Windows2000/private/ntos/mm/ia64/miia64.h
2020-09-30 17:12:32 +02:00

3687 lines
84 KiB
C

/*++
Copyright (c) 1990 Microsoft Corporation
Copyright (c) 1995 Intel Corporation
Module Name:
miia64.h
Abstract:
This module contains the private data structures and procedure
prototypes for the hardware dependent portion of the
memory management system.
This module is specifically tailored for the Intel MERCED,
Author:
Lou Perazzoli (loup) 6-Jan-1990
Revision History:
*/
/*++
Virtual Memory Layout on MERCED is:
/*++
Virtual Memory Layout for the initial Merced port is:
+------------------------------------+
0000000000000000 | User mode addresses - 8tb minus 8gb| UADDRESS_BASE
| |
| |
000003FFFFFEFFFF | | MM_HIGHEST_USER_ADDRESS
+------------------------------------+
000003FFFFFF0000 | 64k No Access Region | MM_USER_PROBE_ADDRESS
+------------------------------------+
0000040000000000 | HyperSpace - working set lists | HYPER_SPACE
| and per process memory management |
| structures mapped in this 8gb |
00000401FFFFFFFF | region. | HYPER_SPACE_END
+------------------------------------+
0000040200000000 | Remaining per process addresses for|
| eventual 43-bit address space. |
| |
| |
000007FFFFFFFFFF | |
+------------------------------------+
.
.
+------------------------------------+
1FFFFF0000000000 | 8gb leaf level page table map | PTE_UBASE
| for user space |
1FFFFF01FFFFFFFF | | PTE_UTOP
+------------------------------------+
+------------------------------------+
1FFFFFFFC0000000 | 8mb page directory (2nd level) | PDE_UBASE
| table map for user space |
1FFFFFFFC07FFFFF | | PDE_UTOP
+------------------------------------+
+------------------------------------+
1FFFFFFFFFF00000 | 8KB parent directory (1st level) | PDE_UTBASE
+------------------------------------+
.
.
+------------------------------------+
2000000000000000 | Hydra - 8gb | MM_SESSION_SPACE_DEFAULT
| and per process memory management |
| structures mapped in this 8gb |
| region. |
+------------------------------------+
.
+------------------------------------+
3FFFFF0000000000 | 8gb leaf level page table map | PTE_SBASE
| for session space |
3FFFFF01FFFFFFFF | | PTE_STOP
+------------------------------------+
+------------------------------------+
3FFFFFFFC0000000 | 8mb page directory (2nd level) | PDE_SBASE
| table map for session space |
3FFFFFFFC07FFFFF | | PDE_STOP
+------------------------------------+
+------------------------------------+
3FFFFFFFFFF00000 | 8KB parent directory (1st level) | PDE_STBASE
+------------------------------------+
.
+------------------------------------+
8000000000000000 | physical addressable memory | KSEG3_BASE
| for 44-bit of address space |
80000FFFFFFFFFFF | mapped by VHPT 64KB page | KSEG3_LIMIT
+------------------------------------+
.
+------------------------------------+
9FFFFF00000000000| vhpt 64kb page for KSEG3 space |
| (not used) |
+------------------------------------+
.
.
+------------------------------------+ MM_SYSTEM_RANGE_START
E000000000000000 | | KADDRESS_BASE
+------------------------------------+
E000000080000000 | The HAL, kernel, initial drivers, | KSEG0_BASE
| NLS data, and registry load in the |
| first 16mb of this region which |
| physically addresses memory. |
| |
| Kernel mode access only. |
| |
| Initial NonPaged Pool is within |
| KSEG0 |
| | KSEG2_BASE
+------------------------------------+
E0000000A0000000 | System mapped views | MM_SYSTEM_VIEW_START
| Win32k.sys | MM_SYSTEM_CACHE_END
| |
+------------------------------------+
E0000000FF000000 | Shared system page | KI_USER_SHARED_DATA
+------------------------------------+
E0000000FF002000 | Reserved for the HAL. |
| |
| |
E0000000FFFFFFFF | |
+------------------------------------+
.
.
+------------------------------------+
E000000200000000 | |
| |
| |
| |
+------------------------------------+
E000000400000000 | The system cache working set | MM_SYSTEM_CACHE_WORKING_SET
| | MM_SYSTEM_SPACE_START
| information resides in this 8gb |
| region. |
+------------------------------------+
E000000600000000 | System cache resides here. | MM_SYSTEM_CACHE_START
| Kernel mode access only. |
| 1tb. |
+------------------------------------+
E000010600000000 | Start of paged system area. | MM_PAGED_POOL_START
| Kernel mode access only. |
| 128gb. |
+------------------------------------+
| |
.
.
In general, the next two areas (system PTE pool and nonpaged pool) will both
be shifted upwards to conserve a PPE...
.
.
+------------------------------------+
E000012600000000 | System PTE pool. | MM_LOWEST_NONPAGED_SYSTEM_START
| Kernel mode access only. |
| 128gb. |
+------------------------------------+
E000014600000000 | NonPaged pool. | MM_NON_PAGED_POOL_START
| Kernel mode access only. |
| 128gb. |
| |
E0000165FFFFFFFF | NonPaged System area | MM_NONPAGED_POOL_END
+------------------------------------+
.
.
E000040000000000 +------------------------------------+ MM_PFN_DATABASE_START
| PFN Database space |
| Kernel mode access only. |
| 2tb. |
E000060000000000 +------------------------------------+ MM_PFN_DATABASE_END
. MM_SYSTEM_SPACE_END
.
.
+------------------------------------+
FFFFFF0000000000 | 8gb leaf level page table map | PTE_KBASE
| for kernel space |
FFFFFF01FFFFFFFF | | PTE_KTOP
+------------------------------------+
+------------------------------------+
FFFFFFFFC0000000 | 8mb page directory (2nd level) | PDE_KBASE
| table map for kernel space |
FFFFFFFFC07FFFFF | | PDE_KTOP
+------------------------------------+
+------------------------------------+
FFFFFFFFFFF00000 | 8KB parent directory (1st level) | PDE_KTBASE
+------------------------------------+
*/
#define _MM64_ 1
#define _MIALT4K_ 1
// #define HYPERMAP 1
// Define empty list markers.
#define MM_EMPTY_LIST ((ULONG)0xFFFFFFFF) //
#define MM_EMPTY_PTE_LIST ((ULONG)0xFFFFFFFF) // N.B. tied to MMPTE definition
#define MI_PTE_BASE_FOR_LOWEST_KERNEL_ADDRESS ((PMMPTE)PTE_KBASE)
// 43-Bit virtual address mask.
#define MASK_43 0x7FFFFFFFFFFUI64 //
// 44-Bit Physical address mask.
#define MASK_44 0xFFFFFFFFFFFUI64
#define MM_PAGES_IN_KSEG0 ((ULONG)((KSEG2_BASE - KSEG0_BASE) >> PAGE_SHIFT))
extern ULONG_PTR MmKseg2Frame;
extern ULONGLONG MmPageSizeInfo;
#define MM_USER_ADDRESS_RANGE_LIMIT (0xFFFFFFFFFFFFFFFFUI64) // user address range limit
#define MM_MAXIMUM_ZERO_BITS 53 // maximum number of zero bits
// PAGE_SIZE for Intel MERCED is 8k, virtual page is 20 bits with a PAGE_SHIFT
// byte offset.
#define MM_VIRTUAL_PAGE_FILLER (PAGE_SHIFT - 12)
#define MM_VIRTUAL_PAGE_SIZE (64-PAGE_SHIFT)
// Address space layout definitions.
#define CODE_START KSEG0_BASE
#define CODE_END KSEG2_BASE
#define MM_SYSTEM_SPACE_START (KADDRESS_BASE + 0x400000000UI64)
#define MM_SYSTEM_SPACE_END (KADDRESS_BASE + 0x60000000000UI64)
#define PDE_TOP PDE_UTOP
// Define Althernate 4KB permission table space for X86
#define ALT4KB_PERMISSION_TABLE_START (UADDRESS_BASE + 0x40000000000)
#define ALT4KB_PERMISSION_TABLE_END (UADDRESS_BASE + 0x40000400000)
// Define hyper space
#define HYPER_SPACE ((PVOID)(UADDRESS_BASE + 0x40000800000))
#define HYPER_SPACE_END (UADDRESS_BASE + 0x401FFFFFFFF)
// Define area for mapping views into system space
#define MM_SYSTEM_VIEW_START (KADDRESS_BASE + 0xA0000000)
#define MM_SYSTEM_VIEW_SIZE (48*1024*1024)
#define MM_SESSION_SPACE_DEFAULT (0x2000000000000000UI64) // make it the region 1 space
#define MM_SYSTEM_VIEW_START_IF_HYDRA MM_SYSTEM_VIEW_START
#define MM_SYSTEM_VIEW_SIZE_IF_HYDRA MM_SYSTEM_VIEW_SIZE
// Define the start and maximum size for the system cache.
// Maximum size 512MB.
#define MM_SYSTEM_CACHE_WORKING_SET (KADDRESS_BASE + 0x400000000UI64)
#define MM_SYSTEM_CACHE_START (KADDRESS_BASE + 0x600000000UI64)
#define MM_SYSTEM_CACHE_END (KADDRESS_BASE + 0x1005FFFFFFFFUI64)
#define MM_MAXIMUM_SYSTEM_CACHE_SIZE \
(((ULONG_PTR)MM_SYSTEM_CACHE_END - (ULONG_PTR)MM_SYSTEM_CACHE_START) >> PAGE_SHIFT)
#define MM_PAGED_POOL_START ((PVOID)(KADDRESS_BASE + 0x10600000000UI64))
#define MM_LOWEST_NONPAGED_SYSTEM_START ((PVOID)(KADDRESS_BASE + 0x12600000000UI64))
#define MmProtopte_Base (KADDRESS_BASE)
#define MM_NONPAGED_POOL_END ((PVOID)(KADDRESS_BASE + 0x16600000000UI64 - (16 * PAGE_SIZE)))
#define MM_CRASH_DUMP_VA ((PVOID)(KADDRESS_BASE + 0xFF800000))
// EPC VA at 0xFFA00000 (see ntia64.h)
#define MM_DEBUG_VA ((PVOID)(KADDRESS_BASE + 0xFF900000))
#define NON_PAGED_SYSTEM_END (KADDRESS_BASE + 0x16600000000UI64) //quadword aligned.
#define MM_PFN_DATABASE_START (KADDRESS_BASE + 0x40000000000UI64)
#define MM_PFN_DATABASE_END (KADDRESS_BASE + 0x60000000000UI64)
extern ULONG MiMaximumSystemCacheSize;
// Define absolute minumum and maximum count for system ptes.
