAddress, 0, ViewSize, &ViewBase, &ViewSize, ViewUnmap, MEM_DOS_LIM, PAGE_READWRITE);
if (NT_SUCCESS(Status)) {
if (CmpGetBiosDate(BaseAddress, VIDEO_BIOS_LENGTH, Buffer, FALSE)) {
RtlInitUnicodeString(&ValueName, L"VideoBiosDate");
RtlInitAnsiString(&AnsiString, Buffer);
RtlAnsiStringToUnicodeString(&ValueData, &AnsiString, TRUE);
Status = NtSetValueKey(ParentHandle, &ValueName, TITLE_INDEX_VALUE, REG_SZ, ValueData.Buffer, ValueData.Length + sizeof( UNICODE_NULL ));
RtlFreeUnicodeString(&ValueData);
}
if (VersionStrings && CmpGetBiosVersion(BaseAddress, VIDEO_BIOS_LENGTH, Buffer)) {
VersionPointer = VersionStrings;
do {
// Try to detect ALL the possible BIOS version strings.
// Convert them to unicode strings and copy them to our VersionStrings buffer.
RtlInitAnsiString(&AnsiString, Buffer);
RtlAnsiStringToUnicodeString(&ValueData, &AnsiString, TRUE);
Length = ValueData.Length + sizeof(UNICODE_NULL);
RtlMoveMemory(VersionPointer, ValueData.Buffer, Length);
VersionsLength += Length;
RtlFreeUnicodeString(&ValueData);
if (VersionsLength + (MAXIMUM_BIOS_VERSION_LENGTH + sizeof(UNICODE_NULL)) * 2 > PAGE_SIZE) {
break;
}
VersionPointer += Length;
} while (CmpGetBiosVersion(NULL, 0, Buffer));
if (VersionsLength != 0) {
// Append a UNICODE_NULL to the end of VersionStrings
*(PWSTR)VersionPointer = UNICODE_NULL;
VersionsLength += sizeof(UNICODE_NULL);
RtlInitUnicodeString(&ValueName, L"VideoBiosVersion");
Status = NtSetValueKey(ParentHandle, &ValueName, TITLE_INDEX_VALUE, REG_MULTI_SZ, VersionStrings, VersionsLength);
}
}
ZwUnmapViewOfSection(NtCurrentProcess(), BaseAddress);
}
ZwClose(SectionHandle);
if (VersionStrings) {
ExFreePool((PVOID)VersionStrings);
}
AllDone:
NtClose (ParentHandle);
// Add any other x86 specific code here...
#ifdef _WANT_MACHINE_IDENTIFICATION
CmpPerformMachineIdentification(LoaderBlock);// Do machine identification.
#endif
return STATUS_SUCCESS;
}
#ifdef _WANT_MACHINE_IDENTIFICATION
VOID CmpPerformMachineIdentification(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
{
ULONG majorVersion;
ULONG minorVersion;
CHAR versionBuffer[64];
PCHAR major;
PCHAR minor;
if (LoaderBlock->Extension && LoaderBlock->Extension->Size >= sizeof(LOADER_PARAMETER_EXTENSION)) {
major = strcpy(versionBuffer, VER_PRODUCTVERSION_STR);
minor = strchr(major, '.');
*minor++ = '\0';
majorVersion = atoi(major);
minorVersion = atoi(minor);
if ( LoaderBlock->Extension->MajorVersion > majorVersion || (LoaderBlock->Extension->MajorVersion == majorVersion && LoaderBlock->Extension->MinorVersion >= minorVersion)) {
if (LoaderBlock->Extension->InfFileImage && LoaderBlock->Extension->InfFileSize) {
CmpMatchInfList(LoaderBlock->Extension->InfFileImage, LoaderBlock->Extension->InfFileSize, "MachineDescription");
}
}
}
}
#endif