Windows2000/private/ntos/ke/genxx.h
2020-09-30 17:12:32 +02:00

465 lines
11 KiB
C

/*++
Copyright (c) 1998 Microsoft Corporation
Module Name:
genxx.h
Abstract:
This file contains macros (some of them destined for the M4 preprocessor)
to aid in the generation of ks & hal header files. This is used by
ke\xxx\genxxx.c, as well as sdktools\genxx.
Author:
Forrest C. Foltz (forrestf) 23-Jan-1998
Revision History:
*/
// Structure element definitions.
#define MAX_ELEMENT_NAME_LEN 127 // big enough for comments too
typedef struct _STRUC_ELEMENT {
// Flags is one or more SEF_xxx, defined below.
UINT64 Flags;
// Note that Equate is used to store a pointer in the case of bitfield
// processing.
UINT64 Equate;
// Name should be quite long, as it is used to hold comments as well.
CHAR Name[ MAX_ELEMENT_NAME_LEN + 1 ];
} STRUC_ELEMENT, *PSTRUC_ELEMENT;
#define SEF_ENABLE_MASK 0x0000FF00
#define SEF_HAL 0x00000100
#define SEF_KERNEL 0x00000200
#define SEF_INC_FORMAT_MASK 0x00010000
#define SEF_H_FORMAT 0x00000000
#define SEF_INC_FORMAT 0x00010000
// Types. Note that SETMASK, CLRMASK has no effect on te BITFLD types. BITFLD
// types have SEF_HAL | SEF_KERNEL set in the type.
#define SEF_TYPE_MASK 0x000000FF
#define SEF_EQUATE 0x00000000
#define SEF_EQUATE64 0x00000001
#define SEF_COMMENT 0x00000002
#define SEF_STRING 0x00000003 // Equate is vararg to printf
#define SEF_BITFLD 0x00000004
#define SEF_BITALIAS 0x00000005
#define SEF_STRUCTURE 0x00000006
#define SEF_SETMASK 0x00000010 // Equate is the mask
#define SEF_CLRMASK 0x00000011 // Equate is the mask
#define SEF_END 0x00000012
#define SEF_START 0x00000013
#define SEF_PATH 0x00000014
// Note that BITFLD entries have per-entry hal|kernel flags
// Define architecture specific generation macros.
#define SEF_FLAGS 0
#define HAL SEF_HAL
#define KERNEL SEF_KERNEL
#ifndef ULONG_MAX
#define ULONG_MAX 0xFFFFFFFF
#endif
#ifdef _WIN64_
#define SEF_UINT SEF_EQUATE64
#else
#define SEF_UINT SEF_EQUATE
#endif
// genDef(Pc, KPCR, MinorVersion)
// -> #define PcMinorVersion 0x0
#define genDef(Prefix, Type, Member) \
{ SEF_EQUATE, OFFSET(Type, Member), #Prefix #Member },
// genAlt( PbAlignmentFixupCount, KPRCB, KeAlignmentFixupCount )
// -> #define PbAlignmentFixupCount 0x2f4
#define genAlt(Name, Type, Member) \
{ SEF_EQUATE, OFFSET(Type, Member), #Name },
// genCom("This is a comment")
// //
// -> // This is a comment
// //
#define genCom(Comment) \
{ SEF_COMMENT, 0, Comment },
// genNam(PCR_MINOR_VERSION)
// -> #define PCR_MINOR_VERSION 0x1
#define genNam(Name) \
{ SEF_EQUATE, (ULONG)(Name), #Name },
// genNamUint(KSEG0_BASE)
// -> #define KSE0_BASE 0xffffffff80000000
#define genNamUint(Name) \
{ SEF_UINT, (UINT64)(Name), #Name },
// genVal(FirmwareFrameLength, FIRMWARE_FRAME_LENGTH)
// -> #define FirmwareFrameLength 0x250
// Note: if the value is 64-bit when _WIN64_ is enabled, use genValUint()
#define genVal(Name, Value) \
{ SEF_EQUATE, (ULONG)(Value), #Name },
// genValUint(KiPcr, KIPCR)
// -> #define KiPcr 0xe0000000ffffe000
#define genValUint(Name, Value) \
{ SEF_UINT, (UINT64)(Value), #Name },
// genSpc()
// ->
#define genSpc() \
{ SEF_STRING, 0, "\n" },
// genStr(" PCR equ ds:[0%lXH]\n", KIP0PCRADDRESS)
// -> PCR equ ds:[0FFDFF000H]
#define genStr(String, Value) \
{ SEF_STRING, (ULONG_PTR)(Value), String },
// genTxt("ifdef NT_UP\n")
// -> ifdef NT_UP
#define genTxt(String) \
{ SEF_STRING, 0, String },
#define DisableInc( x ) \
{ SEF_CLRMASK, x, "" },
#define EnableInc( x ) \
{ SEF_SETMASK, x, "" },
#define MARKER_STRING "This is the genxx marker string."
