2020-09-30 17:12:32 +02:00

714 lines
19 KiB
C

/*++
Copyright (c) 1992 Microsoft Corporation
Module Name:
dmpstate.c
Abstract:
This module implements the architecture specific routine that dumps
the machine state when a bug check occurs and no debugger is hooked
to the system. It is assumed that it is called from bug check.
Author:
David N. Cutler (davec) 17-Jan-1992
Environment:
Kernel mode.
Revision History:
--*/
#include "ki.h"
// Define forward referenced prototypes.
VOID
KiDisplayString (
IN ULONG Column,
IN ULONG Row,
IN PCHAR Buffer
);
PRUNTIME_FUNCTION
KiLookupFunctionEntry (
IN ULONG ControlPc
);
PVOID
KiPcToFileHeader(
IN PVOID PcValue,
OUT PVOID *BaseOfImage,
OUT PLDR_DATA_TABLE_ENTRY *DataTableEntry
);
// Define external data.
extern LIST_ENTRY PsLoadedModuleList;
VOID
KeDumpMachineState (
IN PKPROCESSOR_STATE ProcessorState,
IN PCHAR Buffer,
IN PULONG BugCheckParameters,
IN ULONG NumberOfParameters,
IN PKE_BUGCHECK_UNICODE_TO_ANSI UnicodeToAnsiRoutine
)
/*++
Routine Description:
This function formats and displays the machine state at the time of the
to bug check.
Arguments:
ProcessorState - Supplies a pointer to a processor state record.
Buffer - Supplies a pointer to a buffer to be used to output machine
state information.
BugCheckParameters - Supplies a pointer to an array of additional
bug check information.
NumberOfParameters - Suppiles the size of the bug check parameters
array.
UnicodeToAnsiRoutine - Supplies a pointer to a routine to convert Unicode strings
to Ansi strings without touching paged translation tables.
Return Value:
None.
--*/
{
PCONTEXT ContextRecord;
ULONG ControlPc;
PLDR_DATA_TABLE_ENTRY DataTableEntry;
ULONG DisplayColumn;
ULONG DisplayHeight;
ULONG DisplayRow;
ULONG DisplayWidth;
UNICODE_STRING DllName;
ULONG EstablisherFrame;
PRUNTIME_FUNCTION FunctionEntry;
PVOID ImageBase;
ULONG Index;
BOOLEAN InFunction;
ULONG LastStack;
PLIST_ENTRY ModuleListHead;
PLIST_ENTRY NextEntry;
ULONG NextPc;
ULONG StackLimit;
UCHAR AnsiBuffer[ 32 ];
ULONG DateStamp;
// Query display parameters.
HalQueryDisplayParameters(&DisplayWidth,
&DisplayHeight,
&DisplayColumn,
&DisplayRow);
// Display any addresses that fall within the range of any module in
// the loaded module list.
for (Index = 0; Index < NumberOfParameters; Index += 1) {
ImageBase = KiPcToFileHeader((PVOID)*BugCheckParameters,
&ImageBase,
&DataTableEntry);
if (ImageBase != NULL) {
sprintf(Buffer,
"*** %08lX has base at %08lX - %s\n",
*BugCheckParameters,
ImageBase,
(*UnicodeToAnsiRoutine)( &DataTableEntry->BaseDllName, AnsiBuffer, sizeof( AnsiBuffer )));
HalDisplayString(Buffer);
}
BugCheckParameters += 1;
}
// Virtually unwind to the caller of bug check.
ContextRecord = &ProcessorState->ContextFrame;
LastStack = (ULONG)ContextRecord->XIntSp;
ControlPc = (ULONG)(ContextRecord->XIntRa - 4);
NextPc = ControlPc;
FunctionEntry = KiLookupFunctionEntry(ControlPc);
if (FunctionEntry != NULL) {
NextPc = RtlVirtualUnwind(ControlPc | 1,
FunctionEntry,
ContextRecord,
&InFunction,
&EstablisherFrame,
NULL);
}
// At this point the context record contains the machine state at the
// call to bug check.
