Windows2000/private/ntos/ke/ia64/alignem.c
2020-09-30 17:12:32 +02:00

1123 lines
27 KiB
C

/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
alignem.c
Abstract:
This module implement the code necessary to emulate unaliged data
references.
Author:
David N. Cutler (davec) 17-Jun-1991
Environment:
Kernel mode only.
Revision History:
--*/
#include "ki.h"
#define OPCODE_MASK 0x1EF00000000
#define LD_OP 0x08000000000
#define LDS_OP 0x08100000000
#define LDA_OP 0x08200000000
#define LDSA_OP 0x08300000000
#define LDBIAS_OP 0x08400000000
#define LDACQ_OP 0x08500000000
#define LDCCLR_OP 0x08800000000
#define LDCNC_OP 0x08900000000
#define LDCCLRACQ_OP 0x08A00000000
#define ST_OP 0x08C00000000
#define STREL_OP 0x08D00000000
#define LD_IMM_OP 0x0A000000000
#define LDS_IMM_OP 0x0A100000000
#define LDA_IMM_OP 0x0A200000000
#define LDSA_IMM_OP 0x0A300000000
#define LDBIAS_IMM_OP 0x0A400000000
#define LDACQ_IMM_OP 0x0A500000000
#define LDCCLR_IMM_OP 0x0A800000000
#define LDCNC_IMM_OP 0x0A900000000
#define LDCCLRACQ_IMM_OP 0x0AA00000000
#define ST_IMM_OP 0x0AC00000000
#define STREL_IMM_OP 0x0AD00000000
#define LDF_OP 0x0C000000000
#define LDFS_OP 0x0C100000000
#define LDFA_OP 0x0C200000000
#define LDFSA_OP 0x0C300000000
#define LDFCCLR_OP 0x0C800000000
#define LDFCNC_OP 0x0C900000000
#define STF_OP 0x0CC00000000
#define LDF_IMM_OP 0x0E000000000
#define LDFS_IMM_OP 0x0E100000000
#define LDFA_IMM_OP 0x0E200000000
#define LDFSA_IMM_OP 0x0E300000000
#define LDFCCLR_IMM_OP 0x0E800000000
#define LDFCNC_IMM_OP 0x0E900000000
#define STF_IMM_OP 0x0EC00000000
typedef struct _INST_FORMAT {
union {
struct {
ULONGLONG qp: 6;
ULONGLONG r1: 7;
ULONGLONG r2: 7;
ULONGLONG r3: 7;
ULONGLONG x: 1;
ULONGLONG hint: 2;
ULONGLONG x6: 6;
ULONGLONG m: 1;
ULONGLONG Op: 4;
ULONGLONG Rsv: 23;
} i_field;
ULONGLONG Ulong64;
} u;
} INST_FORMAT;
VOID
KiEmulateLoad(
IN PVOID UnalignedAddress,
IN ULONG OperandSize,
IN PVOID Data
);
VOID
KiEmulateStore(
IN PVOID UnalignedAddress,
IN ULONG OperandSize,
IN PVOID Data
);
VOID
KiEmulateLoadFloat(
IN PVOID UnalignedAddress,
IN ULONG OperandSize,
IN PVOID Data
);
VOID
KiEmulateStoreFloat(
IN PVOID UnalignedAddress,
IN ULONG OperandSize,
IN PVOID Data
);
VOID
KiEmulateLoadFloat80(
IN PVOID UnalignedAddress,
OUT PVOID FloatData
);
VOID
KiEmulateLoadFloatInt(
IN PVOID UnalignedAddress,
OUT PVOID FloatData
);
VOID
KiEmulateLoadFloat32(
IN PVOID UnalignedAddress,
OUT PVOID FloatData
);
VOID
KiEmulateLoadFloat64(
IN PVOID UnalignedAddress,
OUT PVOID FloatData
);
VOID
KiEmulateStoreFloat80(
IN PVOID UnalignedAddress,
OUT PVOID FloatData
);
VOID
KiEmulateStoreFloatInt(
IN PVOID UnalignedAddress,
OUT PVOID FloatData
);
VOID
KiEmulateStoreFloat32(
IN PVOID UnalignedAddress,
OUT PVOID FloatData
);
VOID
KiEmulateStoreFloat64(
IN PVOID UnalignedAddress,
OUT PVOID FloatData
);
BOOLEAN
KiEmulateReference (
IN OUT PEXCEPTION_RECORD ExceptionRecord,
IN OUT PKEXCEPTION_FRAME ExceptionFrame,
IN OUT PKTRAP_FRAME TrapFrame
)
/*++
Routine Description:
This function is called to emulate an unaligned data reference to an
address in the user part of the address space.