#define MM_MINIMUM_SYSTEM_PTES 7000
#define MM_MAXIMUM_SYSTEM_PTES 50000
#define MM_DEFAULT_SYSTEM_PTES 11000
// Pool limits
// The maximim amount of nonpaged pool that can be initially created.
#define MM_MAX_INITIAL_NONPAGED_POOL ((SIZE_T)(128 * 1024 * 1024))
// The total amount of nonpaged pool (initial pool + expansion + system PTEs).
#define MM_MAX_ADDITIONAL_NONPAGED_POOL (((SIZE_T)128 * 1024 * 1024 * 1024) - 16)
// The maximum amount of paged pool that can be created.
#define MM_MAX_PAGED_POOL ((SIZE_T)128 * 1024 * 1024 * 1024)
// Define the maximum default for pool (user specified 0 in registry).
#define MM_MAX_DEFAULT_NONPAGED_POOL ((SIZE_T)8 * 1024 * 1024 * 1024)
// Structure layout defintions.
#define MM_PROTO_PTE_ALIGNMENT ((ULONG)PAGE_SIZE)
// Define the address bits mapped by PPE and PDE entries.
// A PPE entry maps 10+10+13 = 33 bits of address space.
// A PDE entry maps 10+13 = 23 bits of address space.
#define PAGE_DIRECTORY1_MASK (((ULONG_PTR)1 << PDI1_SHIFT) - 1)
#define PAGE_DIRECTORY2_MASK (((ULONG_PTR)1 << PDI_SHIFT) -1)
#define MM_VA_MAPPED_BY_PDE ((ULONG_PTR)1 << PDI_SHIFT)
#define LOWEST_IO_ADDRESS 0xa0000
// The number of bits in a physical address.
#define PHYSICAL_ADDRESS_BITS 44
#define MM_MAXIMUM_NUMBER_OF_COLORS (1)
// MERCED does not require support for colored pages.
#define MM_NUMBER_OF_COLORS (1)
// Mask for obtaining color from a physical page number.
#define MM_COLOR_MASK (0)
// Boundary for aligned pages of like color upon.
#define MM_COLOR_ALIGNMENT (0)
// Mask for isolating color from virtual address.
#define MM_COLOR_MASK_VIRTUAL (0)
// Define 256k worth of secondary colors.
#define MM_SECONDARY_COLORS_DEFAULT (64)
#define MM_SECONDARY_COLORS_MIN (2)
#define MM_SECONDARY_COLORS_MAX (1024)
// Mask for isolating secondary color from physical page number;
extern ULONG MmSecondaryColorMask;
// Maximum number of paging files.
#define MAX_PAGE_FILES 16
// Hyper space definitions.
#define FIRST_MAPPING_PTE ((PMMPTE)HYPER_SPACE)
#define NUMBER_OF_MAPPING_PTES 255
#define LAST_MAPPING_PTE \
((ULONG_PTR)((ULONG_PTR)FIRST_MAPPING_PTE + (NUMBER_OF_MAPPING_PTES * PAGE_SIZE)))
#define IMAGE_MAPPING_PTE ((PMMPTE)((ULONG_PTR)LAST_MAPPING_PTE + PAGE_SIZE))
#define ZEROING_PAGE_PTE ((PMMPTE)((ULONG_PTR)IMAGE_MAPPING_PTE + PAGE_SIZE))
#define WORKING_SET_LIST ((PVOID)((ULONG_PTR)ZEROING_PAGE_PTE + PAGE_SIZE))
#define MM_MAXIMUM_WORKING_SET \
((ULONG)((ULONG)2*1024*1024*1024 - 64*1024*1024) >> PAGE_SHIFT) //2Gb-64Mb
#define MM_WORKING_SET_END (UADDRESS_BASE + 0x3FFFFFFFFFFUI64)
// Define memory attributes fields within PTE
#define MM_PTE_TB_MA_WB (0x0 << 2) // cacheable, write-back
#define MM_PTE_TB_MA_UC (0x4 << 2) // uncheable
#define MM_PTE_TB_MA_UCE (0x5 << 2) // uncheable, exporting fetchadd
#define MM_PTE_TB_MA_WC (0x6 << 2) // uncheable, coalesing
#define MM_PTE_TB_MA_NATPAGE (0x7 << 2) // Nat Page
// Define masks for the PTE cache attributes
#define MM_PTE_CACHE_ENABLED 0 // WB
#define MM_PTE_CACHE_DISABLED 4 // UC
#define MM_PTE_CACHE_DISPLAY 6 // WC
#define MM_PTE_CACHE_RESERVED 1 // special encoding to cause a TLB miss
// Define masks for fields within the PTE.
#define MM_PTE_OWNER_MASK 0x0180
#define MM_PTE_VALID_MASK 1
#define MM_PTE_CACHE_DISABLE_MASK MM_PTE_TB_MA_UC
#define MM_PTE_ACCESS_MASK 0x0020
#define MM_PTE_DIRTY_MASK 0x0040
#define MM_PTE_EXECUTE_MASK 0x0200
#define MM_PTE_WRITE_MASK 0x0400
#define MM_PTE_LARGE_PAGE_MASK 0
#define MM_PTE_COPY_ON_WRITE_MASK ((ULONG)1 << (PAGE_SHIFT-1))
#define MM_PTE_PROTOTYPE_MASK 0x0002
#define MM_PTE_TRANSITION_MASK 0x0080
// Bit fields to or into PTE to make a PTE valid based on the
// protection field of the invalid PTE.
#define MM_PTE_NOACCESS 0x0
#define MM_PTE_READONLY 0x0
#define MM_PTE_READWRITE MM_PTE_WRITE_MASK
#define MM_PTE_WRITECOPY MM_PTE_COPY_ON_WRITE_MASK
#define MM_PTE_EXECUTE MM_PTE_EXECUTE_MASK
#define MM_PTE_EXECUTE_READ MM_PTE_EXECUTE_MASK
#define MM_PTE_EXECUTE_READWRITE MM_PTE_EXECUTE_MASK | MM_PTE_WRITE_MASK
#define MM_PTE_EXECUTE_WRITECOPY MM_PTE_EXECUTE_MASK | MM_PTE_COPY_ON_WRITE_MASK
#define MM_PTE_GUARD 0x0
#define MM_PTE_CACHE MM_PTE_TB_MA_WB
#define MM_PTE_NOCACHE MM_PTE_CACHE // PAGE_NOCACHE is cached
#define MM_PTE_EXC_DEFER 0x10000000000000 // defer exception
#define MM_PROTECT_FIELD_SHIFT 2
// Define masks for fields within the EM TB entry
#define MM_PTE_TB_VALID 0x0001
#define MM_PTE_TB_ACCESSED 0x0020
#define MM_PTE_TB_MODIFIED 0x0040
#define MM_PTE_TB_WRITE 0x0400
#define MM_PTE_TB_EXECUTE 0x0200 // read/execute on EM
#define MM_PTE_TB_EXC_DEFER 0x10000000000000 // defer exception
// Define masks for PTE PageSize field
#define MM_PTE_1MB_PAGE 20
#define MM_PTE_2MB_PAGE 21
#define MM_PTE_4MB_PAGE 22
#define MM_PTE_16MB_PAGE 24
#define MM_PTE_64MB_PAGE 26
#define MM_PTE_256MB_PAGE 28
// Define the number of VHPT pages
#define MM_VHPT_PAGES 32
// Bits available for the software working set index within the hardware PTE.
#define MI_MAXIMUM_PTE_WORKING_SET_INDEX (1 << _HARDWARE_PTE_WORKING_SET_BITS)
// Zero PTE
#define MM_ZERO_PTE 0
// Zero Kernel PTE
#define MM_ZERO_KERNEL_PTE 0
// A demand zero PTE with a protection or PAGE_READWRITE.
#define MM_DEMAND_ZERO_WRITE_PTE ((ULONGLONG)MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
// A demand zero PTE with a protection or PAGE_READWRITE for system space.
#define MM_KERNEL_DEMAND_ZERO_PTE ((ULONGLONG)MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
// A no access PTE for system space.
#define MM_KERNEL_NOACCESS_PTE ((ULONGLONG)MM_NOACCESS << MM_PROTECT_FIELD_SHIFT)
extern ULONG_PTR MmPteGlobal; // One if processor supports Global Page, else zero.
// Kernel stack alignment requirements.
#define MM_STACK_ALIGNMENT 0x0
#define MM_STACK_OFFSET 0x0
// System process definitions
#define PDE_PER_PAGE ((ULONG)(PAGE_SIZE/(1 << PTE_SHIFT)))
#define PTE_PER_PAGE ((ULONG)(PAGE_SIZE/(1 << PTE_SHIFT)))
#define PTE_PER_PAGE_BITS 11 // This handles the case where the page is full
#if PTE_PER_PAGE_BITS > 32
error - too many bits to fit into MMPTE_SOFTWARE or MMPFN.u1
#endif
// Number of page table pages for user addresses.
#define MM_USER_PAGE_TABLE_PAGES PTE_PER_PAGE
//VOID
//MI_MAKE_VALID_PTE (
// OUT OUTPTE,
// IN FRAME,
// IN PMASK,
// IN PPTE
// );
// Routine Description:
// This macro makes a valid PTE from a page frame number, protection mask,
// and owner.
// Argments
// OUTPTE - Supplies the PTE in which to build the transition PTE.
// FRAME - Supplies the page frame number for the PTE.
// PMASK - Supplies the protection to set in the transition PTE.
// PPTE - Supplies a pointer to the PTE which is being made valid.
// For prototype PTEs NULL should be specified.
// Return Value:
// None.
#if !defined(_MIALT4K_)
#define MI_MAKE_VALID_PTE(OUTPTE,FRAME,PMASK,PPTE) \
(OUTPTE).u.Long = 0; \
(OUTPTE).u.Hard.Valid = 1; \
(OUTPTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED; \
(OUTPTE).u.Hard.Accessed = 1; \
(OUTPTE).u.Hard.Exception = 1; \
(OUTPTE).u.Hard.PageFrameNumber = FRAME; \
(OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \
(OUTPTE).u.Long |= (MmProtectToPteMask[PMASK]);
#endif
//VOID
//MI_MAKE_VALID_PTE_TRANSITION (
// IN OUT OUTPTE
// IN PROTECT
// );
// Routine Description:
// This macro takes a valid pte and turns it into a transition PTE.
// Argments
// OUTPTE - Supplies the current valid PTE. This PTE is then
// modified to become a transition PTE.
// PROTECT - Supplies the protection to set in the transition PTE.
// Return Value:
// None.