// Put out the machine state at the time of the bugcheck.
sprintf(Buffer,
"\nMachine State at Call to Bug Check PC : %08lX PSR : %08lX\n\n",
(ULONG)ContextRecord->XIntRa,
ContextRecord->Psr);
HalDisplayString(Buffer);
// Format and output the integer registers.
sprintf(Buffer,
"AT :%8lX V0 :%8lX V1 :%8lX A0 :%8lX\n",
(ULONG)ContextRecord->XIntAt,
(ULONG)ContextRecord->XIntV0,
(ULONG)ContextRecord->XIntV1,
(ULONG)ContextRecord->XIntA0);
HalDisplayString(Buffer);
sprintf(Buffer,
"A1 :%8lX A2 :%8lX A3 :%8lX T0 :%8lX\n",
(ULONG)ContextRecord->XIntA1,
(ULONG)ContextRecord->XIntA2,
(ULONG)ContextRecord->XIntA3,
(ULONG)ContextRecord->XIntT0);
HalDisplayString(Buffer);
sprintf(Buffer,
"T1 :%8lX T2 :%8lX T3 :%8lX T4 :%8lX\n",
(ULONG)ContextRecord->XIntT1,
(ULONG)ContextRecord->XIntT2,
(ULONG)ContextRecord->XIntT3,
(ULONG)ContextRecord->XIntT4);
HalDisplayString(Buffer);
sprintf(Buffer,
"T5 :%8lX T6 :%8lX T7 :%8lX T8 :%8lX\n",
(ULONG)ContextRecord->XIntT5,
(ULONG)ContextRecord->XIntT6,
(ULONG)ContextRecord->XIntT7,
(ULONG)ContextRecord->XIntT8);
HalDisplayString(Buffer);
sprintf(Buffer,
"T9 :%8lX S0 :%8lX S1 :%8lX S2 :%8lX\n",
(ULONG)ContextRecord->XIntT9,
(ULONG)ContextRecord->XIntS0,
(ULONG)ContextRecord->XIntS1,
(ULONG)ContextRecord->XIntS2);
HalDisplayString(Buffer);
sprintf(Buffer,
"S3 :%8lX S4 :%8lX S5 :%8lX S6 :%8lX\n",
(ULONG)ContextRecord->XIntS3,
(ULONG)ContextRecord->XIntS4,
(ULONG)ContextRecord->XIntS5,
(ULONG)ContextRecord->XIntS6);
HalDisplayString(Buffer);
sprintf(Buffer,
"S7 :%8lX S8 :%8lX GP :%8lX SP :%8lX\n",
(ULONG)ContextRecord->XIntS7,
(ULONG)ContextRecord->XIntS8,
(ULONG)ContextRecord->XIntGp,
(ULONG)ContextRecord->XIntSp);
HalDisplayString(Buffer);
sprintf(Buffer,
"RA :%8lX LO :%8lX HI :%8lX FSR:%8lX\n",
(ULONG)ContextRecord->XIntRa,
(ULONG)ContextRecord->XIntLo,
(ULONG)ContextRecord->XIntHi,
(ULONG)ContextRecord->Fsr);
HalDisplayString(Buffer);
// Format and output the firswt four floating registers.
sprintf(Buffer,
"F0 :%8lX F1 :%8lX F2 :%8lX F3 :%8lX\n",
ContextRecord->FltF0,
ContextRecord->FltF1,
ContextRecord->FltF2,
ContextRecord->FltF3);
HalDisplayString(Buffer);
sprintf(Buffer,
"F4 :%8lX F5 :%8lX F6 :%8lX F7 :%8lX\n",
ContextRecord->FltF4,
ContextRecord->FltF5,
ContextRecord->FltF6,
ContextRecord->FltF7);
HalDisplayString(Buffer);
sprintf(Buffer,
"F8 :%8lX F9 :%8lX F10:%8lX F11:%8lX\n",
ContextRecord->FltF8,
ContextRecord->FltF9,
ContextRecord->FltF10,
ContextRecord->FltF11);
HalDisplayString(Buffer);
sprintf(Buffer,
"F12:%8lX F13:%8lX F14:%8lX F15:%8lX\n",
ContextRecord->FltF12,
ContextRecord->FltF13,
ContextRecord->FltF14,
ContextRecord->FltF15);
HalDisplayString(Buffer);
sprintf(Buffer,
"F16:%8lX F17:%8lX F18:%8lX F19:%8lX\n",
ContextRecord->FltF16,
ContextRecord->FltF17,
ContextRecord->FltF18,
ContextRecord->FltF19);
HalDisplayString(Buffer);
sprintf(Buffer,
"F20:%8lX F21:%8lX F22:%8lX F23:%8lX\n",
ContextRecord->FltF20,
ContextRecord->FltF21,
ContextRecord->FltF22,
ContextRecord->FltF23);
HalDisplayString(Buffer);
sprintf(Buffer,
"F24:%8lX F25:%8lX F26:%8lX F27:%8lX\n",
ContextRecord->FltF24,
ContextRecord->FltF25,
ContextRecord->FltF26,
ContextRecord->FltF27);
HalDisplayString(Buffer);
sprintf(Buffer,
"F28:%8lX F29:%8lX F30:%8lX F31:%8lX\n\n",
ContextRecord->FltF28,
ContextRecord->FltF29,
ContextRecord->FltF30,
ContextRecord->FltF31);
HalDisplayString(Buffer);
// Output short stack back trace with base address.
