2020-09-30 17:12:32 +02:00

786 lines
16 KiB
C

#include "ki.h"
#define STATIC
#define IDBG 0
#if DBG
#define DBGMSG(a) DbgPrint(a)
#else
#define DBGMSG(a)
#endif
// Externals.
NTSTATUS
KiLoadMTRR (
PVOID Context
);
// --- AMD Structure definitions ---
// K6 MTRR hardware register layout.
// Single MTRR control register.
typedef struct _AMDK6_MTRR {
ULONG type:2;
ULONG mask:15;
ULONG base:15;
} AMDK6_MTRR, *PAMDK6_MTRR;
// MSR image, contains two control regs.
typedef struct _AMDK6_MTRR_MSR_IMAGE {
union {
struct {
AMDK6_MTRR mtrr0;
AMDK6_MTRR mtrr1;
} hw;
ULONGLONG QuadPart;
} u;
} AMDK6_MTRR_MSR_IMAGE, *PAMDK6_MTRR_MSR_IMAGE;
// MTRR reg type field values.
#define AMDK6_MTRR_TYPE_DISABLED 0
#define AMDK6_MTRR_TYPE_UC 1
#define AMDK6_MTRR_TYPE_WC 2
#define AMDK6_MTRR_TYPE_MASK 3
// AMD K6 MTRR MSR Index number
#define AMDK6_MTRR_MSR 0xC0000085
// Region table entry - used to track all write combined regions.
// Set BaseAddress to AMDK6_REGION_UNUSED for unused entries.
typedef struct _AMDK6_MTRR_REGION {
ULONG BaseAddress;
ULONG Size;
MEMORY_CACHING_TYPE RegionType;
ULONG RegionFlags;
} AMDK6_MTRR_REGION, *PAMDK6_MTRR_REGION;
#define MAX_K6_REGIONS 2 // Limit the write combined regions to 2 since that's how many MTRRs we have available.
// Value to set base address to for unused indication.
#define AMDK6_REGION_UNUSED 0xFFFFFFFF
// Flag to indicate that this region was set up by the BIOS.
#define AMDK6_REGION_FLAGS_BIOS 0x00000001
// Usage count for hardware MTRR registers.
#define AMDK6_MAX_MTRR 2
// AMD Function Prototypes.
VOID
KiAmdK6InitializeMTRR (
VOID
);
NTSTATUS
KiAmdK6RestoreMTRR (
);
NTSTATUS
KiAmdK6MtrrSetMemoryType (
ULONG BaseAddress,
ULONG Size,
MEMORY_CACHING_TYPE Type
);
BOOLEAN
KiAmdK6AddRegion (
ULONG BaseAddress,
ULONG Size,
MEMORY_CACHING_TYPE Type,
ULONG Flags
);
NTSTATUS
KiAmdK6MtrrCommitChanges (
VOID
);
NTSTATUS
KiAmdK6HandleWcRegionRequest (
ULONG BaseAddress,
ULONG Size
);
VOID
KiAmdK6MTRRAddRegionFromHW (
AMDK6_MTRR RegImage
);
PAMDK6_MTRR_REGION
KiAmdK6FindFreeRegion (
MEMORY_CACHING_TYPE Type
);
#pragma alloc_text(INIT,KiAmdK6InitializeMTRR)
#pragma alloc_text(PAGELK,KiAmdK6RestoreMTRR)
#pragma alloc_text(PAGELK,KiAmdK6MtrrSetMemoryType)
#pragma alloc_text(PAGELK,KiAmdK6AddRegion)
#pragma alloc_text(PAGELK,KiAmdK6MtrrCommitChanges)
#pragma alloc_text(PAGELK,KiAmdK6HandleWcRegionRequest)
#pragma alloc_text(PAGELK,KiAmdK6MTRRAddRegionFromHW)
#pragma alloc_text(PAGELK,KiAmdK6FindFreeRegion)
// --- AMD Global Variables ---
extern KSPIN_LOCK KiRangeLock;
// AmdK6Regions - Table to track wc regions.
AMDK6_MTRR_REGION AmdK6Regions[MAX_K6_REGIONS];
ULONG AmdK6RegionCount;
// Usage counter for hardware MTRRs.
ULONG AmdMtrrHwUsageCount;
// Global variable image of MTRR MSR.
