Windows2000/private/ntos/ke/alpha/callout.s
2020-09-30 17:12:32 +02:00

371 lines
13 KiB
ArmAsm

// TITLE("Call Out to User Mode")
// Copyright (c) 1994 Microsoft Corporation
// Module Name:
// callout.s
// Abstract:
// This module implements the code necessary to call out from kernel mode to user mode.
// Author:
// John Vert (jvert) 2-Nov-1994
// Environment:
// Kernel mode only.
// Revision History:
#include "ksalpha.h"
// Define external variables that can be addressed using GP.
.extern KeUserCallbackDispatcher
SBTTL("Call User Mode Function")
// NTSTATUS KiCallUserMode (IN PVOID *OutputBuffer, IN PULONG OutputLength)
// Routine Description:
// This function calls a user mode function.
// N.B. This function calls out to user mode and the NtCallbackReturn
// function returns back to the caller of this function. Therefore,
// the stack layout must be consistent between the two routines.
// Arguments:
// OutputBuffer (a0) - Supplies a pointer to the variable that receivies the address of the output buffer.
// OutputLength (a1) - Supplies a pointer to a variable that receives the length of the output buffer.
// Return Value:
// The final status of the call out function is returned as the status of the function.
// N.B. This function does not return to its caller. A return to the
// caller is executed when a NtCallbackReturn system service is executed.
// N.B. This function does return to its caller if a kernel stack expansion is required and the attempted expansion fails.
NESTED_ENTRY(KiCallUserMode, CuFrameLength, zero)
lda sp, -CuFrameLength(sp) // allocate stack frame
stq ra, CuRa(sp) // save return address
// Save nonvolatile integer registers.
stq s0, CuS0(sp) // save integer registers s0 - s5
stq s1, CuS1(sp) //
stq s2, CuS2(sp) //
stq s3, CuS3(sp) //
stq s4, CuS4(sp) //
stq s5, CuS5(sp) //
stq fp, CuFP(sp) // save FP
// Save nonvolatile floating registers.
stt f2, CuF2(sp) // save floating registers f2 - f9
stt f3, CuF3(sp) //
stt f4, CuF4(sp) //
stt f5, CuF5(sp) //
stt f6, CuF6(sp) //
stt f7, CuF7(sp) //
stt f8, CuF8(sp) //
stt f9, CuF9(sp) //
PROLOGUE_END
// Save argument registers.
stq a0, CuA0(sp) // save output buffer address
stq a1, CuA1(sp) // save output length address
// Check if sufficient room is available on the kernel stack for another
// system call.
GET_CURRENT_THREAD // get current thread address
bis v0, zero, t0 // save current thread address
LDP t1, ThInitialStack(t0) // get initial stack address
LDP t2, ThStackLimit(t0) // get current stack limit
SUBP sp, KERNEL_LARGE_STACK_COMMIT, t3 // compute bottom address
cmpult t2, t3, t4 // check if limit exceeded
bne t4, 10f // if ne, limit not exceeded
bis sp, zero, a0 // set current kernel stack address
bsr ra, MmGrowKernelStack // attempt to grow the kernel stack
bne v0, 20f // if ne, attempt to grow failed
GET_CURRENT_THREAD // get current thread address
bis v0, zero, t0 // save current thread address
LDP t1, ThInitialStack(t0) // get initial stack address
10: LDP fp, ThTrapFrame(t0) // get trap frame address
LDP t2, ThCallbackStack(t0) // get callback stack address
STP t1, CuInStk(sp) // save initial stack address
STP fp, CuTrFr(sp) // save trap frame address
STP t2, CuCbStk(sp) // save callback stack address
STP sp, ThCallbackStack(t0) // set callback stack address
// Restore state and callback to user mode.
// N.B. Interrupts are disabled to prevent get/set context APCs from
// occurring.
DISABLE_INTERRUPTS // disable interrupts
STP sp, ThInitialStack(t0) // reset initial stack address
ldq t3, TrFir(fp) // get old PC
STP t3, CuTrFir(sp) // save old PC
LDP t4, KeUserCallbackDispatcher // get continuation address
stq t4, TrFir(fp) // set continuation address
// If a user mode APC is pending, then request an APC interrupt.
bis zero, zero, a1 // assume no user APC pending
ldq_u t1, ThApcState+AsUserApcPending(t0) // get user APC pending
extbl t1, (ThApcState+AsUserApcPending) % 8, t1 //
ZeroByte(ThAlerted(t0)) // clear kernel mode alerted
cmovne t1, APC_INTERRUPT, a1 // if pending set APC interrupt
// Set initial kernel stack for this thread.
bis sp, zero, a0 // set kernel stack address
SET_INITIAL_KERNEL_STACK // set kernel stack pointer
ldl a0, TrPsr(fp) // get previous processor status
// a0 = previous psr
// a1 = sfw interrupt requests
RETURN_FROM_SYSTEM_CALL // return to user mode
ret zero, (ra) //
// An attempt to grow the kernel stack failed.
20: ldq ra, CuRa(sp) // restore return address
lda sp, CuFrameLength(sp) // deallocate stack frame
ret zero, (ra)
.end KiCallUserMode
SBTTL("Switch Kernel Stack")
// PVOID
// KeSwitchKernelStack (
// IN PVOID StackBase,
// IN PVOID StackLimit
// )
// Routine Description:
// This function switches to the specified large kernel stack.
// N.B. This function can ONLY be called when there are no variables
// in the stack that refer to other variables in the stack, i.e.,
// there are no pointers into the stack.
// Arguments:
// StackBase (a0) - Supplies a pointer to the base of the new kernel
// stack.
