Windows2000/private/ntos/ke/alpha/allproc.c
2020-09-30 17:12:32 +02:00

256 lines
6.5 KiB
C

/*++
Copyright (c) 1990 Microsoft Corporation
Copyright (c) 1993 Digital Equipment Corporation
Module Name:
allproc.c
Abstract:
This module allocates and initializes kernel resources required
to start a new processor, and passes a complete processor state
structure to the HAL to obtain a new processor.
Author:
David N. Cutler 29-Apr-1993
Joe Notarangelo 30-Nov-1993
Environment:
Kernel mode only.
Revision History:
--*/
#include "ki.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, KeStartAllProcessors)
#endif
// Define macro to round up to 64-byte boundary and define block sizes.
#define ROUND_UP(x) ((sizeof(x) + 64) & (~64))
#define BLOCK1_SIZE ((3 * KERNEL_STACK_SIZE) + PAGE_SIZE)
#define BLOCK2_SIZE (ROUND_UP(KPRCB) + ROUND_UP(ETHREAD) + 64)
// Macros to compute whether an address is physically addressable.
#if defined(_AXP64_)
#define IS_KSEG_ADDRESS(v) \
(((v) >= KSEG43_BASE) && \
((v) < KSEG43_LIMIT) && \
(KSEG_PFN(v) < ((KSEG2_BASE - KSEG0_BASE) >> PAGE_SHIFT)))
#define KSEG_PFN(v) ((ULONG)(((v) - KSEG43_BASE) >> PAGE_SHIFT))
#define KSEG0_ADDRESS(v) (KSEG0_BASE | ((v) - KSEG43_BASE))
#else
#define IS_KSEG_ADDRESS(v) (((v) >= KSEG0_BASE) && ((v) < KSEG2_BASE))
#define KSEG_PFN(v) ((ULONG)(((v) - KSEG0_BASE) >> PAGE_SHIFT))
#define KSEG0_ADDRESS(v) (v)
#endif
// Define forward referenced prototypes.
VOID
KiStartProcessor (
IN PLOADER_PARAMETER_BLOCK Loaderblock
);
VOID
KeStartAllProcessors(
VOID
)
/*++
Routine Description:
This function is called during phase 1 initialization on the master boot
processor to start all of the other registered processors.
Arguments:
None.
Return Value:
None.
--*/
{
ULONG_PTR MemoryBlock1;
ULONG_PTR MemoryBlock2;
ULONG Number;
ULONG PcrPage;
PKPRCB Prcb;
KPROCESSOR_STATE ProcessorState;
struct _RESTART_BLOCK *RestartBlock;
BOOLEAN Started;
LOGICAL SpecialPoolState;
#if !defined(NT_UP)
// If the registered number of processors is greater than the maximum
// number of processors supported, then only allow the maximum number
// of supported processors.
if (KeRegisteredProcessors > MAXIMUM_PROCESSORS) {
KeRegisteredProcessors = MAXIMUM_PROCESSORS;
}
// Initialize the processor state that will be used to start each of
// processors. Each processor starts in the system initialization code
// with address of the loader parameter block as an argument.
RtlZeroMemory(&ProcessorState, sizeof(KPROCESSOR_STATE));
ProcessorState.ContextFrame.IntA0 = (ULONGLONG)(LONG_PTR)KeLoaderBlock;
ProcessorState.ContextFrame.Fir = (ULONGLONG)(LONG_PTR)KiStartProcessor;
Number = 1;
while (Number < KeRegisteredProcessors) {
// Allocate a DPC stack, an idle thread kernel stack, a panic
// stack, a PCR page, a processor block, and an executive thread
// object. If the allocation fails or the allocation cannot be
// made from unmapped nonpaged pool, then stop starting processors.
// Disable any special pooling that the user may have set in the
// registry as the next couple of allocations must come from KSEG0.
SpecialPoolState = MmSetSpecialPool(FALSE);
MemoryBlock1 = (ULONG_PTR)ExAllocatePool(NonPagedPool, BLOCK1_SIZE);
if (IS_KSEG_ADDRESS(MemoryBlock1) == FALSE) {
MmSetSpecialPool(SpecialPoolState);
if ((PVOID)MemoryBlock1 != NULL) {
ExFreePool((PVOID)MemoryBlock1);
}
break;
}
MemoryBlock2 = (ULONG_PTR)ExAllocatePool(NonPagedPool, BLOCK2_SIZE);
if (IS_KSEG_ADDRESS(MemoryBlock2) == FALSE) {
MmSetSpecialPool(SpecialPoolState);
ExFreePool((PVOID)MemoryBlock1);
if ((PVOID)MemoryBlock2 != NULL) {
ExFreePool((PVOID)MemoryBlock2);
}
break;
}
MmSetSpecialPool(SpecialPoolState);
// Zero both blocks of allocated memory.
RtlZeroMemory((PVOID)MemoryBlock1, BLOCK1_SIZE);
RtlZeroMemory((PVOID)MemoryBlock2, BLOCK2_SIZE);
// Set address of interrupt stack in loader parameter block.
KeLoaderBlock->u.Alpha.PanicStack =
KSEG0_ADDRESS(MemoryBlock1 + (1 * KERNEL_STACK_SIZE));
// Set address of idle thread kernel stack in loader parameter block.
KeLoaderBlock->KernelStack =
KSEG0_ADDRESS(MemoryBlock1 + (2 * KERNEL_STACK_SIZE));
ProcessorState.ContextFrame.IntSp =
(ULONGLONG)(LONG_PTR)KeLoaderBlock->KernelStack;
// Set address of panic stack in loader parameter block.
KeLoaderBlock->u.Alpha.DpcStack =
KSEG0_ADDRESS(MemoryBlock1 + (3 * KERNEL_STACK_SIZE));
// Set the page frame of the PCR page in the loader parameter block.
PcrPage = KSEG_PFN(MemoryBlock1 + (3 * KERNEL_STACK_SIZE));
KeLoaderBlock->u.Alpha.PcrPage = PcrPage;
// Set the address of the processor block and executive thread in the
// loader parameter block.
KeLoaderBlock->Prcb = KSEG0_ADDRESS((MemoryBlock2 + 63) & ~63);
KeLoaderBlock->Thread = KeLoaderBlock->Prcb + ROUND_UP(KPRCB);
// Attempt to start the next processor. If attempt is successful,
// then wait for the processor to get initialized. Otherwise,
// deallocate the processor resources and terminate the loop.
Started = HalStartNextProcessor(KeLoaderBlock, &ProcessorState);
if (Started == FALSE) {
ExFreePool((PVOID)MemoryBlock1);
ExFreePool((PVOID)MemoryBlock2);
break;
} else {
// Wait until boot is finished on the target processor before
// starting the next processor. Booting is considered to be
// finished when a processor completes its initialization and
// drops into the idle loop.
Prcb = (PKPRCB)(KeLoaderBlock->Prcb);
RestartBlock = Prcb->RestartBlock;
while (RestartBlock->BootStatus.BootFinished == 0) {
KiMb();
}
}
Number += 1;
}
#endif
// Reset and synchronize the performance counters of all processors, by
// applying a null adjustment to the interrupt time
KiAdjustInterruptTime(0);
return;
}