Arguments:
ExceptionRecord - Supplies a pointer to an exception record.
ExceptionFrame - Supplies a pointer to an exception frame.
TrapFrame - Supplies a pointer to a trap frame.
Return Value:
A value of TRUE is returned if the data reference is successfully
emulated. Otherwise, a value of FALSE is returned.
--*/
{
PVOID EffectiveAddress;
PVOID ExceptionAddress;
KIRQL OldIrql;
KPROCESSOR_MODE PreviousMode;
INST_FORMAT FaultInstruction;
ULONGLONG Opcode;
ULONGLONG Reg2Value;
ULONGLONG Reg3Value;
ULONGLONG BundleLow;
ULONGLONG BundleHigh;
ULONGLONG Syllable;
ULONGLONG Data = 0;
FLOAT128 FloatData = {0, 0};
ULONG OpSize;
ULONG ImmValue;
ULONG Length;
// Must flush the RSE to synchronize the RSE and backing store contents
KiFlushRse();
// Call out to profile interrupt if alignment profiling is active
if (KiProfileAlignmentFixup) {
if (++KiProfileAlignmentFixupCount >= KiProfileAlignmentFixupInterval) {
KeRaiseIrql(PROFILE_LEVEL, &OldIrql);
KiProfileAlignmentFixupCount = 0;
KeProfileInterruptWithSource(TrapFrame, ProfileAlignmentFixup);
KeLowerIrql(OldIrql);
}
}
// Save the original exception address in case another exception
// occurs.
EffectiveAddress = (PVOID) ExceptionRecord->ExceptionInformation[1];
ExceptionAddress = (PVOID) TrapFrame->StIIP;
// Capture previous mode from trap frame not current thread.
PreviousMode = (KPROCESSOR_MODE) TrapFrame->PreviousMode;
// Any exception that occurs during the attempted emulation of the
// unaligned reference causes the emulation to be aborted. The new
// exception code and information is copied to the original exception
// record and a value of FALSE is returned.
try {
BundleLow = *((ULONGLONG *)ExceptionAddress);
BundleHigh = *(((ULONGLONG *)ExceptionAddress) + 1);
Syllable = (TrapFrame->StIPSR >> PSR_RI) & 0x3;
switch (Syllable) {
case 0:
FaultInstruction.u.Ulong64 = (BundleLow >> 5);
break;
case 1:
FaultInstruction.u.Ulong64 = (BundleLow >> 46) | (BundleHigh << 18);
break;
case 2:
FaultInstruction.u.Ulong64 = (BundleHigh >> 23);
case 3:
default:
return FALSE;
}
Opcode = FaultInstruction.u.Ulong64 & OPCODE_MASK;
OpSize = (ULONG)FaultInstruction.u.i_field.x6 & 0x3;
switch (Opcode) {
// speculative and speculative advanced load
case LDS_OP:
case LDSA_OP:
case LDS_IMM_OP:
case LDSA_IMM_OP:
case LDFS_OP:
case LDFSA_OP:
case LDFS_IMM_OP:
// return NaT value to the target register
TrapFrame->StIPSR |= (1i64 << PSR_ED);
return TRUE;
// normal, advance, and check load
case LD_OP:
case LDA_OP:
case LDBIAS_OP:
case LDCCLR_OP:
case LDCNC_OP:
case LDACQ_OP:
case LDCCLRACQ_OP:
if (FaultInstruction.u.i_field.x == 1) {
// xField must be 0
return FALSE;
}
if( PreviousMode != KernelMode ){
ProbeForRead( EffectiveAddress,
1 << OpSize,
sizeof(UCHAR) );
}
KiEmulateLoad(EffectiveAddress, OpSize, &Data);
KiSetRegisterValue( (ULONG) FaultInstruction.u.i_field.r1,
Data,
ExceptionFrame,
TrapFrame );
if (FaultInstruction.u.i_field.m == 1) {
// Update the address register (R3)
Reg2Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r2,
ExceptionFrame,
TrapFrame );
Reg3Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
ExceptionFrame,
TrapFrame );
// register update form
Reg3Value = Reg2Value + Reg3Value;
KiSetRegisterValue ((ULONG) FaultInstruction.u.i_field.r3,
Reg3Value,
ExceptionFrame,
TrapFrame);
}
if ((Opcode == LDACQ_OP) || (Opcode == LDCCLRACQ_OP)) {
// all future access should occur after unaligned memory accesses
__mf();
}
break;
// normal, advance, and check load
// immidiate updated form
case LD_IMM_OP:
case LDA_IMM_OP:
case LDBIAS_IMM_OP:
case LDCCLR_IMM_OP:
case LDCNC_IMM_OP:
case LDACQ_IMM_OP:
case LDCCLRACQ_IMM_OP:
if( PreviousMode != KernelMode ){
ProbeForRead( EffectiveAddress,
1 << OpSize,
sizeof(UCHAR) );
}
KiEmulateLoad(EffectiveAddress, OpSize, &Data);
KiSetRegisterValue( (ULONG) FaultInstruction.u.i_field.r1,