DllName.Length = 0;
DllName.Buffer = L"";
if (FunctionEntry != NULL) {
StackLimit = (ULONG)KeGetCurrentThread()->KernelStack;
HalDisplayString("Callee-Sp Return-Ra Dll Base - Name\n");
for (Index = 0; Index < 8; Index += 1) {
ImageBase = KiPcToFileHeader((PVOID)ControlPc,
&ImageBase,
&DataTableEntry);
sprintf(Buffer,
" %08lX %08lX : %08lX - %s\n",
(ULONG)ContextRecord->XIntSp,
NextPc + 4,
ImageBase,
(*UnicodeToAnsiRoutine)( (ImageBase != NULL) ? &DataTableEntry->BaseDllName : &DllName,
AnsiBuffer, sizeof( AnsiBuffer )));
HalDisplayString(Buffer);
if ((NextPc != ControlPc) || ((ULONG)ContextRecord->XIntSp != LastStack)) {
ControlPc = NextPc;
LastStack = (ULONG)ContextRecord->XIntSp;
FunctionEntry = KiLookupFunctionEntry(ControlPc);
if ((FunctionEntry != NULL) && (LastStack < StackLimit)) {
NextPc = RtlVirtualUnwind(ControlPc | 1,
FunctionEntry,
ContextRecord,
&InFunction,
&EstablisherFrame,
NULL);
} else {
NextPc = (ULONG)ContextRecord->XIntRa;
}
} else {
break;
}
}
}
// Output the build number and other useful information.
sprintf(Buffer,
"\nIRQL : %d, DPC Active : %s, SYSVER 0x%08x\n",
KeGetCurrentIrql(),
KeIsExecutingDpc() ? "TRUE" : "FALSE",
NtBuildNumber);
HalDisplayString(Buffer);
// Output the processor id and the primary cache sizes.
sprintf(Buffer,
"Processor Id %d.%d, Icache : %d, Dcache : %d\n",
(PCR->ProcessorId >> 8) & 0xff,
PCR->ProcessorId & 0xff,
PCR->FirstLevelIcacheSize,
PCR->FirstLevelDcacheSize);
HalDisplayString(Buffer);
// If the display width is greater than 80 + 24 (the size of a DLL
// name and base address), then display all the modules loaded in
// the system.
HalQueryDisplayParameters(&DisplayWidth,
&DisplayHeight,
&DisplayColumn,
&DisplayRow);
if (DisplayWidth > (80 + 24)) {
if (KeLoaderBlock != NULL) {
ModuleListHead = &KeLoaderBlock->LoadOrderListHead;
} else {
ModuleListHead = &PsLoadedModuleList;
}
// Output display headers.
Index = 1;
KiDisplayString(80, Index, "Dll Base DateStmp - Name");
NextEntry = ModuleListHead->Flink;
if (NextEntry != NULL) {
// Scan the list of loaded modules and display their base
// address and name.
while (NextEntry != ModuleListHead) {
Index += 1;
DataTableEntry = CONTAINING_RECORD(NextEntry,
LDR_DATA_TABLE_ENTRY,
InLoadOrderLinks);
if (MmDbgReadCheck(DataTableEntry->DllBase) != NULL) {
PIMAGE_NT_HEADERS NtHeaders;
NtHeaders = RtlImageNtHeader(DataTableEntry->DllBase);
DateStamp = NtHeaders->FileHeader.TimeDateStamp;
} else {
DateStamp = 0;
}
sprintf(Buffer,
"%08lX %08lx - %s",
DataTableEntry->DllBase,
DateStamp,
(*UnicodeToAnsiRoutine)( &DataTableEntry->BaseDllName, AnsiBuffer, sizeof( AnsiBuffer )));
KiDisplayString(80, Index, Buffer);
NextEntry = NextEntry->Flink;
if (Index > DisplayHeight) {
break;
}
}
}
}
// Reset the current display position.
HalSetDisplayParameters(DisplayColumn, DisplayRow);
return;
}
VOID
KiDisplayString (
IN ULONG Column,
IN ULONG Row,
IN PCHAR Buffer
)
/*++
Routine Description:
This function display a string starting at the specified column and row
position on the screen.
Arguments:
Column - Supplies the starting column of where the string is displayed.
Row - Supplies the starting row of where the string is displayed.
Bufer - Supplies a pointer to the string that is displayed.
Return Value:
None.
--*/
{
// Position the cursor and display the string.
HalSetDisplayParameters(Column, Row);
HalDisplayString(Buffer);
return;
}
PRUNTIME_FUNCTION
KiLookupFunctionEntry (
IN ULONG ControlPc
)
/*++
Routine Description:
This function searches the currently active function tables for an entry
that corresponds to the specified PC value.