AMDK6_MTRR_MSR_IMAGE KiAmdK6Mtrr;
// --- AMD Start of code ---
VOID
KiAmdK6InitializeMTRR (
VOID
)
{
ULONG i;
KIRQL OldIrql;
DBGMSG("KiAmdK6InitializeMTRR: Initializing K6 MTRR support\n");
KiAmdK6Mtrr.u.hw.mtrr0.type = AMDK6_MTRR_TYPE_DISABLED;
KiAmdK6Mtrr.u.hw.mtrr1.type = AMDK6_MTRR_TYPE_DISABLED;
AmdK6RegionCount = MAX_K6_REGIONS;
AmdMtrrHwUsageCount = 0;
// Set all regions to free.
for (i = 0; i < AmdK6RegionCount; i++) {
AmdK6Regions[i].BaseAddress = AMDK6_REGION_UNUSED;
AmdK6Regions[i].RegionFlags = 0;
}
// Initialize the spin lock.
// N.B. Normally this is done by KiInitializeMTRR but that
// routine is not called in the AMD K6 case.
KeInitializeSpinLock (&KiRangeLock);
// Read the MTRR registers to see if the BIOS has set them up.
// If so, add entries to the region table and adjust the usage
// count. Serialize the region table.
KeAcquireSpinLock (&KiRangeLock, &OldIrql);
KiAmdK6Mtrr.u.QuadPart = RDMSR (AMDK6_MTRR_MSR);
// Check MTRR0 first.
KiAmdK6MTRRAddRegionFromHW(KiAmdK6Mtrr.u.hw.mtrr0);
// Now check MTRR1.
KiAmdK6MTRRAddRegionFromHW(KiAmdK6Mtrr.u.hw.mtrr1);
// Release the locks.
KeReleaseSpinLock (&KiRangeLock, OldIrql);
}
VOID
KiAmdK6MTRRAddRegionFromHW (
AMDK6_MTRR RegImage
)
{
ULONG BaseAddress, Size, TempMask;
// Check to see if this MTRR is enabled.
if (RegImage.type != AMDK6_MTRR_TYPE_DISABLED) {
// If this is a write combined region then add an entry to
// the region table.
if ((RegImage.type & AMDK6_MTRR_TYPE_UC) == 0) {
// Create a new resion table entry.
BaseAddress = RegImage.base << 17;
// Calculate the size base on the mask value.
TempMask = RegImage.mask;
// There should never be 4GB WC region!
ASSERT (TempMask != 0);
// Start with 128 size and search upward.
Size = 0x00020000;
while ((TempMask & 0x00000001) == 0) {
TempMask >>= 1;
Size <<= 1;
}
// Add the region to the table.
KiAmdK6AddRegion(BaseAddress,
Size,
MmWriteCombined,
AMDK6_REGION_FLAGS_BIOS);
AmdMtrrHwUsageCount++;
}
}
}
NTSTATUS
KiAmdK6MtrrSetMemoryType (
ULONG BaseAddress,
ULONG Size,
MEMORY_CACHING_TYPE Type
)
{
NTSTATUS Status = STATUS_SUCCESS;
KIRQL OldIrql;
switch(Type) {
case MmWriteCombined:
// H/W needs updating, lock down the code required to effect
// the change.
if (KeGetCurrentIrql() >= DISPATCH_LEVEL) {
// Code can not be locked down. Supplying a new range type
// requires that the caller calls at irql < dispatch_level.
DBGMSG ("KeAmdK6SetPhysicalCacheTypeRange failed due to calling IRQL == DISPATCH_LEVEL\n");
return STATUS_UNSUCCESSFUL;
}
// Lock the code.
MmLockPagableSectionByHandle(ExPageLockHandle);
// Serialize the region table.
KeAcquireSpinLock (&KiRangeLock, &OldIrql);
Status = KiAmdK6HandleWcRegionRequest(BaseAddress, Size);
// Release the locks.
KeReleaseSpinLock (&KiRangeLock, OldIrql);
MmUnlockPagableImageSection(ExPageLockHandle);
break; // End of WriteCombined case.
case MmNonCached:
// Add an entry to the region table.