#define MI_MAKE_VALID_PTE_TRANSITION(OUTPTE,PROTECT) \
(OUTPTE).u.Soft.Transition = 1; \
(OUTPTE).u.Soft.Valid = 0; \
(OUTPTE).u.Soft.Prototype = 0; \
(OUTPTE).u.Soft.Protection = PROTECT;
//VOID
//MI_MAKE_TRANSITION_PTE (
// OUT OUTPTE,
// IN PAGE,
// IN PROTECT,
// IN PPTE
// );
// Routine Description:
// This macro takes a valid pte and turns it into a transition PTE.
// Argments
// OUTPTE - Supplies the PTE in which to build the transition PTE.
// PAGE - Supplies the page frame number for the PTE.
// PROTECT - Supplies the protection to set in the transition PTE.
// PPTE - Supplies a pointer to the PTE, this is used to determine
// the owner of the PTE.
// Return Value:
// None.
#define MI_MAKE_TRANSITION_PTE(OUTPTE,PAGE,PROTECT,PPTE) \
(OUTPTE).u.Long = 0; \
(OUTPTE).u.Trans.PageFrameNumber = PAGE; \
(OUTPTE).u.Trans.Transition = 1; \
(OUTPTE).u.Trans.Protection = PROTECT;
//VOID
//MI_MAKE_TRANSITION_PTE_VALID (
// OUT OUTPTE,
// IN PPTE
// );
// Routine Description:
// This macro takes a transition pte and makes it a valid PTE.
// Argments
// OUTPTE - Supplies the PTE in which to build the valid PTE.
// PPTE - Supplies a pointer to the transition PTE.
// Return Value:
// None.
#if !defined(_MIALT4K_)
#define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) \
ASSERT (((PPTE)->u.Hard.Valid == 0) && \
((PPTE)->u.Trans.Prototype == 0) && \
((PPTE)->u.Trans.Transition == 1)); \
(OUTPTE).u.Long = (PPTE)->u.Long & 0x1FFFFFFFE000; \
(OUTPTE).u.Hard.Valid = 1; \
(OUTPTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED; \
(OUTPTE).u.Hard.Accessed = 1; \
(OUTPTE).u.Hard.Exception = 1; \
(OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \
(OUTPTE).u.Long |= (MmProtectToPteMask[(PPTE)->u.Trans.Protection]);
#endif
//VOID
//MI_SET_PTE_IN_WORKING_SET (
// OUT PMMPTE PTE,
// IN ULONG WSINDEX
// );
// Routine Description:
// This macro inserts the specified working set index into the argument PTE.
// No TB invalidation is needed for other processors (or this one) even
// though the entry may already be in a TB - it's just a software field
// update and doesn't affect miss resolution.
// Arguments
// OUTPTE - Supplies the PTE in which to insert the working set index.
// WSINDEX - Supplies the working set index for the PTE.
// Return Value:
// None.
#define MI_SET_PTE_IN_WORKING_SET(PTE, WSINDEX) { \
MMPTE _TempPte; \
_TempPte = *(PTE); \
_TempPte.u.Hard.SoftwareWsIndex = (WSINDEX); \
*(PTE) = _TempPte; \
}
//ULONG WsIndex
//MI_GET_WORKING_SET_FROM_PTE(
// IN PMMPTE PTE
// );
// Routine Description:
// This macro returns the working set index from the argument PTE.
// Arguments
// PTE - Supplies the PTE to extract the working set index from.
// Return Value:
// This macro returns the working set index for the argument PTE.
#define MI_GET_WORKING_SET_FROM_PTE(PTE) (ULONG)(PTE)->u.Hard.SoftwareWsIndex
//VOID
//MI_SET_PTE_WRITE_COMBINE (
// IN MMPTE PTE
// );
// Routine Description:
// This macro sets the write combined bit(s) in the specified PTE.
// Arguments
// PTE - Supplies the PTE to set dirty.
// Return Value:
// None.
#define MI_SET_PTE_WRITE_COMBINE(PTE) \
((PTE).u.Hard.Cache = MM_PTE_CACHE_DISABLED)
#define MI_SET_PTE_WRITE_COMBINE2(PTE) \
((PTE).u.Hard.Cache = MM_PTE_CACHE_DISPLAY)
//VOID
//MI_SET_PTE_DIRTY (
// IN MMPTE PTE
// );
// Routine Description:
// This macro sets the dirty bit(s) in the specified PTE.
// Argments
// PTE - Supplies the PTE to set dirty.
// Return Value:
// None.
#define MI_SET_PTE_DIRTY(PTE) (PTE).u.Hard.Dirty = 1
//VOID
//MI_SET_PTE_CLEAN (
// IN MMPTE PTE
// );
// Routine Description:
// This macro clears the dirty bit(s) in the specified PTE.
// Argments
// PTE - Supplies the PTE to set clear.
// Return Value:
// None.
#define MI_SET_PTE_CLEAN(PTE) (PTE).u.Hard.Dirty = 0
//VOID
//MI_IS_PTE_DIRTY (
// IN MMPTE PTE
// );
// Routine Description:
// This macro checks the dirty bit(s) in the specified PTE.
// Argments
// PTE - Supplies the PTE to check.
// Return Value:
// TRUE if the page is dirty (modified), FALSE otherwise.
#define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.Dirty != 0)
//VOID
//MI_SET_GLOBAL_BIT_IF_SYSTEM (
// OUT OUTPTE,
// IN PPTE
// );
// Routine Description:
// This macro sets the global bit if the pointer PTE is within
// system space.
// Argments
// OUTPTE - Supplies the PTE in which to build the valid PTE.
// PPTE - Supplies a pointer to the PTE becoming valid.
// Return Value:
// None.
#define MI_SET_GLOBAL_BIT_IF_SYSTEM(OUTPTE,PPTE)
//VOID
//MI_SET_GLOBAL_STATE (
// IN MMPTE PTE,
// IN ULONG STATE
// );
// Routine Description:
// This macro sets the global bit in the PTE. if the pointer PTE is within
// Argments
// PTE - Supplies the PTE to set global state into.
// STATE - Supplies 1 if global, 0 if not.
// Return Value:
// None.
#define MI_SET_GLOBAL_STATE(PTE,STATE)
//VOID
//MI_ENABLE_CACHING (
// IN MMPTE PTE
// );
// Routine Description:
// This macro takes a valid PTE and sets the caching state to be
// enabled.
// Argments
// PTE - Supplies a valid PTE.
// Return Value:
// None.
#define MI_ENABLE_CACHING(PTE) ((PTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED)
//VOID
//MI_DISABLE_CACHING (
// IN MMPTE PTE
// );
// Routine Description:
// This macro takes a valid PTE and sets the caching state to be
// disabled.
// Argments
// PTE - Supplies a pointer to the valid PTE.
// Return Value:
// None.
#define MI_DISABLE_CACHING(PTE) ((PTE).u.Hard.Cache = MM_PTE_CACHE_DISABLED)
//BOOLEAN
//MI_IS_CACHING_DISABLED (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro takes a valid PTE and returns TRUE if caching is
// disabled.
// Argments
// PPTE - Supplies a pointer to the valid PTE.
// Return Value:
// TRUE if caching is disabled, FALSE if it is enabled.
#define MI_IS_CACHING_DISABLED(PPTE) \
((PPTE)->u.Hard.Cache == MM_PTE_CACHE_DISABLED)
//VOID
//MI_SET_PFN_DELETED (
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro takes a pointer to a PFN element and indicates that
// the PFN is no longer in use.
// Argments
// PPTE - Supplies a pointer to the PFN element.
// Return Value:
// none.
#define MI_SET_PFN_DELETED(PPFN) (((PPFN)->PteAddress = (PMMPTE)((INT_PTR)(LONG)0xFFFFFFFF)))
//BOOLEAN
//MI_IS_PFN_DELETED (
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro takes a pointer to a PFN element a determines if
// the PFN is no longer in use.
// Argments
// PPTE - Supplies a pointer to the PFN element.
// Return Value:
// TRUE if PFN is no longer used, FALSE if it is still being used.
#define MI_IS_PFN_DELETED(PPFN) \
((PPFN)->PteAddress == (PMMPTE)((INT_PTR)(LONG)0xFFFFFFFF))
//VOID
//MI_CHECK_PAGE_ALIGNMENT (
// IN ULONG PAGE,
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro takes a PFN element number (Page) and checks to see
// if the virtual alignment for the previous address of the page
// is compatable with the new address of the page. If they are
// not compatible, the D cache is flushed.
// Argments
// PAGE - Supplies the PFN element.
// PPTE - Supplies a pointer to the new PTE which will contain the page.
// Return Value:
// none.
// does nothing on MERCED.
#define MI_CHECK_PAGE_ALIGNMENT(PAGE,PPTE)
//VOID
//MI_INITIALIZE_HYPERSPACE_MAP (
// VOID
// );
// Routine Description:
// This macro initializes the PTEs reserved for double mapping within
// hyperspace.
// Argments
// None.
// Return Value:
// None.
// does nothing on MERCED.
#define MI_INITIALIZE_HYPERSPACE_MAP(INDEX)
//ULONG
//MI_GET_PAGE_COLOR_FROM_PTE (
// IN PMMPTE PTEADDRESS
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Argments
// PTEADDRESS - Supplies the PTE address the page is (or was) mapped at.
// Return Value:
// The pages color.
#define MI_GET_PAGE_COLOR_FROM_PTE(PTEADDRESS) \
((ULONG)((MmSystemPageColor++) & MmSecondaryColorMask))
//ULONG
//MI_GET_PAGE_COLOR_FROM_VA (
// IN PVOID ADDRESS
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Argments
// ADDRESS - Supplies the address the page is (or was) mapped at.
// Return Value:
// The pages color.
#define MI_GET_PAGE_COLOR_FROM_VA(ADDRESS) \
((ULONG)((MmSystemPageColor++) & MmSecondaryColorMask))
//ULONG
//MI_GET_PAGE_COLOR_FROM_SESSION (
// IN PMM_SESSION_SPACE SessionSpace
// );
// Routine Description:
// This macro determines the page's color based on the PTE address
// that maps the page.
// Arguments
// SessionSpace - Supplies the session space the page will be mapped into.
// Return Value:
// The page's color.
#define MI_GET_PAGE_COLOR_FROM_SESSION(_SessionSpace) \
((ULONG)((_SessionSpace->Color++) & MmSecondaryColorMask))
//ULONG
//MI_PAGE_COLOR_PTE_PROCESS (
// IN PCHAR COLOR,
// IN PMMPTE PTE
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Argments
// Return Value:
// The pages color.