Data,
ExceptionFrame,
TrapFrame );
// Update the address register R3
Reg3Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
ExceptionFrame,
TrapFrame );
// immediate update form
ImmValue = (ULONG)(FaultInstruction.u.i_field.r2
+ (FaultInstruction.u.i_field.x << 7));
if (FaultInstruction.u.i_field.m == 1) {
ImmValue = 0xFFFFFFFFFFFFFF00 | ImmValue;
}
Reg3Value = Reg3Value + ImmValue;
KiSetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
Reg3Value,
ExceptionFrame,
TrapFrame );
if ((Opcode == LDACQ_IMM_OP) || (Opcode == LDCCLRACQ_IMM_OP)) {
// all future access should occur after unaligned memory accesses
__mf();
}
break;
case LDF_OP:
case LDFA_OP:
case LDFCCLR_OP:
case LDFCNC_OP:
if (FaultInstruction.u.i_field.x == 1) {
// floating point load pair
if (FaultInstruction.u.i_field.m == 1) {
// m field must be zero
return FALSE;
}
if( PreviousMode != KernelMode ){
switch (OpSize) {
case 0: return FALSE;
case 1: Length = 8; break;
case 2: Length = 4; break;
case 3: Length = 8; break;
default:
return FALSE;
}
ProbeForRead( EffectiveAddress,
Length << 1,
sizeof(UCHAR) );
}
// emulate the 1st half of the pair
KiEmulateLoadFloat(EffectiveAddress, OpSize, &FloatData);
KiSetFloatRegisterValue( (ULONG) FaultInstruction.u.i_field.r1,
FloatData,
ExceptionFrame,
TrapFrame );
// emulate the 2nd half of the pair
EffectiveAddress = (PVOID)((ULONG_PTR)EffectiveAddress + Length);
KiEmulateLoadFloat(EffectiveAddress, OpSize, &FloatData);
KiSetFloatRegisterValue( (ULONG) FaultInstruction.u.i_field.r2,
FloatData,
ExceptionFrame,
TrapFrame );
} else {
// floating point single load
if( PreviousMode != KernelMode ){
switch (OpSize) {
case 0: Length = 16; break;
case 1: Length = 8; break;
case 2: Length = 4; break;
case 3: Length = 8; break;
default:
return FALSE;
}
ProbeForRead( EffectiveAddress,
Length,
sizeof(UCHAR) );
}
KiEmulateLoadFloat(EffectiveAddress, OpSize, &FloatData);
KiSetFloatRegisterValue( (ULONG) FaultInstruction.u.i_field.r1,
FloatData,
ExceptionFrame,
TrapFrame );
if (FaultInstruction.u.i_field.m == 1) {
// update the address register (R3)
Reg2Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r2,
ExceptionFrame,
TrapFrame );
Reg3Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
ExceptionFrame,
TrapFrame );
// register update form
Reg3Value = Reg2Value + Reg3Value;
KiSetRegisterValue ((ULONG) FaultInstruction.u.i_field.r3,
Reg3Value,
ExceptionFrame,
TrapFrame);
}
}
break;
// normal, advanced and checked floating point load
// immediate updated form
case LDF_IMM_OP:
case LDFA_IMM_OP:
case LDFCCLR_IMM_OP:
case LDFCNC_IMM_OP:
if (FaultInstruction.u.i_field.x == 1) {
// floating point load pair
if (FaultInstruction.u.i_field.m == 0) {
// m field must be one
return FALSE;
}
if( PreviousMode != KernelMode ){
switch (OpSize) {
case 0: return FALSE;
case 1: Length = 8; break;
case 2: Length = 8; break;
case 3: Length = 4; break;
default:
return FALSE;
}
ProbeForRead( EffectiveAddress,
Length << 1,
sizeof(UCHAR) );
}
// emulate the 1st half of the pair
KiEmulateLoadFloat(EffectiveAddress, OpSize, &FloatData);
KiSetFloatRegisterValue( (ULONG) FaultInstruction.u.i_field.r1,
FloatData,
ExceptionFrame,
TrapFrame );
EffectiveAddress = (PVOID)((ULONG_PTR)EffectiveAddress + Length);
// emulate the 2nd half of the pair
KiEmulateLoadFloat(EffectiveAddress, OpSize, &FloatData);
KiSetFloatRegisterValue( (ULONG) FaultInstruction.u.i_field.r2,
FloatData,
ExceptionFrame,
TrapFrame );
// Update the address register (R3)
Reg3Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
ExceptionFrame,
TrapFrame );
// immediate update form
ImmValue = Length << 1;
Reg3Value = Reg3Value + ImmValue;
KiSetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
Reg3Value,
ExceptionFrame,
TrapFrame );
} else {
// floating point single load