// Source file can specify the _NTDRIVE\_NTROOT - relative output path.
// 'f' is the set of enable-flags that should be routed to this file.
// Use '0' if there is only a single output file.
// 'f' should also contain one of SEF_H_FORMAT or SEF_INC_FORMAT to
// indicate whether the generated file is in 'header file' or 'include file'
// format.
#define setPath( p, f ) \
{ SEF_PATH | f, 0, p },
// START_LIST defines the first element in ElementList. This element contains
// a (possibly truncated) pointer to the ElementList array. This is used to
// determine the fixup RA bias.
#define START_LIST \
{ SEF_START, (ULONG_PTR)ElementList, MARKER_STRING },
#define END_LIST \
{ SEF_END, 0, "" }
// Preprocessor assertion. Do something here to make the compiler generate
// an error if x != y.
#define ASSERT_SAME( x, y )
// Macro to round Val up to the next Bnd boundary. Bnd must be an integral
// power of two.
#define ROUND_UP( Val, Bnd ) \
(((Val) + ((Bnd) - 1)) & ~((Bnd) - 1))
#ifndef OFFSET
// Define member offset computation macro.
#define OFFSET(type, field) ((ULONG_PTR)(&((type *)0)->field))
#endif
// Following are some M4 macros to help with bitfields.
#ifndef SKIP_M4
// First, define the makezeros(n) macro that will generate a string with
// n pairs of ',0'. This is a recursively defined macro.
define(`makezeros',`ifelse(eval($1),0,,`0,makezeros(eval($1-1))')')
// Define a concatenation macro.
define(`cat',`$1$2')
// The following example bitfield declaration uses HARDWARE_PTE as an
// example, which is declared (for alpha) as follows:
// typedef struct _HARDWARE_PTE {
// ULONG Valid: 1;
// ULONG Owner: 1;
// ULONG Dirty: 1;
// ULONG reserved: 1;
// ULONG Global: 1;
// ULONG GranularityHint: 2;
// ULONG Write: 1;
// ULONG CopyOnWrite: 1;
// ULONG PageFrameNumber: 23;
// } HARDWARE_PTE, *PHARDWARE_PTE;
// // First, startBitStruc() is invoked with the structure name.
// startBitStruc( HARDWARE_PTE, SEF_HAL | SEF_KERNEL )
// //
// // Now, suppose we wanted to expose seven of the fields in an assembly
// // include file:
// //
// genBitField( Valid, PTE_VALID )
// genBitField( Owner, PTE_OWNER )
// genBitField( Dirty, PTE_DIRTY )
// genBitField( reserved )
// genBitField( Global, PTE_GLOBAL )
// genBitField( GranularityHint )
// genBitField( Write, PTE_WRITE )
// genBitField( CopyOnWrite, PTE_COPYONWRITE )
// genBitField( PageFrameNumber, PTE_PFN )
// Note that fields that are not used (in this case 'reserved' and
// 'GranularityHint') must still appear in the list.
// The above will generate a bunch of static, initialized copies of HARDWARE_PTE
// like so:
// HARDWARE_PTE HARDWARE_PTE_Valid = {
// 0xFFFFFFFF };
// HARDWARE_PTE HARDWARE_PTE_Owner = {
// 0, // Valid
// 0xFFFFFFFF };
// HARDWARE_PTE HARDWARE_PTE_Dirty = {
// 0, // Valid
// 0, // Owner
// 0xFFFFFFFF };
// HARDWARE_PTE HARDWARE_PTE_Global = {
// 0, // Valid
// 0, // Owner
// 0, // Dirty
// 0, // reserved
// 0xFFFFFFFF };
// HARDWARE_PTE HARDWARE_PTE_Write = {
// 0, // Valid
// 0, // Owner
// 0, // Dirty
// 0, // reserved (skipped)
// 0, // Global
// 0xFFFFFFFF };
// HARDWARE_PTE HARDWARE_PTE_CopyOnWrite = {
// 0, // Valid
// 0, // Owner
// 0, // Dirty
// 0, // reserved (skipped)
// 0, // Global
// 0, // GranularityHint (skipped)
// 0xFFFFFFFF };
// HARDWARE_PTE HARDWARE_PTE_PageFrameNumber = {
// 0, // Valid
// 0, // Owner
// 0, // Dirty
// 0, // reserved (skipped)
// 0, // Global
// 0, // GranularityHint (skipped)
// 0, // CopyOnWrite
// 0xFFFFFFFF };
// Then, as part of processing the END_LIST macro, these structures are
// generated:
// { SEF_BITFLD, &HARDWARE_PTE_Valid, "PTE_VALID" },
// { SEF_BITFLD, &HARDWARE_PTE_Owner, "PTE_OWNER" },
// { SEF_BITFLD, &HARDWARE_PTE_Dirty, "PTE_DIRTY" },
// { SEF_BITFLD, &HARDWARE_PTE_Global, "PTE_GLOBAL" },
// { SEF_BITFLD, &HARDWARE_PTE_Write, "PTE_WRITE" },
// { SEF_BITFLD, &HARDWARE_PTE_CopyOnWrite, "PTE_COPYONWRITE" },
// { SEF_BITFLD, &HARDWARE_PTE_PageFrameNumber, "PTE_PFN" },
// { SEF_END, 0, "" }
// ... and that's what gets compiled by the target compiler into the .obj.