#define MI_PAGE_COLOR_PTE_PROCESS(PTE,COLOR) \
(ULONG)((ULONG_PTR)((*(COLOR))++) & MmSecondaryColorMask)
//ULONG
//MI_PAGE_COLOR_VA_PROCESS (
// IN PVOID ADDRESS,
// IN PEPROCESS COLOR
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Argments
// ADDRESS - Supplies the address the page is (or was) mapped at.
// Return Value:
// The pages color.
#define MI_PAGE_COLOR_VA_PROCESS(ADDRESS,COLOR) \
((ULONG)((*(COLOR))++) & MmSecondaryColorMask)
//ULONG
//MI_GET_NEXT_COLOR (
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the next color in the sequence.
// Argments
// COLOR - Supplies the color to return the next of.
// Return Value:
// Next color in sequence.
#define MI_GET_NEXT_COLOR(COLOR) ((COLOR + 1) & MM_COLOR_MASK)
//ULONG
//MI_GET_PREVIOUS_COLOR (
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the previous color in the sequence.
// Argments
// COLOR - Supplies the color to return the previous of.
// Return Value:
// Previous color in sequence.
#define MI_GET_PREVIOUS_COLOR(COLOR) (0)
#define MI_GET_SECONDARY_COLOR(PAGE,PFN) ((ULONG)(PAGE & MmSecondaryColorMask))
#define MI_GET_COLOR_FROM_SECONDARY(SECONDARY_COLOR) (0)
//VOID
//MI_GET_MODIFIED_PAGE_BY_COLOR (
// OUT ULONG PAGE,
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the first page destined for a paging
// file with the desired color. It does NOT remove the page
// from its list.
// Argments
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
// COLOR - Supplies the color of page to locate.
// Return Value:
// none.
#define MI_GET_MODIFIED_PAGE_BY_COLOR(PAGE,COLOR) \
PAGE = MmModifiedPageListByColor[COLOR].Flink
//VOID
//MI_GET_MODIFIED_PAGE_ANY_COLOR (
// OUT ULONG PAGE,
// IN OUT ULONG COLOR
// );
// Routine Description:
// This macro returns the first page destined for a paging
// file with the desired color. If not page of the desired
// color exists, all colored lists are searched for a page.
// It does NOT remove the page from its list.
// Argments
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
// COLOR - Supplies the color of page to locate and returns the
// color of the page located.
// Return Value:
// none.
#define MI_GET_MODIFIED_PAGE_ANY_COLOR(PAGE,COLOR) \
{ \
if (MmTotalPagesForPagingFile == 0) { \
PAGE = MM_EMPTY_LIST; \
} else { \
PAGE = MmModifiedPageListByColor[COLOR].Flink; \
} \
}
//VOID
//MI_MAKE_VALID_PTE_WRITE_COPY (
// IN OUT PMMPTE PTE
// );
// Routine Description:
// This macro checks to see if the PTE indicates that the
// page is writable and if so it clears the write bit and
// sets the copy-on-write bit.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// None.
#define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \
if ((PPTE)->u.Hard.Write == 1) { \
(PPTE)->u.Hard.CopyOnWrite = 1; \
(PPTE)->u.Hard.Write = 0; \
}
//ULONG
//MI_DETERMINE_OWNER (
// IN MMPTE PPTE
// );
// Routine Description:
// This macro examines the virtual address of the PTE and determines
// if the PTE resides in system space or user space.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// 3 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
#if defined(_MIALT4K_)
#define MI_DETERMINE_OWNER(PPTE) \
((((((PPTE) >= (PMMPTE)PTE_UBASE) && ((PPTE) <= MiHighestUserPte))) || \
(MI_IS_ALT_PAGE_TABLE_ADDRESS(PPTE))) ? 3 : 0)
#else
#define MI_DETERMINE_OWNER(PPTE) \
((((PPTE) >= (PMMPTE)PTE_UBASE) && \
((PPTE) <= MiHighestUserPte)) ? 3 : 0)
#endif
//VOID
//MI_SET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro sets the ACCESSED field in the PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
#define MI_SET_ACCESSED_IN_PTE(PPTE,ACCESSED)
//ULONG
//MI_GET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro returns the state of the ACCESSED field in the PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The state of the ACCESSED field.
#define MI_GET_ACCESSED_IN_PTE(PPTE) 0
//VOID
//MI_SET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// IN ULONG OWNER
// );
// Routine Description:
// This macro sets the owner field in the PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// None.
#define MI_SET_OWNER_IN_PTE(PPTE,OWNER)
//ULONG
//MI_GET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro gets the owner field from the PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The state of the OWNER field.
#define MI_GET_OWNER_IN_PTE(PPTE) KernelMode
// bit mask to clear out fields in a PTE to or in prototype pte offset.
#define CLEAR_FOR_PROTO_PTE_ADDRESS ((ULONG)0x701)
// bit mask to clear out fields in a PTE to or in paging file location.
#define CLEAR_FOR_PAGE_FILE 0x000003E0
//VOID
//MI_SET_PAGING_FILE_INFO (
// OUT MMPTE OUTPTE,
// IN MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// Argments
// OUTPTE - Supplies the PTE in which to store the result.
// PTE - Supplies the PTE to operate upon.
// FILEINFO - Supplies the number of the paging file.
// OFFSET - Supplies the offset into the paging file.
// Return Value:
// None.
#define MI_SET_PAGING_FILE_INFO(OUTPTE,PTE,FILEINFO,OFFSET) \
(OUTPTE).u.Long = (((PTE).u.Soft.Protection << MM_PROTECT_FIELD_SHIFT) | \
((ULONGLONG)(FILEINFO) << _MM_PAGING_FILE_LOW_SHIFT) | \
((ULONGLONG)(OFFSET) << _MM_PAGING_FILE_HIGH_SHIFT));
//PMMPTE
//MiPteToProto (
// IN OUT MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
// Routine Description:
// This macro returns the address of the corresponding prototype which
// was encoded earlier into the supplied PTE.
// NOTE THAT AS PROTOPTE CAN ONLY RESIDE IN PAGED POOL!!!!!!
// MAX SIZE = 2^(2+7+21) = 2^30 = 1GB.
// NOTE, that the valid bit must be zero!
// Argments
// lpte - Supplies the PTE to operate upon.
// Return Value:
// Pointer to the prototype PTE that backs this PTE.
#define MiPteToProto(lpte) \
((PMMPTE) ((ULONG_PTR)((lpte)->u.Proto.ProtoAddress) + MmProtopte_Base))
//ULONG_PTR
//MiProtoAddressForPte (
// IN PMMPTE proto_va
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
// Argments
// proto_va - Supplies the address of the prototype PTE.
// Return Value:
// Mask to set into the PTE.
#define MiProtoAddressForPte(proto_va) \
(( (ULONGLONG)((ULONG_PTR)proto_va - MmProtopte_Base) << \
(_MM_PROTO_ADDRESS_SHIFT)) | MM_PTE_PROTOTYPE_MASK)
#define MISetProtoAddressForPte(PTE, proto_va) \
(PTE).u.Long = 0; \
(PTE).u.Proto.Prototype = 1; \
(PTE).u.Proto.ProtoAddress = (ULONG_PTR)proto_va - MmProtopte_Base;
//ULONG_PTR
//MiProtoAddressForKernelPte (
// IN PMMPTE proto_va
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
// This macro also sets any other information (such as global bits)
// required for kernel mode PTEs.
// Argments
// proto_va - Supplies the address of the prototype PTE.
// Return Value:
// Mask to set into the PTE.
// not different on x86.
#define MiProtoAddressForKernelPte(proto_va) MiProtoAddressForPte(proto_va)
#define MM_SUBSECTION_MAP (128*1024*1024)
//PSUBSECTION
//MiGetSubsectionAddress (
// IN PMMPTE lpte
// );
// Routine Description:
// This macro takes a PTE and returns the address of the subsection that
// the PTE refers to. Subsections are quadword structures allocated
// from nonpaged pool.
// NOTE THIS MACRO LIMITS THE SIZE OF NONPAGED POOL!
// MAXIMUM NONPAGED POOL = 2^(3+4+21) = 2^28 = 256mb.
// Argments
// lpte - Supplies the PTE to operate upon.
// Return Value:
// A pointer to the subsection referred to by the supplied PTE.
#define MiGetSubsectionAddress(lpte) \
(((lpte)->u.Subsect.WhichPool == 1) ? \
((PSUBSECTION)((ULONG_PTR)MmSubsectionBase + \
((ULONG_PTR)(lpte)->u.Subsect.SubsectionAddress))) \
: \
((PSUBSECTION)((ULONG_PTR)MM_NONPAGED_POOL_END - \
((ULONG_PTR)(lpte)->u.Subsect.SubsectionAddress))))
//ULONGLONG
//MiGetSubsectionAddressForPte (
// IN PSUBSECTION VA
// );
// Routine Description:
// This macro takes the address of a subsection and encodes it for use
// in a PTE.
// NOTE - THE SUBSECTION ADDRESS MUST BE QUADWORD ALIGNED!
// Argments
// VA - Supplies a pointer to the subsection to encode.
// Return Value:
// The mask to set into the PTE to make it reference the supplied
// subsetion.
#define MiGetSubsectionAddressForPte(VA) \
( ((ULONG_PTR)(VA) < (ULONG_PTR)KSEG2_BASE) ? \
( ((ULONGLONG)((ULONG_PTR)VA - (ULONG_PTR)MmSubsectionBase) \
<< (_MM_PTE_SUBSECTION_ADDRESS_SHIFT)) | 0x80) \
: \
((ULONGLONG)((ULONG_PTR)MM_NONPAGED_POOL_END - (ULONG_PTR)VA) \
<< (_MM_PTE_SUBSECTION_ADDRESS_SHIFT)) )
#define MiSetSubsectionAddressForPte(PTE, VA) \
(PTE).u.Long = 0; \
if ((ULONG_PTR)(VA) < (ULONG_PTR)KSEG2_BASE) { \
(PTE).u.Subsect.SubsectionAddress = (ULONG_PTR)VA - (ULONG_PTR)MmSubsectionBase; \
(PTE).u.Subsect.WhichPool = 1; \
} else { \
(PTE).u.Subsect.SubsectionAddress = (ULONG_PTR)MM_NONPAGED_POOL_END - (ULONG_PTR)VA; \
}
//ULONG
//MiGetPpeOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPpeOffset returns the offset into a page root
// for a given virtual address.
// Arguments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page root table the corresponding PPE is at.
// LWFIX: expand for 3-level
#define MiGetPpeOffset(va) ((ULONG)(((ULONG_PTR)(va) >> PDI1_SHIFT) & PDI_MASK))
//ULONG_PTR
//MiGetPdeOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPdeOffset returns the offset into a page directory
// for a given virtual address.