Arguments:
ControlPc - Supplies the address of an instruction within the specified
function.
Return Value:
If there is no entry in the function table for the specified PC, then
NULL is returned. Otherwise, the address of the function table entry
that corresponds to the specified PC is returned.
--*/
{
PLDR_DATA_TABLE_ENTRY DataTableEntry;
PRUNTIME_FUNCTION FunctionEntry;
PRUNTIME_FUNCTION FunctionTable;
ULONG SizeOfExceptionTable;
LONG High;
PVOID ImageBase;
LONG Low;
LONG Middle;
// Search for the image that includes the specified PC value.
ImageBase = KiPcToFileHeader((PVOID)ControlPc,
&ImageBase,
&DataTableEntry);
// If an image is found that includes the specified PC, then locate the
// function table for the image.
if (ImageBase != NULL) {
FunctionTable = (PRUNTIME_FUNCTION)RtlImageDirectoryEntryToData(
ImageBase, TRUE, IMAGE_DIRECTORY_ENTRY_EXCEPTION,
&SizeOfExceptionTable);
// If a function table is located, then search the function table
// for a function table entry for the specified PC.
if (FunctionTable != NULL) {
// Initialize search indicies.
Low = 0;
High = (SizeOfExceptionTable / sizeof(RUNTIME_FUNCTION)) - 1;
// Perform binary search on the function table for a function table
// entry that subsumes the specified PC.
while (High >= Low) {
// Compute next probe index and test entry. If the specified PC
// is greater than of equal to the beginning address and less
// than the ending address of the function table entry, then
// return the address of the function table entry. Otherwise,
// continue the search.
Middle = (Low + High) >> 1;
FunctionEntry = &FunctionTable[Middle];
if (ControlPc < FunctionEntry->BeginAddress) {
High = Middle - 1;
} else if (ControlPc >= FunctionEntry->EndAddress) {
Low = Middle + 1;
} else {
// The capability exists for more than one function entry
// to map to the same function. This permits a function to
// have discontiguous code segments described by separate
// function table entries. If the ending prologue address
// is not within the limits of the begining and ending
// address of the function able entry, then the prologue
// ending address is the address of a function table entry
// that accurately describes the ending prologue address.
if ((FunctionEntry->PrologEndAddress < FunctionEntry->BeginAddress) ||
(FunctionEntry->PrologEndAddress >= FunctionEntry->EndAddress)) {
FunctionEntry = (PRUNTIME_FUNCTION)FunctionEntry->PrologEndAddress;
}
return FunctionEntry;
}
}
}
}
// A function table entry for the specified PC was not found.
return NULL;
}
PVOID
KiPcToFileHeader(
IN PVOID PcValue,
OUT PVOID *BaseOfImage,
OUT PLDR_DATA_TABLE_ENTRY *DataTableEntry
)
/*++
Routine Description:
This function returns the base of an image that contains the
specified PcValue. An image contains the PcValue if the PcValue
is within the ImageBase, and the ImageBase plus the size of the
virtual image.
Arguments:
PcValue - Supplies a PcValue.
BaseOfImage - Returns the base address for the image containing the
PcValue. This value must be added to any relative addresses in
the headers to locate portions of the image.
DataTableEntry - Suppies a pointer to a variable that receives the
address of the data table entry that describes the image.
Return Value:
NULL - No image was found that contains the PcValue.
NON-NULL - Returns the base address of the image that contain the
PcValue.
--*/
{
PLIST_ENTRY ModuleListHead;
PLDR_DATA_TABLE_ENTRY Entry;
PLIST_ENTRY Next;
ULONG Bounds;
PVOID ReturnBase, Base;
// If the module list has been initialized, then scan the list to
// locate the appropriate entry.
if (KeLoaderBlock != NULL) {
ModuleListHead = &KeLoaderBlock->LoadOrderListHead;
} else {
ModuleListHead = &PsLoadedModuleList;
}
ReturnBase = NULL;
Next = ModuleListHead->Flink;
if (Next != NULL) {
while (Next != ModuleListHead) {
Entry = CONTAINING_RECORD(Next,
LDR_DATA_TABLE_ENTRY,
InLoadOrderLinks);
Next = Next->Flink;
Base = Entry->DllBase;
Bounds = (ULONG)Base + Entry->SizeOfImage;
if ((ULONG)PcValue >= (ULONG)Base && (ULONG)PcValue < Bounds) {
*DataTableEntry = Entry;
ReturnBase = Base;
break;
}
}
}
*BaseOfImage = ReturnBase;
return ReturnBase;
}