// Don't need to add these to the region table. Non-cached regions are
// accessed using a non-caching virtual pointer set up in the page tables.
break;
case MmCached:
// Redundant. These should be filtered out in
// KeAmdK6SetPhysicalCacheTypeRange();
Status = STATUS_NOT_SUPPORTED;
break;
default:
DBGMSG ("KeAmdK6SetPhysicalCacheTypeRange: no such cache type\n");
Status = STATUS_INVALID_PARAMETER;
break;
}
return Status;
}
NTSTATUS
KiAmdK6HandleWcRegionRequest (
ULONG BaseAddress,
ULONG Size
)
{
ULONG i;
ULONG AdjustedSize, AdjustedEndAddress, AlignmentMask;
ULONG CombinedBase, CombinedSize, CombinedAdjustedSize;
PAMDK6_MTRR_REGION pRegion;
BOOLEAN bCanCombine, bValidRange;
// Try and find a region that overlaps or is adjacent to the new one and
// check to see if the combined region would be a legal mapping.
for (i = 0; i < AmdK6RegionCount; i++) {
pRegion = &AmdK6Regions[i];
if ((pRegion->BaseAddress != AMDK6_REGION_UNUSED) &&
(pRegion->RegionType == MmWriteCombined)) {
// Does the new start address overlap or adjoin an
// existing WC region?
if (((pRegion->BaseAddress >= BaseAddress) &&
(pRegion->BaseAddress <= (BaseAddress + Size))) ||
((BaseAddress <= (pRegion->BaseAddress + pRegion->Size)) &&
(BaseAddress >= pRegion->BaseAddress))) {
// Combine the two regions into one.
AdjustedEndAddress = BaseAddress + Size;
if (pRegion->BaseAddress < BaseAddress) {
CombinedBase = pRegion->BaseAddress;
} else {
CombinedBase = BaseAddress;
}
if ((pRegion->BaseAddress + pRegion->Size) >
AdjustedEndAddress) {
CombinedSize = (pRegion->BaseAddress + pRegion->Size) -
CombinedBase;
} else {
CombinedSize = AdjustedEndAddress - CombinedBase;
}
// See if the new region would be a legal mapping.
// Find the smallest legal size that is equal to the requested range. Scan
// all ranges from 128k - 2G. (Start at 2G and work down).
CombinedAdjustedSize = 0x80000000;
AlignmentMask = 0x7fffffff;
bCanCombine = FALSE;
while (CombinedAdjustedSize > 0x00010000) {
// Check the size to see if it matches the requested limit.
if (CombinedAdjustedSize == CombinedSize) {
// This one works.
// Check to see if the base address conforms to the MTRR restrictions.
if ((CombinedBase & AlignmentMask) == 0) {
bCanCombine = TRUE;
}
break;
} else {
// Bump it down to the next range size and try again.
CombinedAdjustedSize >>= 1;
AlignmentMask >>= 1;
}
}
if (bCanCombine) {
// If the resized range is OK, record the change in the region
// table and commit the changes to hardware.
pRegion->BaseAddress = CombinedBase;
pRegion->Size = CombinedAdjustedSize;
// Reset the BIOS flag since we now "own" this region (if we didn't already).
pRegion->RegionFlags &= ~AMDK6_REGION_FLAGS_BIOS;
return KiAmdK6MtrrCommitChanges();
}
}
}
}
// A valid combination could not be found, so try to create a new range for this request.
// Find the smallest legal size that is less than or equal to the requested range. Scan
// all ranges from 128k - 2G. (Start at 2G and work down).
AdjustedSize = 0x80000000;
AlignmentMask = 0x7fffffff;
bValidRange = FALSE;
while (AdjustedSize > 0x00010000) {
// Check the size to see if it matches the requested limit.
if (AdjustedSize == Size) {
// This one works.
// Check to see if the base address conforms to the MTRR restrictions.
if ((BaseAddress & AlignmentMask) == 0) {
bValidRange = TRUE;
}
// Stop looking.
break;
} else {
// Bump it down to the next range size and try again.
AdjustedSize >>= 1;
AlignmentMask >>= 1;
}
}
// Couldn't find a legal region that fit.
if (!bValidRange) {
return STATUS_NOT_SUPPORTED;
}
// If we got this far then this is a new WC region.
// Create a new region entry for this request.
if (!KiAmdK6AddRegion(BaseAddress, AdjustedSize, MmWriteCombined, 0)) {
return STATUS_UNSUCCESSFUL;
}
// Commit the changes to hardware.
return KiAmdK6MtrrCommitChanges();
}
BOOLEAN
KiAmdK6AddRegion (
ULONG BaseAddress,
ULONG Size,
MEMORY_CACHING_TYPE Type,
ULONG Flags
)
{
PAMDK6_MTRR_REGION pRegion;
if ((pRegion = KiAmdK6FindFreeRegion(Type)) == NULL) {
return FALSE;
}
pRegion->BaseAddress = BaseAddress;
pRegion->Size = Size;
pRegion->RegionType = Type;
pRegion->RegionFlags = Flags;
return TRUE;
}
PAMDK6_MTRR_REGION
KiAmdK6FindFreeRegion (
MEMORY_CACHING_TYPE Type
)
{
ULONG i;
// If this is a MmWriteCombined request, limit the number of
// regions to match the actual hardware support.