// Now, the final stage: genxx.exe is run against this target .obj, and
// would generate the following:
// #define PTE_VALID_MASK 0x1
// #define PTE_VALID 0x0
// #define PTE_OWNER_MASK 0x2
// #define PTE_OWNER 0x1
// #define PTE_DIRTY_MASK 0x4
// #define PTE_DIRTY 0x2
// #define PTE_GLOBAL_MASK 0x10
// #define PTE_GLOBAL 0x4
// #define PTE_WRITE_MASK 0x80
// #define PTE_WRITE 0x7
// #define PTE_COPYONWRITE_MASK 0x100
// #define PTE_COPYONWRITE 0x8
// #define PTE_PFN_MASK 0xfffffe00
// #define PTE_PFN 0x9
// BITFIELD_STRUCS accumulates array element initializations. END_LIST will
// dump these into the definition array.
define(`BITFIELD_STRUCS',`')
// startBitStruc( <strucname>, <whichfile> )
// sets BIT_STRUC_NAME = <strucname> and resets the ZERO_FIELDS count to 0.
// It also sets the WHICH_FILE macro.
define(`startBitStruc', `define(`BIT_STRUC_NAME',`$1')
define(`BITFIELD_STRUCS',
BITFIELD_STRUCS
)
define(`ZERO_FIELDS',0)
define(`SEF_TYPE',$2)
')
// genBitField( <fldname>, <generatedname> ) declares a structure of type
// <strucname> and initializes the <fldname> bitfield within it.
// Note that I used "cma" instead of an actual comma, this gets changed to
// a comma by END_LIST, below. If I were more proficient with M4 I would know
// how to get around this.
define(`genBitField', `define(`VAR_NAME', cat(cat(BIT_STRUC_NAME,`_'),$1))
`#'define `def_'VAR_NAME
BIT_STRUC_NAME VAR_NAME = {'
`makezeros(ZERO_FIELDS)'
`(ULONG_PTR)-1 };'
`define(`PAD_VAR_NAME', cat(cat(BIT_STRUC_NAME,`p'),$1))'
`ULONG_PTR PAD_VAR_NAME = 0;'
`define(`ZERO_FIELDS',incr(ZERO_FIELDS))'
`define(`FIELD_NAME', $1)'
`define(`FIELD_ASMNAME', $2)'
`define(`BITFIELD_STRUCS',
BITFIELD_STRUCS
`#i'fdef `def_'VAR_NAME
`#i'fndef `dec_'VAR_NAME
`#de'fine `dec_'VAR_NAME
{ SEF_BITFLD | SEF_TYPE cma (ULONG_PTR)&VAR_NAME cma "FIELD_ASMNAME" } cma
`#e'ndif
`#e'ndif
)'
)
define(`genBitAlias', `define(`BITFIELD_STRUCS',
BITFIELD_STRUCS
`#i'fdef `def_'VAR_NAME
`#i'fndef `deca_'VAR_NAME
`#de'fine `deca_'VAR_NAME
{ SEF_BITALIAS | SEF_TYPE cma 0 cma "$1" } cma
`#e'ndif
`#e'ndif
)'
)
// END_LIST dumps the array initializers accumulated by BITFIELD_STRUCS, after
// replacing each 'cma' with an actual comma.
define(`DUMP_BITFIELDS',`define(`cma',`,') BITFIELD_STRUCS')
#endif // SKIP_M4