// Argments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page directory table the corresponding PDE is at.
#define MiGetPdeOffset(va) ((ULONG) (((ULONG_PTR)(va) >> PDI_SHIFT) & PDI_MASK))
//ULONG
//MiGetPpePdeOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPpePdeOffset returns the offset into a page directory
// for a given virtual address.
// N.B. This does not mask off PPE bits.
// Arguments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page directory (and parent) table the
// corresponding PDE is at.
#define MiGetPpePdeOffset(va) ((ULONG) ((ULONG_PTR)(va) >> PDI_SHIFT))
//ULONG_PTR
//MiGetPteOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPteOffset returns the offset into a page table page
// for a given virtual address.
// Argments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page table page table the corresponding PTE is at.
#define MiGetPteOffset(va) ((ULONG) (((ULONG_PTR)(va) >> PTI_SHIFT) & PDI_MASK))
//PVOID
//MiGetVirtualAddressMappedByPpe (
// IN PMMPTE PTE
// );
// Routine Description:
// MiGetVirtualAddressMappedByPpe returns the virtual address
// which is mapped by a given PPE address.
// Arguments
// PPE - Supplies the PPE to get the virtual address for.
// Return Value:
// Virtual address mapped by the PPE.
#define MiGetVirtualAddressMappedByPpe(PPE) \
MiGetVirtualAddressMappedByPte(MiGetVirtualAddressMappedByPde(PPE))
//PVOID
//MiGetVirtualAddressMappedByPde (
// IN PMMPTE PDE
// );
// Routine Description:
// MiGetVirtualAddressMappedByPde returns the virtual address
// which is mapped by a given PDE address.
// Arguments
// PDE - Supplies the PDE to get the virtual address for.
// Return Value:
// Virtual address mapped by the PDE.
#define MiGetVirtualAddressMappedByPde(Pde) \
MiGetVirtualAddressMappedByPte(MiGetVirtualAddressMappedByPte(Pde))
//PVOID
//MiGetVirtualAddressMappedByPte (
// IN PMMPTE PTE
// );
// Routine Description:
// MiGetVirtualAddressMappedByPte returns the virtual address
// which is mapped by a given PTE address.
// Argments
// PTE - Supplies the PTE to get the virtual address for.
// Return Value:
// Virtual address mapped by the PTE.
#ifdef _WIN64
#define MiGetVirtualAddressMappedByPte(PTE) \
(((ULONG_PTR)(PTE) & PTA_SIGN) ? \
(PVOID)(((ULONG_PTR)(PTE) & VRN_MASK) | VA_FILL | \
(((ULONG_PTR)(PTE)-PTE_BASE) << (PAGE_SHIFT - PTE_SHIFT))) : \
(PVOID)(((ULONG_PTR)(PTE) & VRN_MASK) | (((ULONG_PTR)(PTE)-PTE_BASE) << (PAGE_SHIFT - PTE_SHIFT))))
#else
#define MiGetVirtualAddressMappedByPte(PTE) ((PVOID)((ULONG_PTR)(PTE) << (PAGE_SHIFT - PTE_SHIFT)))
#endif
//LOGICAL
//MiIsVirtualAddressOnPpeBoundary (
// IN PVOID VA
// );
// Routine Description:
// MiIsVirtualAddressOnPpeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
// Arguments
// VA - Supplies the virtual address to check.
// Return Value:
// TRUE if on a boundary, FALSE if not.
#define MiIsVirtualAddressOnPpeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY1_MASK) == 0)
//LOGICAL
//MiIsVirtualAddressOnPdeBoundary (
// IN PVOID VA
// );
// Routine Description:
// MiIsVirtualAddressOnPdeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
// Arguments
// VA - Supplies the virtual address to check.
// Return Value:
// TRUE if on a 4MB PDE boundary, FALSE if not.
#define MiIsVirtualAddressOnPdeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY2_MASK) == 0)
//LOGICAL
//MiIsPteOnPpeBoundary (
// IN PVOID VA
// );
// Routine Description:
// MiIsPteOnPpeBoundary returns TRUE if the PTE is
// on a page directory parent entry boundary.
// Arguments
// VA - Supplies the virtual address to check.
// Return Value:
// TRUE if on a boundary, FALSE if not.
#define MiIsPteOnPpeBoundary(PTE) (((ULONG_PTR)(PTE) & (MM_VA_MAPPED_BY_PDE - 1)) == 0)
//LOGICAL
//MiIsPteOnPdeBoundary (
// IN PVOID PTE
// );
// Routine Description:
// MiIsPteOnPdeBoundary returns TRUE if the PTE is
// on a page directory entry boundary.
// Arguments
// PTE - Supplies the PTE to check.
// Return Value:
// TRUE if on a 8MB PDE boundary, FALSE if not.
#define MiIsPteOnPdeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_SIZE - 1)) == 0)
//ULONG
//GET_PAGING_FILE_NUMBER (
// IN MMPTE PTE
// );
// Routine Description:
// This macro extracts the paging file number from a PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The paging file number.
#define GET_PAGING_FILE_NUMBER(PTE) ((ULONG) (PTE).u.Soft.PageFileLow)
//ULONG
//GET_PAGING_FILE_OFFSET (
// IN MMPTE PTE
// );
// Routine Description:
// This macro extracts the offset into the paging file from a PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The paging file offset.
#define GET_PAGING_FILE_OFFSET(PTE) ((ULONG) (PTE).u.Soft.PageFileHigh)
//ULONG_PTR
//IS_PTE_NOT_DEMAND_ZERO (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro checks to see if a given PTE is NOT a demand zero PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// Returns 0 if the PTE is demand zero, non-zero otherwise.
#define IS_PTE_NOT_DEMAND_ZERO(PTE) \
((PTE).u.Long & ((ULONG_PTR)0xFFFFFFFFFFFFF000 | \
MM_PTE_VALID_MASK | \
MM_PTE_PROTOTYPE_MASK | \
MM_PTE_TRANSITION_MASK))
//VOID
//MI_MAKING_VALID_PTE_INVALID(
// IN PMMPTE PPTE
// );
// Routine Description:
// Prepare to make a single valid PTE invalid.
// No action is required on x86.
// Argments
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
// Return Value:
// None.
#define MI_MAKING_VALID_PTE_INVALID(SYSTEM_WIDE)
//VOID
//MI_MAKING_VALID_MULTIPLE_PTES_INVALID(
// IN PMMPTE PPTE
// );
// Routine Description:
// Prepare to make multiple valid PTEs invalid.
// No action is required on x86.
// Argments
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
// Return Value:
// None.
#define MI_MAKING_MULTIPLE_PTES_INVALID(SYSTEM_WIDE)
//VOID
//MI_MAKE_PROTECT_WRITE_COPY (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro makes a writable PTE a writeable-copy PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// NONE
#define MI_MAKE_PROTECT_WRITE_COPY(PTE) \
if ((PTE).u.Soft.Protection & MM_PROTECTION_WRITE_MASK) { \
(PTE).u.Long |= MM_PROTECTION_COPY_MASK << MM_PROTECT_FIELD_SHIFT; \
}
//VOID
//MI_SET_PAGE_DIRTY(
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
// Routine Description:
// This macro sets the dirty bit (and release page file space).
// Argments
// TEMP - Supplies a temporary for usage.
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
// VA - Supplies a the virtual address of the page fault.
// PFNHELD - Supplies TRUE if the PFN lock is held.
// Return Value:
// None.
#define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD) \
if ((PPTE)->u.Hard.Dirty == 1) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
}
//VOID
//MI_NO_FAULT_FOUND(
// IN TEMP,
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
// Routine Description:
// This macro handles the case when a page fault is taken and no
// PTE with the valid bit clear is found.
// Argments
// TEMP - Supplies a temporary for usage.
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
// VA - Supplies a the virtual address of the page fault.
// PFNHELD - Supplies TRUE if the PFN lock is held.
// Return Value:
// None.
#define MI_NO_FAULT_FOUND(TEMP,PPTE,VA,PFNHELD) \
if (StoreInstruction && ((PPTE)->u.Hard.Dirty == 0)) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
}
//ULONG_PTR
//MI_CAPTURE_DIRTY_BIT_TO_PFN (
// IN PMMPTE PPTE,
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro gets captures the state of the dirty bit to the PFN
// and frees any associated page file space if the PTE has been
// modified element.
// NOTE - THE PFN LOCK MUST BE HELD!
// Argments
// PPTE - Supplies the PTE to operate upon.
// PPFN - Supplies a pointer to the PFN database element that corresponds
// to the page mapped by the PTE.
// Return Value:
// None.
#define MI_CAPTURE_DIRTY_BIT_TO_PFN(PPTE,PPFN) \
ASSERT (KeGetCurrentIrql() > APC_LEVEL); \
if (((PPFN)->u3.e1.Modified == 0) && \
((PPTE)->u.Hard.Dirty != 0)) { \
(PPFN)->u3.e1.Modified = 1; \
if (((PPFN)->OriginalPte.u.Soft.Prototype == 0) && \
((PPFN)->u3.e1.WriteInProgress == 0)) { \
MiReleasePageFileSpace ((PPFN)->OriginalPte); \
(PPFN)->OriginalPte.u.Soft.PageFileHigh = 0; \
} \
}
//BOOLEAN
//MI_IS_PHYSICAL_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro deterines if a give virtual address is really a
// physical address.
// Argments
// VA - Supplies the virtual address.
// Return Value:
// FALSE if it is not a physical address, TRUE if it is.
#define MI_IS_PHYSICAL_ADDRESS(Va) \
((((ULONG_PTR)(Va) >= KSEG3_BASE) && ((ULONG_PTR)(Va) < KSEG3_LIMIT)) || \
(((ULONG_PTR)Va >= KSEG0_BASE) && ((ULONG_PTR)Va < KSEG2_BASE)))
//ULONG_PTR
//MI_CONVERT_PHYSICAL_TO_PFN (
// IN PVOID VA
// );
// Routine Description:
// This macro converts a physical address (see MI_IS_PHYSICAL_ADDRESS)
// to its corresponding physical frame number.
// Argments
// VA - Supplies a pointer to the physical address.
// Return Value:
// Returns the PFN for the page.