if (Type == MmWriteCombined) {
if (AmdMtrrHwUsageCount >= AMDK6_MAX_MTRR) {
// Search the table to see if there are any BIOS entries
// we can replace.
for (i = 0; i < AmdK6RegionCount; i++) {
if (AmdK6Regions[i].RegionFlags & AMDK6_REGION_FLAGS_BIOS) {
return &AmdK6Regions[i];
}
}
// No free HW MTRRs and no reusable entries.
return FALSE;
}
}
// Find the next free region in the table.
for (i = 0; i < AmdK6RegionCount; i++) {
if (AmdK6Regions[i].BaseAddress == AMDK6_REGION_UNUSED) {
if (Type == MmWriteCombined) {
AmdMtrrHwUsageCount++;
}
return &AmdK6Regions[i];
}
}
DBGMSG("AmdK6FindFreeRegion: Region Table is Full!\n");
return NULL;
}
NTSTATUS
KiAmdK6MtrrCommitChanges (
VOID
)
/*++
Routine Description:
Commits the values in the table to hardware.
This procedure builds the MTRR images into the KiAmdK6Mtrr variable and
calls KiLoadMTRR to actually load the register.
Arguments:
None.
Return Value:
None.
--*/
{
ULONG i, dwWcRangeCount = 0;
ULONG RangeTemp, RangeMask;
// Reset the MTRR image for both MTRRs disabled.
KiAmdK6Mtrr.u.hw.mtrr0.type = AMDK6_MTRR_TYPE_DISABLED;
KiAmdK6Mtrr.u.hw.mtrr1.type = AMDK6_MTRR_TYPE_DISABLED;
// Find the Write Combining Regions, if any and set up the MTRR register.
for (i = 0; i < AmdK6RegionCount; i++) {
// Is this a valid region, and is it a write combined type?
if ((AmdK6Regions[i].BaseAddress != AMDK6_REGION_UNUSED) &&
(AmdK6Regions[i].RegionType == MmWriteCombined)) {
// Calculate the correct mask for this range size. The
// BaseAddress and size were validated and adjusted in
// AmdK6MtrrSetMemoryType().
// Start with 128K and scan for all legal range values and
// build the appropriate range mask at the same time.
RangeTemp = 0x00020000;
RangeMask = 0xfffe0000;
while (RangeTemp != 0) {
if (RangeTemp == AmdK6Regions[i].Size) {
break;
}
RangeTemp <<= 1;
RangeMask <<= 1;
}
if (RangeTemp == 0) {
// Not a valid range size. This can never happen!!
DBGMSG ("AmdK6MtrrCommitChanges: Bad WC range in region table!\n");
return STATUS_NOT_SUPPORTED;
}
// Add the region to the next available register.
if (dwWcRangeCount == 0) {
KiAmdK6Mtrr.u.hw.mtrr0.base = AmdK6Regions[i].BaseAddress >> 17;
KiAmdK6Mtrr.u.hw.mtrr0.mask = RangeMask >> 17;
KiAmdK6Mtrr.u.hw.mtrr0.type = AMDK6_MTRR_TYPE_WC;
dwWcRangeCount++;
} else if (dwWcRangeCount == 1) {
KiAmdK6Mtrr.u.hw.mtrr1.base = AmdK6Regions[i].BaseAddress >> 17;
KiAmdK6Mtrr.u.hw.mtrr1.mask = RangeMask >> 17;
KiAmdK6Mtrr.u.hw.mtrr1.type = AMDK6_MTRR_TYPE_WC;
dwWcRangeCount++;
} else {
// Should never happen! This should have been caught in
// the calling routine.
DBGMSG ("AmdK6MtrrCommitChanges: Not enough MTRR registers to satisfy region table!\n");
return STATUS_NOT_SUPPORTED;
}
}
}
// Commit the changes to hardware.
KiLoadMTRR(NULL);
return STATUS_SUCCESS;
}
VOID
KiAmdK6MtrrWRMSR (
VOID
)
/*++
Routine Description:
Write the AMD K6 MTRRs.
Note: Access to KiAmdK6Mtrr has been synchronized around this
call.
Arguments:
None.
Return Value:
None.
--*/
{
// Write the MTRRs
WRMSR (AMDK6_MTRR_MSR, KiAmdK6Mtrr.u.QuadPart);
}