531 lines
19 KiB
C
531 lines
19 KiB
C
/*++
|
|
Copyright (c) 1989-1992 Microsoft Corporation
|
|
|
|
Module Name:
|
|
miscc.c
|
|
|
|
Abstract:
|
|
This module implements machine independent miscellaneous kernel functions.
|
|
|
|
Author:
|
|
David N. Cutler (davec) 13-May-1989
|
|
|
|
Environment:
|
|
Kernel mode only.
|
|
--*/
|
|
|
|
#include "ki.h"
|
|
|
|
#ifdef ALLOC_PRAGMA
|
|
#pragma alloc_text(PAGE, KeAddSystemServiceTable)
|
|
#pragma alloc_text(PAGE, KeSetSwapContextNotifyRoutine)
|
|
#pragma alloc_text(PAGE, KeSetTimeUpdateNotifyRoutine)
|
|
#pragma alloc_text(PAGE, KeSetThreadSelectNotifyRoutine)
|
|
#pragma alloc_text(PAGE, KeQueryActiveProcessors)
|
|
#pragma alloc_text(PAGELK, KiCalibrateTimeAdjustment)
|
|
#endif
|
|
|
|
#undef KeEnterCriticalRegion
|
|
|
|
|
|
VOID KeEnterCriticalRegion (VOID)
|
|
/*++
|
|
Routine Description:
|
|
This function disables kernel APC's.
|
|
|
|
N.B. The following code does not require any interlocks. There are two cases of interest: 1) On an MP system, the thread cannot
|
|
be running on two processors as once, and 2) if the thread is is interrupted to deliver a kernel mode APC which also calls
|
|
this routine, the values read and stored will stack and unstack properly.
|
|
--*/
|
|
{
|
|
KeGetCurrentThread()->KernelApcDisable -= 1;// Simply directly disable kernel APCs.
|
|
}
|
|
|
|
|
|
#undef KeLeaveCriticalRegion
|
|
|
|
|
|
VOID KeLeaveCriticalRegion (VOID)
|
|
/*++
|
|
Routine Description:
|
|
This function enables kernel APC's and requests an APC interrupt if appropriate.
|
|
--*/
|
|
{
|
|
// Increment the kernel APC disable count. If the resultant count is zero and the thread's kernel APC List is not empty, then request an APC interrupt.
|
|
|
|
// For multiprocessor performance, the following code utilizes the fact
|
|
// that queuing an APC is done by first queuing the APC, then checking the AST disable count.
|
|
// The following code increments the disable count first, checks to determine if it is zero, and then checks the kernel AST queue.
|
|
|
|
// See also KiInsertQueueApc().
|
|
KiLeaveCriticalRegion();
|
|
}
|
|
|
|
|
|
ULONGLONG KeQueryInterruptTime (VOID)
|
|
/*++
|
|
Routine Description:
|
|
This function returns the current interrupt time by determining when the time is stable and then returning its value.
|
|
Arguments:
|
|
CurrentTime - Supplies a pointer to a variable that will receive the current system time.
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
LARGE_INTEGER CurrentTime;
|
|
|
|
KiQueryInterruptTime(&CurrentTime);
|
|
return CurrentTime.QuadPart;
|
|
}
|
|
|
|
|
|
VOID KeQuerySystemTime (OUT PLARGE_INTEGER CurrentTime)
|
|
/*++
|
|
Routine Description:
|
|
This function returns the current system time by determining when the time is stable and then returning its value.
|
|
Arguments:
|
|
CurrentTime - Supplies a pointer to a variable that will receive the current system time.
|
|
--*/
|
|
{
|
|
KiQuerySystemTime(CurrentTime);
|
|
}
|
|
|
|
|
|
VOID KeQueryTickCount (OUT PLARGE_INTEGER CurrentCount)
|
|
/*++
|
|
Routine Description:
|
|
This function returns the current tick count by determining when the count is stable and then returning its value.
|
|
Arguments:
|
|
CurrentCount - Supplies a pointer to a variable that will receive the current tick count.