PVOID KiGetPhysicalAddress(
IN PVOID VirtualAddress
);
#define MI_CONVERT_PHYSICAL_TO_PFN(Va) \
(((ULONG_PTR)(Va) < KSEG0_BASE) ? \
((PFN_NUMBER)(((ULONG_PTR)(Va) - KSEG3_BASE) >> PAGE_SHIFT)) : \
((PFN_NUMBER)(((ULONG_PTR)KiGetPhysicalAddress(Va)) >> PAGE_SHIFT)))
typedef struct _MMCOLOR_TABLES {
PFN_NUMBER Flink;
PVOID Blink;
} MMCOLOR_TABLES, *PMMCOLOR_TABLES;
typedef struct _MMPRIMARY_COLOR_TABLES {
LIST_ENTRY ListHead;
} MMPRIMARY_COLOR_TABLES, *PMMPRIMARY_COLOR_TABLES;
#if MM_MAXIMUM_NUMBER_OF_COLORS > 1
extern MMPFNLIST MmFreePagesByPrimaryColor[2][MM_MAXIMUM_NUMBER_OF_COLORS];
#endif
extern PMMCOLOR_TABLES MmFreePagesByColor[2];
extern ULONG MmTotalPagesForPagingFile;
// A VALID Page Table Entry on an Intel IA64 has the following definition.
#define _MM_PAGING_FILE_LOW_SHIFT 28
#define _MM_PAGING_FILE_HIGH_SHIFT 32
#define MI_PTE_LOOKUP_NEEDED ((ULONG64)0xffffffff)
typedef struct _MMPTE_SOFTWARE {
ULONGLONG Valid : 1;
ULONGLONG Prototype : 1;
ULONGLONG Protection : 5;
ULONGLONG Transition : 1;
ULONGLONG UsedPageTableEntries : PTE_PER_PAGE_BITS;
ULONGLONG Reserved : 20 - PTE_PER_PAGE_BITS;
ULONGLONG PageFileLow: 4;
ULONGLONG PageFileHigh : 32;
} MMPTE_SOFTWARE;
typedef struct _MMPTE_TRANSITION {
ULONGLONG Valid : 1;
ULONGLONG Prototype : 1;
ULONGLONG Protection : 5;
ULONGLONG Transition : 1;
ULONGLONG Rsvd0 : PAGE_SHIFT - 8;
ULONGLONG PageFrameNumber : 50 - PAGE_SHIFT;
ULONGLONG Rsvd1 : 14;
} MMPTE_TRANSITION;
#define _MM_PROTO_ADDRESS_SHIFT 12
typedef struct _MMPTE_PROTOTYPE {
ULONGLONG Valid : 1;
ULONGLONG Prototype : 1;
ULONGLONG ReadOnly : 1; // if set allow read only access.
ULONGLONG Rsvd : 9;
ULONGLONG ProtoAddress : 52;
} MMPTE_PROTOTYPE;
#define _MM_PTE_SUBSECTION_ADDRESS_SHIFT 12
typedef struct _MMPTE_SUBSECTION {
ULONGLONG Valid : 1;
ULONGLONG Prototype : 1;
ULONGLONG Protection : 5;
ULONGLONG WhichPool : 1;
ULONGLONG Rsvd : 4;
ULONGLONG SubsectionAddress : 52;
} MMPTE_SUBSECTION;
typedef struct _MMPTE_LIST {
ULONGLONG Valid : 1;
ULONGLONG OneEntry : 1;
ULONGLONG filler10 : 10;
ULONGLONG NextEntry : 32;
ULONGLONG Rsvd : 20;
} MMPTE_LIST;
// A Page Table Entry on an Intel IA64 has the following definition.
#define _HARDWARE_PTE_WORKING_SET_BITS 11
typedef struct _MMPTE_HARDWARE {
ULONGLONG Valid : 1;
ULONGLONG Rsvd0 : 1;
ULONGLONG Cache : 3;
ULONGLONG Accessed : 1;
ULONGLONG Dirty : 1;
ULONGLONG Owner : 2;
ULONGLONG Execute : 1;
ULONGLONG Write : 1;
ULONGLONG Rsvd1 : PAGE_SHIFT - 12;
ULONGLONG CopyOnWrite : 1;
ULONGLONG PageFrameNumber : 50 - PAGE_SHIFT;
ULONGLONG Rsvd2 : 2;
ULONGLONG Exception : 1;
ULONGLONG SoftwareWsIndex : _HARDWARE_PTE_WORKING_SET_BITS;
} MMPTE_HARDWARE, *PMMPTE_HARDWARE;
typedef struct _MMPTE_LARGEPAGE {
ULONGLONG Valid : 1;
ULONGLONG Rsvd0 : 1;
ULONGLONG Cache : 3;
ULONGLONG Accessed : 1;
ULONGLONG Dirty : 1;
ULONGLONG Owner : 2;
ULONGLONG Execute : 1;
ULONGLONG Write : 1;
ULONGLONG Rsvd1 : PAGE_SHIFT - 12;
ULONGLONG CopyOnWrite : 1;
ULONGLONG PageFrameNumber : 50 - PAGE_SHIFT;
ULONGLONG Rsvd2 : 2;
ULONGLONG Exception : 1;
ULONGLONG Rsvd3 : 1;
ULONGLONG LargePage : 1;
ULONGLONG PageSize : 6;
ULONGLONG Rsvd4 : 3;
} MMPTE_LARGEPAGE, *PMMPTE_LARGEPAGE;
typedef struct _ALT_4KPTE {
ULONGLONG Commit : 1;
ULONGLONG Rsvd0 : 1;
ULONGLONG Cache : 3;
ULONGLONG Accessed : 1;
ULONGLONG Dirty : 1;
ULONGLONG Owner : 2;
ULONGLONG Execute : 1;
ULONGLONG Write : 1;
ULONGLONG Rsvd1 : 1;
ULONGLONG PteOffset : 32;
ULONGLONG Rsvd2 : 8;
ULONGLONG Exception : 1;
ULONGLONG Protection : 5;
ULONGLONG Lock : 1;
ULONGLONG FillZero : 1;
ULONGLONG NoAccess : 1;
ULONGLONG CopyOnWrite : 1;
ULONGLONG PteIndirect : 1;
ULONGLONG Private : 1;
} ALT_4KPTE, *PALT_4KPTE;
#define MI_GET_PAGE_FRAME_FROM_PTE(PTE) ((ULONG)((PTE)->u.Hard.PageFrameNumber))
#define MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(PTE) ((ULONG)((PTE)->u.Trans.PageFrameNumber))
#define MI_GET_PROTECTION_FROM_SOFT_PTE(PTE) ((ULONG)((PTE)->u.Soft.Protection))
#define MI_GET_PROTECTION_FROM_TRANSITION_PTE(PTE) ((ULONG)((PTE)->u.Trans.Protection))
typedef struct _MMPTE {
union {
ULONGLONG Long;
MMPTE_HARDWARE Hard;
MMPTE_LARGEPAGE Large;
HARDWARE_PTE Flush;
MMPTE_PROTOTYPE Proto;
MMPTE_SOFTWARE Soft;
MMPTE_TRANSITION Trans;
MMPTE_SUBSECTION Subsect;
MMPTE_LIST List;
ALT_4KPTE Alt;
} u;
} MMPTE;
typedef MMPTE *PMMPTE;
//VOID
//MI_WRITE_VALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
// Routine Description:
// MI_WRITE_VALID_PTE fills in the specified PTE making it valid with the
// specified contents.
// Arguments
// PointerPte - Supplies a PTE to fill.
// PteContents - Supplies the contents to put in the PTE.
// Return Value:
// None.
#define MI_WRITE_VALID_PTE(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//VOID
//MI_WRITE_INVALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
// Routine Description:
// MI_WRITE_INVALID_PTE fills in the specified PTE making it invalid with the
// specified contents.
// Arguments
// PointerPte - Supplies a PTE to fill.
// PteContents - Supplies the contents to put in the PTE.
// Return Value:
// None.
#define MI_WRITE_INVALID_PTE(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//VOID
//MI_WRITE_VALID_PTE_NEW_PROTECTION (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
// Routine Description:
// MI_WRITE_VALID_PTE_NEW_PROTECTION fills in the specified PTE (which was
// already valid) changing only the protection or the dirty bit.
// Arguments
// PointerPte - Supplies a PTE to fill.
// PteContents - Supplies the contents to put in the PTE.
// Return Value:
// None.
#define MI_WRITE_VALID_PTE_NEW_PROTECTION(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
// For EM build, need to export this function to ps/psldt.c
extern PVOID
MiCreatePebOrTeb (
IN PEPROCESS TargetProcess,
IN ULONG Size
);
//VOID
//MiFillMemoryPte (
// IN PMMPTE Destination,
// IN ULONG Length,
// IN MMPTE Pattern,
// };
// Routine Description:
// This function fills memory with the specified PTE pattern.
// Arguments
// Destination - Supplies a pointer to the memory to fill.
// Length - Supplies the length, in bytes, of the memory to be
// filled.
// Pattern - Supplies the PTE fill pattern.
// Return Value:
// None.
#define MiFillMemoryPte(Destination, Length, Pattern) \
RtlFillMemoryUlonglong ((Destination), (Length), (Pattern))
#define KiWbInvalidateCache
//BOOLEAN
//MI_IS_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro determines if a given virtual address is really a
// page table address (PTE, PDE, PPE).
// Arguments
// VA - Supplies the virtual address.
// Return Value:
// FALSE if it is not a page table address, TRUE if it is.
#if defined(_MIALT4K_)
#define MI_IS_PAGE_TABLE_ADDRESS(VA) \
((((ULONG_PTR)VA >= PTE_UBASE) && ((ULONG_PTR)VA <= (PDE_UTBASE + PAGE_SIZE))) || \
(((ULONG_PTR)VA >= PTE_KBASE) && ((ULONG_PTR)VA <= (PDE_KTBASE + PAGE_SIZE))) || \
(((ULONG_PTR)VA >= PTE_SBASE) && ((ULONG_PTR)VA <= (PDE_STBASE + PAGE_SIZE))) || \
(((ULONG_PTR)VA >= ALT4KB_PERMISSION_TABLE_START) && \
((ULONG_PTR)VA <= ALT4KB_PERMISSION_TABLE_END)))
#else
#define MI_IS_PAGE_TABLE_ADDRESS(VA) \
((((ULONG_PTR)VA >= PTE_UBASE) && ((ULONG_PTR)VA <= (PDE_UTBASE + PAGE_SIZE))) || \
(((ULONG_PTR)VA >= PTE_KBASE) && ((ULONG_PTR)VA <= (PDE_KTBASE + PAGE_SIZE))) || \
(((ULONG_PTR)VA >= PTE_SBASE) && ((ULONG_PTR)VA <= (PDE_STBASE + PAGE_SIZE))))
#endif
//BOOLEAN
//MI_IS_HYPER_SPACE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro determines if a given virtual address resides in
// the hyper space.
// Arguments
// VA - Supplies the virtual address.
// Return Value:
// FALSE if it is not a hyper space address, TRUE if it is.