if( PreviousMode != KernelMode ){
switch (OpSize) {
case 0: Length = 16; break;
case 1: Length = 8; break;
case 2: Length = 4; break;
case 3: Length = 8; break;
default:
return FALSE;
}
ProbeForRead( EffectiveAddress,
Length,
sizeof(UCHAR) );
}
KiEmulateLoadFloat(EffectiveAddress, OpSize, &FloatData);
KiSetFloatRegisterValue( (ULONG) FaultInstruction.u.i_field.r1,
FloatData,
ExceptionFrame,
TrapFrame );
// Update the address register (R3)
Reg3Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
ExceptionFrame,
TrapFrame );
// immediate update form
ImmValue = (ULONG)(FaultInstruction.u.i_field.r2
+ (FaultInstruction.u.i_field.x << 7));
if (FaultInstruction.u.i_field.m == 1) {
ImmValue = 0xFFFFFFFFFFFFFF00 | ImmValue;
}
Reg3Value = Reg3Value + ImmValue;
KiSetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
Reg3Value,
ExceptionFrame,
TrapFrame );
}
break;
case STREL_OP:
__mf();
case ST_OP:
if (FaultInstruction.u.i_field.x == 1) {
// xField must be 0
return FALSE;
}
if (FaultInstruction.u.i_field.m == 1) {
// no register update form defined
return FALSE;
}
if( PreviousMode != KernelMode ){
ProbeForWrite( EffectiveAddress,
1 << OpSize,
sizeof(UCHAR) );
}
Data = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r2,
ExceptionFrame,
TrapFrame );
KiEmulateStore( EffectiveAddress, OpSize, &Data);
break;
case STREL_IMM_OP:
__mf();
case ST_IMM_OP:
if( PreviousMode != KernelMode ){
ProbeForWrite( EffectiveAddress,
1 << OpSize,
sizeof(UCHAR) );
}
Data = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r2,
ExceptionFrame,
TrapFrame );
KiEmulateStore( EffectiveAddress, OpSize, &Data);
// update the address register (R3)
Reg3Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
ExceptionFrame,
TrapFrame );
// immediate update form
ImmValue = (ULONG)(FaultInstruction.u.i_field.r1
+ (FaultInstruction.u.i_field.x << 7));
if (FaultInstruction.u.i_field.m == 1) {
ImmValue = 0xFFFFFFFFFFFFFF00 | ImmValue;
}
Reg3Value = Reg3Value + ImmValue;
KiSetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
Reg3Value,
ExceptionFrame,
TrapFrame );
break;
case STF_OP:
if (FaultInstruction.u.i_field.x) {
// x field must be 0
return FALSE;
}
if (FaultInstruction.u.i_field.m) {
// no register update form defined
return FALSE;
}
if( PreviousMode != KernelMode ){
switch (OpSize) {
case 0: Length = 16; break;
case 1: Length = 8; break;
case 2: Length = 4; break;
case 3: Length = 8; break;
default:
return FALSE;
}
ProbeForWrite( EffectiveAddress,
Length,
sizeof(UCHAR) );
}
FloatData = KiGetFloatRegisterValue( (ULONG) FaultInstruction.u.i_field.r2,
ExceptionFrame,
TrapFrame );
KiEmulateStoreFloat( EffectiveAddress, OpSize, &FloatData);
break;
case STF_IMM_OP:
if( PreviousMode != KernelMode ){
switch (OpSize) {
case 0: Length = 16; break;
case 1: Length = 8; break;
case 2: Length = 4; break;
case 3: Length = 8; break;
default:
return FALSE;
}
ProbeForWrite( EffectiveAddress,
Length,
sizeof(UCHAR) );
}
FloatData = KiGetFloatRegisterValue( (ULONG) FaultInstruction.u.i_field.r2,
ExceptionFrame,
TrapFrame );
KiEmulateStoreFloat( EffectiveAddress, OpSize, &FloatData);
// update the address register (R3)
Reg3Value = KiGetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
ExceptionFrame,
TrapFrame );
// immediate update form
ImmValue = (ULONG)(FaultInstruction.u.i_field.r1
+ (FaultInstruction.u.i_field.x << 7));
if (FaultInstruction.u.i_field.m == 1) {
ImmValue = 0xFFFFFFFFFFFFFF00 | ImmValue;
}
Reg3Value = Reg3Value + ImmValue;
KiSetRegisterValue( (ULONG) FaultInstruction.u.i_field.r3,
Reg3Value,
ExceptionFrame,
TrapFrame );
break;
default:
return FALSE;
}
// advance instruction pointer
KiAdvanceInstPointer(TrapFrame);
return TRUE;
// If an exception occurs, then copy the new exception information to the
// original exception record and handle the exception.