|
|
--*/
|
|
{
|
|
KiQueryTickCount(CurrentCount);
|
|
}
|
|
|
|
|
|
ULONG KeQueryTimeIncrement (VOID)
|
|
/*++
|
|
Routine Description:
|
|
This function returns the time increment value in 100ns units.
|
|
This is the value that is added to the system time at each interval clock interrupt.
|
|
Arguments:
|
|
None.
|
|
Return Value:
|
|
The time increment value is returned as the function value.
|
|
--*/
|
|
{
|
|
return KeMaximumIncrement;
|
|
}
|
|
|
|
|
|
VOID KeSetDmaIoCoherency (IN ULONG Attributes)
|
|
/*++
|
|
Routine Description:
|
|
This function sets (enables/disables) DMA I/O coherency with data caches.
|
|
Arguments:
|
|
Attributes - Supplies the set of DMA I/O coherency attributes for the host system.
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
KiDmaIoCoherency = Attributes;
|
|
}
|
|
|
|
|
|
#if defined(i386)
|
|
VOID KeSetProfileIrql (IN KIRQL ProfileIrql)
|
|
/*++
|
|
Routine Description:
|
|
This function sets the profile IRQL.
|
|
N.B. There are only two valid values for synchronization IRQL:PROFILE_LEVEL and HIGH_LEVEL.
|
|
Arguments:
|
|
Irql - Supplies the synchronization IRQL value.
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
ASSERT((ProfileIrql == PROFILE_LEVEL) || (ProfileIrql == HIGH_LEVEL));
|
|
KiProfileIrql = ProfileIrql;
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined(_ALPHA_)
|
|
VOID KeSetSynchIrql (IN KIRQL SynchIrql)
|
|
/*++
|
|
Routine Description:
|
|
This function sets the synchronization IRQL.
|
|
N.B. Synchronization IRQL may be any value between DISPATCH_LEVEL and SYNCH_LEVEL.
|
|
Arguments:
|
|
Irql - Supplies the synchronization IRQL value.
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
ASSERT((SynchIrql >= DISPATCH_LEVEL) && (SynchIrql <= SYNCH_LEVEL));
|
|
KiSynchIrql = SynchIrql;
|
|
}
|
|
#endif
|
|
|
|
|
|
VOID KeSetSystemTime (IN PLARGE_INTEGER NewTime, OUT PLARGE_INTEGER OldTime, IN BOOLEAN AdjustInterruptTime, IN PLARGE_INTEGER HalTimeToSet OPTIONAL)
|
|
/*++
|
|
Routine Description:
|
|
This function sets the system time to the specified value and updates timer queue entries to reflect the difference between the old system time and the new system time.
|
|
Arguments:
|
|
NewTime - Supplies a pointer to a variable that specifies the new system time.
|
|
OldTime - Supplies a pointer to a variable that will receive the previous system time.
|
|
AdjustInterruptTime - If TRUE the amount of time being adjusted is also applied to InterruptTime and TickCount.
|
|
HalTimeToSet - Supplies an optional time that if specified is to be used to set the time in the realtime clock.
|
|
--*/
|
|
{
|
|
LIST_ENTRY AbsoluteListHead;
|
|
LIST_ENTRY ExpiredListHead;
|
|
ULONG Index;
|
|
PLIST_ENTRY ListHead;
|
|
PLIST_ENTRY NextEntry;
|
|
KIRQL OldIrql1;
|
|
KIRQL OldIrql2;
|
|
LARGE_INTEGER TimeDelta;
|
|
TIME_FIELDS TimeFields;
|
|
PKTIMER Timer;
|
|
|
|
ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL);
|
|
|
|
// If a realtime clock value is specified, then convert the time value to time fields.
|
|
if (ARGUMENT_PRESENT(HalTimeToSet)) {
|
|
RtlTimeToTimeFields(HalTimeToSet, &TimeFields);
|
|
}
|
|
|
|
// Set affinity to the processor that keeps the system time, raise IRQL to dispatcher level and lock the dispatcher database, then raise IRQL
|
|
// to HIGH_LEVEL to synchronize with the clock interrupt routine.
|
|
KeSetSystemAffinityThread((KAFFINITY)1);
|
|
KiLockDispatcherDatabase(&OldIrql1);
|
|
KeRaiseIrql(HIGH_LEVEL, &OldIrql2);
|
|
|
|
// Save the previous system time, set the new system time, and set the realtime clock, if a time value is specified.