#define MI_IS_HYPER_SPACE_ADDRESS(VA) \
(((ULONG_PTR)VA >= (ULONG_PTR)HYPER_SPACE) && ((ULONG_PTR)VA <= HYPER_SPACE_END))
//BOOLEAN
//MI_IS_PTE_ADDRESS (
// IN PMMPTE PTE
// );
// Routine Description:
// This macro determines if a given virtual address is really a
// page table page (PTE) address.
// Arguments
// PTE - Supplies the PTE virtual address.
// Return Value:
// FALSE if it is not a PTE address, TRUE if it is.
#define MI_IS_PTE_ADDRESS(PTE) \
(((PTE >= (PMMPTE)PTE_UBASE) && (PTE <= (PMMPTE)PTE_UTOP)) || \
((PTE >= (PMMPTE)PTE_KBASE) && (PTE <= (PMMPTE)PTE_KTOP)) || \
((PTE >= (PMMPTE)PTE_SBASE) && (PTE <= (PMMPTE)PTE_STOP)))
#define MI_IS_PPE_ADDRESS(PTE) \
(((PTE >= (PMMPTE)PDE_UTBASE) && (PTE <= (PMMPTE)(PDE_UTBASE + PAGE_SIZE))) || \
((PTE >= (PMMPTE)PDE_KTBASE) && (PTE <= (PMMPTE)(PDE_KTBASE + PAGE_SIZE))) || \
((PTE >= (PMMPTE)PDE_STBASE) && (PTE <= (PMMPTE)(PDE_STBASE + PAGE_SIZE))))
//BOOLEAN
//MI_IS_KERNEL_PTE_ADDRESS (
// IN PMMPTE PTE
// );
// Routine Description:
// This macro determines if a given virtual address is really a
// kernel page table page (PTE) address.
// Arguments
// PTE - Supplies the PTE virtual address.
// Return Value:
// FALSE if it is not a kernel PTE address, TRUE if it is.
#define MI_IS_KERNEL_PTE_ADDRESS(PTE) \
(((PMMPTE)PTE >= (PMMPTE)PTE_KBASE) && ((PMMPTE)PTE <= (PMMPTE)PTE_KTOP))
//BOOLEAN
//MI_IS_USER_PTE_ADDRESS (
// IN PMMPTE PTE
// );
// Routine Description:
// This macro determines if a given virtual address is really a
// page table page (PTE) address.
// Arguments
// PTE - Supplies the PTE virtual address.
// Return Value:
// FALSE if it is not a PTE address, TRUE if it is.
#define MI_IS_USER_PTE_ADDRESS(PTE) \
((PTE >= (PMMPTE)PTE_UBASE) && (PTE <= (PMMPTE)PTE_UTOP))
//BOOLEAN
//MI_IS_PAGE_DIRECTORY_ADDRESS (
// IN PMMPTE PDE
// );
// Routine Description:
// This macro determines if a given virtual address is really a
// page directory page (PDE) address.
// Arguments
// PDE - Supplies the virtual address.
// Return Value:
// FALSE if it is not a PDE address, TRUE if it is.
#define MI_IS_PAGE_DIRECTORY_ADDRESS(PDE) \
(((PDE >= (PMMPTE)PDE_UBASE) && (PDE <= (PMMPTE)PDE_UTOP)) || \
((PDE >= (PMMPTE)PDE_KBASE) && (PDE <= (PMMPTE)PDE_KTOP)) || \
((PDE >= (PMMPTE)PDE_SBASE) && (PDE <= (PMMPTE)PDE_STOP)))
//BOOLEAN
//MI_IS_USER_PDE_ADDRESS (
// IN PMMPTE PDE
// );
// Routine Description:
// This macro determines if a given virtual address is really a
// user page directory page (PDE) address.
// Arguments
// PDE - Supplies the PDE virtual address.
// Return Value:
// FALSE if it is not a user PDE address, TRUE if it is.
#define MI_IS_USER_PDE_ADDRESS(PDE) \
((PDE >= (PMMPTE)PDE_UBASE) && (PDE <= (PMMPTE)PDE_UTOP))
//BOOLEAN
//MI_IS_KERNEL_PDE_ADDRESS (
// IN PMMPTE PDE
// );
// Routine Description:
// This macro determines if a given virtual address is really a
// kernel page directory page (PDE) address.
// Arguments
// PDE - Supplies the PDE virtual address.
// Return Value:
// FALSE if it is not a user PDE address, TRUE if it is.
#define MI_IS_KERNEL_PDE_ADDRESS(PDE) \
((PDE >= (PMMPTE)PDE_KBASE) && (PDE <= (PMMPTE)PDE_KTOP))
//BOOLEAN
//MI_IS_PROCESS_SPACE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro determines if a given virtual address resides in
// the per-process space.
// Arguments
// VA - Supplies the virtual address.
// Return Value:
// FALSE if it is not a per-process address, TRUE if it is.
#define MI_IS_PROCESS_SPACE_ADDRESS(VA) (((ULONG_PTR)VA >> 61) == UREGION_INDEX)
//BOOLEAN
//MI_IS_SYSTEM_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro determines if a given virtual address resides in
// the system (global) space.
// Arguments
// VA - Supplies the virtual address.
// Return Value:
// FALSE if it is not a system (global) address, TRUE if it is.
#define MI_IS_SYSTEM_ADDRESS(VA) (((ULONG_PTR)VA >> 61) == KREGION_INDEX)
// Generate kernel segment physical address
//PVOID
//MiGetKSegAddress (
// PFN_NUMBER FrameNumber
// );
//PVOID
//KSEG_ADDRESS (
// IN ULONG PAGE
// );
// Routine Description:
// This macro returns a KSEG virtual address which maps the page.
// Arguments:
// PAGE - Supplies the physical page frame number
// Return Value:
// The address of the KSEG address
// #define KSEG_ADDRESS(PAGE) ((PVOID)(KSEG3_BASE | ((ULONG_PTR)(PAGE) << PAGE_SHIFT)))
// #define KSEG_ADDRESS(PAGE) MiGetKSegAddress ((ULONG)PAGE)
//PVOID
//KSEG0_ADDRESS (
// IN ULONG PAGE
// );
// Routine Description:
// This macro returns a KSEG0 virtual address which maps the page.
// Arguments:
// PAGE - Supplies the physical page frame number
// Return Value:
// The address of the KSEG address
#define KSEG0_ADDRESS(PAGE) \
(PVOID)(KSEG0_BASE | ((PAGE) << PAGE_SHIFT))
extern MMPTE ValidPpePte;
extern PFN_NUMBER MmSystemParentTablePage;
//PMMPTE
//MiGetPpeAddress (
// IN PVOID va
// );
// Routine Description:
// MiGetPpeAddress returns the address of the page directory parent entry
// which maps the given virtual address. This is one level above the
// page directory.
// Arguments
// Va - Supplies the virtual address to locate the PPE for.
// Return Value:
// The address of the PPE. // LWFIX: expand for 3 level
#if PTE_THASH
__inline
PMMPTE
MiGetPpeAddress_XX(
IN PVOID Va
)
{
if (((ULONG_PTR)(Va) & PTE_BASE) == PTE_BASE) {
return ((PMMPTE)(((ULONG_PTR)Va & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))));
} else {
return ((PMMPTE)(__thash(__thash(__thash((ULONG_PTR)Va)))));
}
}
#define MiGetPpeAddress(va) MiGetPpeAddress_XX((PVOID)(va))
#else
#define MiGetPpeAddress(Va) \
(((((ULONG_PTR)(Va)) & PTE_BASE) == PTE_BASE) ? \
((PMMPTE)((((ULONG_PTR)(Va)) & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE)))) :\
((PMMPTE)(((((ULONG_PTR)(Va)) & VRN_MASK)) | \
((((((ULONG_PTR)(Va)) >> PDI1_SHIFT) << PTE_SHIFT) & \
(~(PDE_TBASE|VRN_MASK)) ) + PDE_TBASE))))
#endif
//MiGetPdeAddress (
// IN PVOID va
// );
// Routine Description:
// MiGetPdeAddress returns the address of the PDE which maps the
// given virtual address.
// Argments
// Va - Supplies the virtual address to locate the PDE for.
// Return Value:
// The address of the PDE.
#if PTE_THASH
__inline
PMMPTE
MiGetPdeAddress_XX(
IN PVOID Va
)
{
if (((ULONG_PTR)(Va) & PDE_BASE) == PDE_BASE) {
return ((PMMPTE)(((ULONG_PTR)Va & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))));
} else {
return ((PMMPTE)(__thash(__thash((ULONG_PTR)(Va)))));
}
}
#define MiGetPdeAddress(va) MiGetPdeAddress_XX((PVOID)(va))
#else
#define MiGetPdeAddress(Va) \
(((((ULONG_PTR)(Va)) & PDE_BASE) == PDE_BASE) ? \
((PMMPTE)((((ULONG_PTR)(Va)) & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE)))) :\
((PMMPTE)(((((ULONG_PTR)(Va)) & VRN_MASK)) | \
((((((ULONG_PTR)(Va)) >> PDI_SHIFT) << PTE_SHIFT) & (~(PDE_BASE|VRN_MASK))) + PDE_BASE))))
#endif
//PMMPTE
//MiGetPteAddress (
// IN PVOID va
// );
// Routine Description:
// MiGetPteAddress returns the address of the PTE which maps the
// given virtual address.
// Argments
// Va - Supplies the virtual address to locate the PTE for.
// Return Value:
// The address of the PTE.
#if PTE_THASH
__inline
PMMPTE
MiGetPteAddress_XX(
IN PVOID Va
)
{
if (((ULONG_PTR)(Va) & PDE_TBASE) == PDE_TBASE) {
return ((PMMPTE)(((ULONG_PTR)Va & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE))));
} else {
return ((PMMPTE)(__thash((ULONG_PTR)(Va))));
}
}
#define MiGetPteAddress(va) MiGetPteAddress_XX((PVOID)(va))
#else
#define MiGetPteAddress(Va) \
(((((ULONG_PTR)(Va)) & PDE_TBASE) == PDE_TBASE) ? \
((PMMPTE)((((ULONG_PTR)(Va)) & VRN_MASK) | (PDE_TBASE + PAGE_SIZE - sizeof(MMPTE)))) :\
((PMMPTE)(((((ULONG_PTR)(Va)) & VRN_MASK)) | \
((((((ULONG_PTR)(Va)) >> PTI_SHIFT) << PTE_SHIFT) & (~(PTE_BASE|VRN_MASK))) + PTE_BASE))))
#endif
#define MI_IS_PTE_PROTOTYPE(PointerPte) (!MI_IS_USER_PTE_ADDRESS (PointerPte))
//BOOLEAN
//MI_IS_SYSTEM_CACHE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro takes a virtual address and determines if
// it is a system cache address.