// StackLimit (a1) - supplies a pointer to the limit of the new kernel
// stack.
// Return Value:
// The old kernel stack is returned as the function value.
.struct 0
SsRa: .space 8 // saved return address
SsSp: .space 8 // saved new stack pointer
SsA0: .space 8 // saved argument registers a0-a1
SsA1: .space 8 //
SsFrameLength: // length of stack frame
NESTED_ENTRY(KeSwitchKernelStack, SsFrameLength, zero)
lda sp, -SsFrameLength(sp) // allocate stack frame
stq ra, SsRa(sp) // save return address
PROLOGUE_END
// Save the address of the new stack and copy the old stack to the new
// stack.
GET_CURRENT_THREAD // get current thread address
stq a0, SsA0(sp) // save new stack base address
stq a1, SsA1(sp) // save new stack limit address
LDP a2, ThStackBase(v0) // get current stack base address
LDP a3, ThTrapFrame(v0) // get current trap frame address
ADDP a3, a0, a3 // relocate trap frame address
SUBP a3, a2, a3 //
STP a3, ThTrapFrame(v0) // set current trap frame address
bis sp, zero, a1 // set source address of copy
SUBP a2, sp, a2 // compute length of copy
SUBP a0, a2, a0 // set destination address of copy
stq a0, SsSp(sp) // save new stack pointer address
bsr ra, RtlMoveMemory // copy old stack to new stack
// Switch to new kernel stack and return the address of the old kernel stack.
GET_CURRENT_THREAD // get current thread address
DISABLE_INTERRUPTS // disable interrupts
LDP t0, ThStackBase(v0) // get old stack base address
ldq a0, SsA0(sp) // get new stack base address
ldq a1, SsA1(sp) // get new stack limit address
STP a0, ThInitialStack(v0) // set new initial stack address
STP a0, ThStackBase(v0) // set new stack base address
STP a1, ThStackLimit(v0) // set new stack limit address
ldil t1, TRUE // set large kernel stack TRUE
StoreByte(t1, ThLargeStack(v0)) //
ldq sp, SsSp(sp) // set initial stack address
SET_INITIAL_KERNEL_STACK // set initial kernel stack address
ENABLE_INTERRUPTS // enable interrupts
ldq ra, SsRa(sp) // restore return address
lda sp, SsFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
.end KeSwitchKernelStack
SBTTL("Return from User Mode Callback")
// NTSTATUS
// NtCallbackReturn (
// IN PVOID OutputBuffer OPTIONAL,
// IN ULONG OutputLength,
// IN NTSTATUS Status
// )
// Routine Description:
// This function returns from a user mode callout to the kernel
// mode caller of the user mode callback function.
// N.B. This function returns to the function that called out to user
// mode and the KiCallUserMode function calls out to user mode.
// Therefore, the stack layout must be consistent between the
// two routines.
// Arguments:
// OutputBuffer - Supplies an optional pointer to an output buffer.
// OutputLength - Supplies the length of the output buffer.
// Status - Supplies the status value returned to the caller of the
// callback function.
// Return Value:
// If the callback return cannot be executed, then an error status is
// returned. Otherwise, the specified callback status is returned to
// the caller of the callback function.
// N.B. This function returns to the function that called out to user
// mode is a callout is currently active.
LEAF_ENTRY(NtCallbackReturn)
GET_CURRENT_THREAD // get current thread address
LDP t1, ThCallbackStack(v0) // get callback stack address
beq t1, 10f // if eq, no callback stack present
// Restore nonvolatile integer registers.
ldq s0, CuS0(t1) // restore integer registers s0 - s5
ldq s1, CuS1(t1) //
ldq s2, CuS2(t1) //
ldq s3, CuS3(t1) //
ldq s4, CuS4(t1) //
ldq s5, CuS5(t1) //
ldq fp, CuFP(t1) // restore FP
// Restore nonvolatile floating registers.
ldt f2, CuF2(t1) // restore floating registers f2 - f9
ldt f3, CuF3(t1) //
ldt f4, CuF4(t1) //
ldt f5, CuF5(t1) //
ldt f6, CuF6(t1) //
ldt f7, CuF7(t1) //
ldt f8, CuF8(t1) //
ldt f9, CuF9(t1) //
// Restore the trap frame and callback stack addresses, and store the output
// buffer address and length.
LDP t2, CuTrFr(t1) // get previous trap frame address
LDP t3, CuCbStk(t1) // get previous callback stack address
LDP t4, CuA0(t1) // get address to store output address
LDP t5, CuA1(t1) // get address to store output length
LDP t6, CuTrFir(t1) // get old trap frame PC
STP t2, ThTrapFrame(v0) // restore trap frame address
STP t3, ThCallbackStack(v0) // restore callback stack address
STP a0, 0(t4) // store output buffer address
STP a1, 0(t5) // store output buffer length
stq t6, TrFir(t2) // restore old trap frame PC
// **** this is the place where the current stack could be trimmed back.
// Restore initial stack pointer, trim stackback to callback frame,
// deallocate callback stack frame, and return to callback caller.
LDP a0, CuInStk(t1) // get previous initial stack
STP a0, ThInitialStack(v0) //
SET_INITIAL_KERNEL_STACK // set initial kernel stack address
bis t1, zero, sp // trim stack callback frame
bis a2, zero, v0 // set callback service status
ldq ra, CuRa(sp) // restore return address
lda sp, CuFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
// No callback is currently active.
10: ldil v0, STATUS_NO_CALLBACK_ACTIVE // set service status
ret zero, (ra) // return
.end NtCallbackReturn