|
|
KiQuerySystemTime(OldTime);
|
|
|
|
#if defined(_WIN64)
|
|
SharedUserData->SystemHigh2Time = NewTime->HighPart;
|
|
SharedUserData->SystemLowTime = NewTime->LowPart;
|
|
SharedUserData->SystemHigh1Time = NewTime->HighPart;
|
|
#elif defined(ALPHA)
|
|
SharedUserData->SystemTime = *(PULONGLONG)NewTime;
|
|
#else
|
|
SharedUserData->SystemTime.High2Time = NewTime->HighPart;
|
|
SharedUserData->SystemTime.LowPart = NewTime->LowPart;
|
|
SharedUserData->SystemTime.High1Time = NewTime->HighPart;
|
|
#endif // defined(ALPHA) || defined(_IA64_)
|
|
|
|
if (ARGUMENT_PRESENT(HalTimeToSet)) {
|
|
HalSetRealTimeClock(&TimeFields);
|
|
}
|
|
|
|
TimeDelta.QuadPart = NewTime->QuadPart - OldTime->QuadPart;// Compute the difference between the previous system time and the new system time.
|
|
KeBootTime.QuadPart = KeBootTime.QuadPart + TimeDelta.QuadPart;// Update the boot time to reflect the delta. This keeps time based on boot time constant
|
|
KeBootTimeBias = KeBootTimeBias + TimeDelta.QuadPart;// Track the overall bias applied to the boot time.
|
|
|
|
// Lower IRQL to dispatch level and if needed adjust the physical system interrupt time.
|
|
KeLowerIrql(OldIrql2);
|
|
if (AdjustInterruptTime) {
|
|
AdjustInterruptTime = KiAdjustInterruptTime (TimeDelta.QuadPart);// Adjust the physical time of the system
|
|
}
|
|
|
|
// If the physical interrupt time of the system was not adjusted, recompute any absolute timers in the system for the new system time.
|
|
if (!AdjustInterruptTime) {
|
|
// Remove all absolute timers from the timer queue so their due time can be recomputed.
|
|
InitializeListHead(&AbsoluteListHead);
|
|
for (Index = 0; Index < TIMER_TABLE_SIZE; Index += 1) {
|
|
ListHead = &KiTimerTableListHead[Index];
|
|
NextEntry = ListHead->Flink;
|
|
while (NextEntry != ListHead) {
|
|
Timer = CONTAINING_RECORD(NextEntry, KTIMER, TimerListEntry);
|
|
NextEntry = NextEntry->Flink;
|
|
if (Timer->Header.Absolute != FALSE) {
|
|
RemoveEntryList(&Timer->TimerListEntry);
|
|
InsertTailList(&AbsoluteListHead, &Timer->TimerListEntry);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Recompute the due time and reinsert all absolute timers in the timer tree.
|
|
// If a timer has already expired, then insert the timer in the expired timer list.
|
|
InitializeListHead(&ExpiredListHead);
|
|
while (AbsoluteListHead.Flink != &AbsoluteListHead) {
|
|
Timer = CONTAINING_RECORD(AbsoluteListHead.Flink, KTIMER, TimerListEntry);
|
|
KiRemoveTreeTimer(Timer);
|
|
Timer->DueTime.QuadPart -= TimeDelta.QuadPart;
|
|
if (KiReinsertTreeTimer(Timer, Timer->DueTime) == FALSE) {
|
|
Timer->Header.Inserted = TRUE;
|
|
InsertTailList(&ExpiredListHead, &Timer->TimerListEntry);
|
|
}
|
|
}
|
|
|
|
// If any of the attempts to reinsert a timer failed, then timers have already expired and must be processed.
|
|
|
|
// N.B. The following function returns with the dispatcher database unlocked.
|
|
KiTimerListExpire(&ExpiredListHead, OldIrql1);
|
|
} else {
|
|
KiUnlockDispatcherDatabase(OldIrql1);
|
|
}
|
|
|
|
KeRevertToUserAffinityThread();// Set affinity back to its original value.