} except (KiCopyInformation(ExceptionRecord,
(GetExceptionInformation())->ExceptionRecord)) {
// Preserve the original exception address.
ExceptionRecord->ExceptionAddress = ExceptionAddress;
}
// Return a value of FALSE.
return FALSE;
}
VOID
KiEmulateLoad(
IN PVOID UnalignedAddress,
IN ULONG OperandSize,
IN PVOID Data
)
/*++
Routine Description:
This routine returns the integer value stored at the unaligned
address passed in UnalignedAddress.
Arguments:
UnalignedAddress - Supplies a pointer to data value.
OperandSize - Supplies the size of data to be loaded
Data - Supplies a pointer to be filled for data
Return Value:
The value at the address pointed to by UnalignedAddress.
--*/
{
PUCHAR Source;
PUCHAR Destination;
ULONG i;
Source = (PUCHAR) UnalignedAddress;
Destination = (PUCHAR) Data;
OperandSize = 1 << OperandSize;
for (i = 0; i < OperandSize; i++) {
*Destination++ = *Source++;
}
return;
}
VOID
KiEmulateStore(
IN PVOID UnalignedAddress,
IN ULONG OperandSize,
IN PVOID Data
)
/*++
Routine Description:
This routine store the integer value at the unaligned
address passed in UnalignedAddress.
Arguments:
UnalignedAddress - Supplies a pointer to be stored
OperandSize - Supplies the size of data to be storeed
Data - Supplies a pointer to data value
Return Value:
The value at the address pointed to by UnalignedAddress.
--*/
{
PUCHAR Source;
PUCHAR Destination;
ULONG i;
Source = (PUCHAR) Data;
Destination = (PUCHAR) UnalignedAddress;
OperandSize = 1 << OperandSize;
for (i = 0; i < OperandSize; i++) {
*Destination++ = *Source++;
}
return;
}
VOID
KiEmulateLoadFloat(
IN PVOID UnalignedAddress,
IN ULONG OperandSize,
IN OUT PVOID Data
)
/*++
Routine Description:
This routine returns the floating point value stored at the unaligned
address passed in UnalignedAddress.
Arguments:
UnalignedAddress - Supplies a pointer to floating point data value.
OperandSize - Supplies the size of data to be loaded
Data - Supplies a pointer to be filled for data
Return Value:
The value at the address pointed to by UnalignedAddress.
--*/
{
FLOAT128 FloatData;
RtlMoveMemory(&FloatData, UnalignedAddress, sizeof(FLOAT128));
switch (OperandSize) {
case 0:
KiEmulateLoadFloat80(&FloatData, Data);
return;
case 1:
KiEmulateLoadFloatInt(&FloatData, Data);
return;
case 2:
KiEmulateLoadFloat32(&FloatData, Data);
return;
case 3:
KiEmulateLoadFloat64(&FloatData, Data);
return;
default:
return;
}
}
VOID
KiEmulateStoreFloat(
IN PVOID UnalignedAddress,
IN ULONG OperandSize,
IN PVOID Data
)
/*++
Routine Description:
This routine stores the floating point value stored at the unaligned
address passed in UnalignedAddress.
Arguments:
UnalignedAddress - Supplies a pointer to be stored.
OperandSize - Supplies the size of data to be loaded
Data - Supplies a pointer to floating point data
Return Value:
The value at the address pointed to by UnalignedAddress.
--*/
{
FLOAT128 FloatData;
ULONG Length;
switch (OperandSize) {
case 0:
KiEmulateStoreFloat80(&FloatData, Data);
Length = 16;
break;
case 1:
KiEmulateStoreFloatInt(&FloatData, Data);
Length = 8;
break;
case 2:
KiEmulateStoreFloat32(&FloatData, Data);
Length = 4;
break;
case 3:
KiEmulateStoreFloat64(&FloatData, Data);
Length = 8;
break;
default:
return;
}
RtlMoveMemory(UnalignedAddress, &FloatData, Length);
}