|
|
PoNotifySystemTimeSet();// Notify other components that the system time has been set
|
|
}
|
|
|
|
|
|
BOOLEAN KiAdjustInterruptTime (IN LONGLONG TimeDelta)
|
|
/*++
|
|
Routine Description:
|
|
This function moves the physical interrupt time of the system foreward by TimeDelta after a system wake has occurred.
|
|
Arguments:
|
|
TimeDelta - amount of time to bump foreward interrupt time, tick count and the perforamnce counter in 100ns units
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
ADJUST_INTERRUPT_TIME_CONTEXT Adjust;
|
|
|
|
// Can only move time foreward
|
|
if (TimeDelta < 0) {
|
|
return FALSE;
|
|
} else {
|
|
Adjust.KiNumber = KeNumberProcessors;
|
|
Adjust.HalNumber = KeNumberProcessors;
|
|
Adjust.Adjustment = (ULONGLONG) TimeDelta;
|
|
Adjust.Barrier = 1;
|
|
|
|
KiIpiGenericCall ((PKIPI_BROADCAST_WORKER) KiCalibrateTimeAdjustment, (ULONG_PTR)(&Adjust));
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
VOID KiCalibrateTimeAdjustment (PADJUST_INTERRUPT_TIME_CONTEXT Adjust)
|
|
/*++
|
|
Routine Description:
|
|
Worker function for KiAdjustInterruptTime to calibrate the adjustment of time on all processors.
|
|
Arguments:
|
|
Adjust - context structure for operation
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
BOOLEAN Enable;
|
|
LARGE_INTEGER InterruptTime;
|
|
LARGE_INTEGER SetTime;
|
|
LARGE_INTEGER PerfFreq;
|
|
ULARGE_INTEGER li;
|
|
LARGE_INTEGER NewTickCount;
|
|
ULONG NewTickOffset;
|
|
ULONG cl, divisor;
|
|
|
|
// As each processor arrives, subtract one off the remaining processor
|
|
// count. If this is the last processor to arrive compute the time
|
|
// change, and signal all processor when to applied the performance counter change.
|
|
if (InterlockedDecrement((PLONG) &Adjust->KiNumber)) {
|
|
Enable = KiDisableInterrupts();
|
|
|
|
// It is possible to deadlock here if one or more of the other processors gets and processes a freeze request
|
|
// while this processor has interrupts disabled. Poll for IPI_FREEZE requests until all processors are known
|
|
// to be in this code and hence wont be requesting a freeze.
|
|
do {
|
|
KiPollFreezeExecution();
|
|
} while (Adjust->KiNumber != (ULONG)-1);
|
|
|
|
// Wait to perform the time set
|
|
while (Adjust->Barrier) ;
|
|
} else {
|
|
// Set timer expiration dpc to scan the timer queues once for any expired timers
|
|
KeRemoveQueueDpc (&KiTimerExpireDpc);
|
|
KeInsertQueueDpc (&KiTimerExpireDpc, (PVOID) TIMER_TABLE_SIZE, NULL);
|
|
|
|
// Disable interrupts and indicate that this processor is now in final portion of this code.
|
|
Enable = KiDisableInterrupts();
|
|
InterlockedDecrement((PLONG) &Adjust->KiNumber);
|
|
|
|
// Get the current times
|
|
KeQueryPerformanceCounter (&PerfFreq);
|
|
InterruptTime.QuadPart = KeQueryInterruptTime() + Adjust->Adjustment;
|
|
SetTime.QuadPart = InterruptTime.QuadPart + KeTimeIncrement / 2;
|
|
|
|
// Compute performance counter for current SetTime
|
|
|
|
// Multiply SetTime * PerfCount and obtain 96bit result in cl, li.LowPart, li.HighPart. Then divide the 96bit
|
|
// result by 10,000,000 to get new performance counter value.
|
|
li.QuadPart = RtlEnlargedUnsignedMultiply ((ULONG) SetTime.LowPart, (ULONG) PerfFreq.LowPart).QuadPart;
|
|
|
|
cl = li.LowPart;
|
|
li.QuadPart = li.HighPart + RtlEnlargedUnsignedMultiply ((ULONG) SetTime.LowPart, (ULONG) PerfFreq.HighPart).QuadPart;
|
|
li.QuadPart = li.QuadPart + RtlEnlargedUnsignedMultiply ((ULONG) SetTime.HighPart, (ULONG) PerfFreq.LowPart).QuadPart;
|
|
li.HighPart = li.HighPart + SetTime.HighPart * PerfFreq.HighPart;
|
|
|
|
divisor = 10000000;
|
|
Adjust->NewCount.HighPart = RtlEnlargedUnsignedDivide (li, divisor, &li.HighPart);
|
|
|
|
li.LowPart = cl;
|
|
Adjust->NewCount.LowPart = RtlEnlargedUnsignedDivide (li, divisor, NULL);
|
|
|
|
// Compute tick count and tick offset for current InterruptTime
|
|
NewTickCount = RtlExtendedLargeIntegerDivide(InterruptTime, KeMaximumIncrement, &NewTickOffset);
|
|
|
|
// Apply changes to InterruptTime, TickCount, TickOffset, and the performance counter
|
|
KiTickOffset = KeMaximumIncrement - NewTickOffset;
|
|
KeInterruptTimeBias += Adjust->Adjustment;
|
|
SharedUserData->TickCountLow = NewTickCount.LowPart;
|
|
|
|
#if defined(_WIN64)
|
|
KeTickCount = NewTickCount.QuadPart;
|
|
SharedUserData->InterruptHigh2Time = InterruptTime.HighPart;
|
|
SharedUserData->InterruptTime = InterruptTime.QuadPart;
|
|
#elif defined(ALPHA)
|
|
KeTickCount = NewTickCount.QuadPart;
|
|
SharedUserData->InterruptTime = InterruptTime.QuadPart;
|
|
#else
|
|
KeTickCount.High2Time = NewTickCount.HighPart;
|
|
KeTickCount.LowPart = NewTickCount.LowPart;
|
|
KeTickCount.High1Time = NewTickCount.HighPart;
|
|
|
|
SharedUserData->InterruptTime.High2Time = InterruptTime.HighPart;
|
|
SharedUserData->InterruptTime.LowPart = InterruptTime.LowPart;
|
|
SharedUserData->InterruptTime.High1Time = InterruptTime.HighPart;
|
|
#endif
|
|
|
|
// Apply the performance counter change
|
|
Adjust->Barrier = 0;
|
|
}
|
|
|
|
HalCalibratePerformanceCounter ((volatile PLONG) &Adjust->HalNumber, (ULONGLONG) Adjust->NewCount.QuadPart);
|
|
KiRestoreInterrupts(Enable);
|
|
}
|
|
|
|
|
|
VOID KeSetTimeIncrement (IN ULONG MaximumIncrement, IN ULONG MinimumIncrement)
|
|
/*++
|
|
Routine Description:
|
|
This function sets the time increment value in 100ns units.
|
|
This value is added to the system time at each interval clock interrupt.
|
|
Arguments:
|
|
MaximumIncrement - Supplies the maximum time between clock interrupts in 100ns units supported by the host HAL.
|
|
MinimumIncrement - Supplies the minimum time between clock interrupts in 100ns units supported by the host HAL.
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
KeMaximumIncrement = MaximumIncrement;
|
|
KeMinimumIncrement = max(MinimumIncrement, 10 * 1000);
|
|
KeTimeAdjustment = MaximumIncrement;
|
|
KeTimeIncrement = MaximumIncrement;
|
|
KiTickOffset = MaximumIncrement;
|
|
}
|
|
|
|
|
|
BOOLEAN KeAddSystemServiceTable(IN PULONG_PTR Base, IN PULONG Count OPTIONAL, IN ULONG Limit, IN PUCHAR Number, IN ULONG Index)
|
|
/*++
|
|
Routine Description:
|
|
This function allows the caller to add a system service table to the system
|
|
Arguments:
|
|
Base - Supplies the address of the system service table dispatch table.
|
|
Count - Supplies an optional pointer to a table of per system service counters.
|
|
Limit - Supplies the limit of the service table. Services greater than or equal to this limit will fail.
|
|
Arguments - Supplies the address of the argument count table.
|
|
Index - Supplies index of the service table.
|
|
Return Value:
|
|
TRUE - The operation was successful.
|
|
FALSE - the operation failed. A service table is already bound to the specified location, or the specified index is larger than the maximum allowed index.
|
|
--*/
|
|
{
|
|
PAGED_CODE();
|
|
|
|
// If a system service table is already defined for the specified index, then return FALSE. Otherwise, establish the new system service table.
|
|
if ((Index > NUMBER_SERVICE_TABLES - 1) || (KeServiceDescriptorTable[Index].Base != NULL) || (KeServiceDescriptorTableShadow[Index].Base != NULL)) {
|
|
return FALSE;
|
|
} else {
|
|
// If the service table index is equal to the Win32 table, then only update the shadow system service table. Otherwise, both the shadow and static system service tables are updated.
|
|
KeServiceDescriptorTableShadow[Index].Base = Base;
|
|
KeServiceDescriptorTableShadow[Index].Count = Count;
|
|
KeServiceDescriptorTableShadow[Index].Limit = Limit;
|
|
#if defined(_IA64_)
|
|
// The global pointer associated with the table base is placed just before the service table.
|
|
KeServiceDescriptorTableShadow[Index].TableBaseGpOffset = (LONG)(*(Base-1) - (ULONG_PTR)Base);
|
|
#endif
|
|
KeServiceDescriptorTableShadow[Index].Number = Number;
|
|
if (Index != 1) {
|
|
KeServiceDescriptorTable[Index].Base = Base;
|
|
KeServiceDescriptorTable[Index].Count = Count;
|
|
KeServiceDescriptorTable[Index].Limit = Limit;
|
|
#if defined(_IA64_)
|
|
KeServiceDescriptorTable[Index].TableBaseGpOffset = (LONG)(*(Base-1) - (ULONG_PTR)Base);
|
|
#endif
|
|
KeServiceDescriptorTable[Index].Number = Number;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
VOID FASTCALL KeSetSwapContextNotifyRoutine(IN PSWAP_CONTEXT_NOTIFY_ROUTINE NotifyRoutine)
|
|
/*++
|
|
Routine Description:
|
|
This function sets the address of a callout routine which will be called at each context swtich.
|
|
Arguments:
|
|
NotifyRoutine - Supplies the address of the swap context notify callout routine.
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
PAGED_CODE();
|
|
|
|
KiSwapContextNotifyRoutine = NotifyRoutine;
|
|
}
|
|
|
|
|
|
VOID FASTCALL KeSetThreadSelectNotifyRoutine(IN PTHREAD_SELECT_NOTIFY_ROUTINE NotifyRoutine)
|
|
/*++
|
|
Routine Description:
|
|
This function sets the address of a callout routine which will be called when a thread is being selected for execution.
|
|
Arguments:
|
|
NotifyRoutine - Supplies the address of the thread select notify callout routine.
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
PAGED_CODE();
|
|
|
|
KiThreadSelectNotifyRoutine = NotifyRoutine;
|
|
}
|
|
|
|
|
|
VOID FASTCALL KeSetTimeUpdateNotifyRoutine(IN PTIME_UPDATE_NOTIFY_ROUTINE NotifyRoutine)
|
|
/*++
|
|
Routine Description:
|
|
This function sets the address of a callout routine which will be called each time the runtime for a thread is updated.
|
|
Arguments:
|
|
RoutineNotify - Supplies the address of the time update notify callout routine.
|
|
Return Value:
|
|
None.
|
|
--*/
|
|
{
|
|
PAGED_CODE();
|
|
|
|
KiTimeUpdateNotifyRoutine = NotifyRoutine;
|
|
}
|
|
|
|
|
|
KAFFINITY KeQueryActiveProcessors(VOID)
|
|
/*++
|
|
Routine Description:
|
|
This function returns the current set of active processors in the system.
|
|
Arguments:
|
|
None.
|
|
Return Value:
|
|
KAFFINITY bitmask representing the set of active processors
|
|
--*/
|
|
{
|
|
PAGED_CODE();
|
|
|
|
return(KeActiveProcessors);
|
|
}
|