// Arguments
// VA - Supplies a virtual address.
// Return Value:
// TRUE if the address is in the system cache, FALSE if not.
#define MI_IS_SYSTEM_CACHE_ADDRESS(VA) \
(((PVOID)(VA) >= (PVOID)MmSystemCacheStart && \
(PVOID)(VA) <= (PVOID)MmSystemCacheEnd))
#if defined(_MIALT4K_)
// Define constants and macros for alternate 4kb table.
// These are constants and defines that mimic the PAGE_SIZE constant but are
// hard coded to use 4K page values.
#define PAGE_4K 4096
#define PAGE_4K_SHIFT 12
#define PAGE_4K_MASK (PAGE_4K - 1)
#define PAGE_4K_ALIGN(Va) ((PVOID)((ULONG_PTR)(Va) & ~(PAGE_4K - 1)))
#define ROUND_TO_4K_PAGES(Size) (((ULONG_PTR)(Size) + PAGE_4K - 1) & ~(PAGE_4K - 1))
#define PAGE_NEXT_ALIGN(Va) ((PVOID)(PAGE_ALIGN((ULONG_PTR)Va + PAGE_SIZE - 1)))
#define BYTES_TO_4K_PAGES(Size) ((ULONG)((ULONG_PTR)(Size) >> PAGE_4K_SHIFT) + \
(((ULONG)(Size) & (PAGE_4K - 1)) != 0))
// Relative constants between native pages and 4K pages
#define SPLITS_PER_PAGE (PAGE_SIZE / PAGE_4K)
#define PAGE_SHIFT_DIFF (PAGE_SHIFT - PAGE_4K_SHIFT)
#define ALT_PTE_SHIFT 3
#define ALT_PROTECTION_MASK (MM_PTE_EXECUTE_MASK|MM_PTE_WRITE_MASK)
#define MiGetAltPteAddress(VA) \
((PMMPTE) (ALT4KB_PERMISSION_TABLE_START + \
((((ULONG_PTR) (VA)) >> PAGE_4K_SHIFT) << ALT_PTE_SHIFT)))
// define Alternate 4k table flags
#define MI_ALTFLG_FLUSH2G 0x0000000000000001
// define MiProtectFor4kPage flages
#define ALT_ALLOCATE 1
#define ALT_COMMIT 2
#define ALT_CHANGE 4
// define ATE protection bits
#define MM_ATE_COMMIT 0x0000000000000001
#define MM_ATE_ACCESS 0x0000000000000020
#define MM_ATE_READONLY 0x0000000000000200
#define MM_ATE_EXECUTE 0x0400000000000200
#define MM_ATE_EXECUTE_READ 0x0400000000000200
#define MM_ATE_READWRITE 0x0000000000000600
#define MM_ATE_WRITECOPY 0x0020000000000200
#define MM_ATE_EXECUTE_READWRITE 0x0400000000000600
#define MM_ATE_EXECUTE_WRITECOPY 0x0420000000000400
#define MM_ATE_ZEROFILL 0x0800000000000000
#define MM_ATE_NOACCESS 0x1000000000000000
#define MM_ATE_COPY_ON_WRITE 0x2000000000000000
#define MM_ATE_PRIVATE 0x8000000000000000
#define MM_ATE_PROTO_MASK 0x0000000000000621
// How big is the IA32 subsystem allowed?
// Assume it will be "not Large Address Aware" so limited to 2G
#define _MAX_WOW64_ADDRESS (0x00000000080000000UI64)
MmX86Fault (
IN BOOLEAN StoreInstruction,
IN PVOID VirtualAddress,
IN KPROCESSOR_MODE PreviousMode,
IN PVOID TrapInformation
);
VOID
MiProtectFor4kPage(
IN PVOID Base,
IN SIZE_T Size,
IN ULONG NewProtect,
IN ULONG Flags,
IN PEPROCESS Process
);
VOID
MiProtectMapFileFor4kPage(
IN PVOID Base,
IN SIZE_T Size,
IN ULONG NewProtect,
IN PMMPTE PointerPte,
IN PEPROCESS Process
);
VOID
MiProtectImageFileFor4kPage(
IN PVOID Base,
IN SIZE_T Size,
IN PMMPTE PointerPte,
IN PEPROCESS Process
);
VOID
MiReleaseFor4kPage(
IN PVOID StartVirtual,
IN PVOID EndVirtual,
IN PEPROCESS Process
);
VOID
MiDecommitFor4kPage(
IN PVOID StartVirtual,
IN PVOID EndVirtual,
IN PEPROCESS Process
);
VOID
MiDeleteFor4kPage(
IN PVOID StartVirtual,
IN PVOID EndVirtual,
IN PEPROCESS Process
);
VOID
MiQueryRegionFor4kPage(
IN PVOID BaseAddress,
IN PVOID EndAddress,
IN OUT PSIZE_T RegionSize,
IN OUT PULONG RegionState,
IN OUT PULONG RegionProtect,
IN PEPROCESS Process
);
ULONG
MiQueryProtectionFor4kPage (
IN PVOID BaseAddress,
IN PEPROCESS Process
);
NTSTATUS
MiInitializeAlternateTable(
PEPROCESS Process
);
VOID
MiDeleteAlternateTable(
PEPROCESS Process
);
VOID
MiLockFor4kPage(
PVOID CapturedBase,
SIZE_T CapturedRegionSize,
PEPROCESS Process
);
NTSTATUS
MiUnlockFor4kPage(
PVOID CapturedBase,
SIZE_T CapturedRegionSize,
PEPROCESS Process
);
BOOLEAN
MiShouldBeUnlockedFor4kPage(
PVOID VirtualAddress,
PEPROCESS Process
);
VOID
MiMarkSplitPages(
IN PVOID StartVirtual,
IN PVOID EndVirtual,
IN PULONG Bitmap,
IN BOOLEAN SetBit
);
ULONG
MiMakeProtectForNativePage(
IN PVOID VirtualAddress,
IN ULONG NewProtect,
IN PEPROCESS Process
);
extern ULONG MmProtectToPteMaskForIA32[32];
extern ULONG MmProtectToPteMaskForSplit[32];
extern ULONGLONG MmProtectToAteMask[32];
#define MiMakeProtectionAteMask(NewProtect) MmProtectToAteMask[NewProtect]
#define _ALTPERM_BITMAP_MASK ((_MAX_WOW64_ADDRESS - 1) >> PTI_SHIFT)
#if 1
#define MI_MAKE_VALID_PTE(OUTPTE,FRAME,PMASK,PPTE) \
(OUTPTE).u.Long = 0; \
(OUTPTE).u.Hard.Valid = 1; \
(OUTPTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED; \
(OUTPTE).u.Hard.Exception = 1; \
(OUTPTE).u.Hard.PageFrameNumber = FRAME; \
(OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \
{ \
PWOW64_PROCESS _Wow64Process = PsGetCurrentProcess()->Wow64Process; \
if ((_Wow64Process != NULL) && \
((PPTE >= (PMMPTE)PTE_UBASE) && \
(PPTE < MiGetPteAddress(_MAX_WOW64_ADDRESS)))) { \
if (MI_CHECK_BIT(_Wow64Process->AltPermBitmap, \
((ULONG_PTR)PPTE >> PTE_SHIFT) & _ALTPERM_BITMAP_MASK) != 0) { \
(OUTPTE).u.Long |= (MmProtectToPteMaskForSplit[PMASK]); \
} else { \
(OUTPTE).u.Long |= (MmProtectToPteMaskForIA32[PMASK]); \
(OUTPTE).u.Hard.Accessed = 1; \
} \
} else { \
(OUTPTE).u.Hard.Accessed = 1; \
(OUTPTE).u.Long |= (MmProtectToPteMask[PMASK]);\
}\
}
#define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) \
ASSERT (((PPTE)->u.Hard.Valid == 0) && \
((PPTE)->u.Trans.Prototype == 0) && \
((PPTE)->u.Trans.Transition == 1)); \
(OUTPTE).u.Long = (PPTE)->u.Long & 0x1FFFFFFFE000; \
(OUTPTE).u.Hard.Valid = 1; \
(OUTPTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED; \
(OUTPTE).u.Hard.Exception = 1; \
(OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \
{ \
PWOW64_PROCESS _Wow64Process = PsGetCurrentProcess()->Wow64Process; \
if ((_Wow64Process != NULL) && \
((PPTE >= (PMMPTE)PTE_UBASE) && \
(PPTE < MiGetPteAddress(_MAX_WOW64_ADDRESS)))) { \
if (MI_CHECK_BIT(_Wow64Process->AltPermBitmap, \
((ULONG_PTR)PPTE >> PTE_SHIFT) & _ALTPERM_BITMAP_MASK) != 0) { \
(OUTPTE).u.Long |= (MmProtectToPteMaskForSplit[(PPTE)->u.Trans.Protection]); \
} else { \
(OUTPTE).u.Long |= (MmProtectToPteMaskForIA32[(PPTE)->u.Trans.Protection]); \
(OUTPTE).u.Hard.Accessed = 1; \
} \
} else { \
(OUTPTE).u.Hard.Accessed = 1; \
(OUTPTE).u.Long |=(MmProtectToPteMask[(PPTE)->u.Trans.Protection]);\
}\
}
#else
#define MI_MAKE_VALID_PTE(OUTPTE,FRAME,PMASK,PPTE) \
(OUTPTE).u.Long = 0; \
(OUTPTE).u.Hard.Valid = 1; \
(OUTPTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED; \
(OUTPTE).u.Hard.Exception = 1; \
(OUTPTE).u.Hard.PageFrameNumber = FRAME; \
(OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \
{ \
PWOW64_PROCESS _Wow64Process = PsGetCurrentProcess()->Wow64Process; \
if ((_Wow64Process != NULL) && \
((PPTE >= (PMMPTE)PTE_UBASE) && \
(PPTE < MiGetPteAddress(_MAX_WOW64_ADDRESS)))) { \
(OUTPTE).u.Long |= MM_PTE_READONLY; \
} else { \
(OUTPTE).u.Hard.Accessed = 1; \
(OUTPTE).u.Long |= (MmProtectToPteMask[PMASK]);\
}\
}
#define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) \
ASSERT (((PPTE)->u.Hard.Valid == 0) && \
((PPTE)->u.Trans.Prototype == 0) && \
((PPTE)->u.Trans.Transition == 1)); \
(OUTPTE).u.Long = (PPTE)->u.Long & 0x1FFFFFFFE000; \
(OUTPTE).u.Hard.Valid = 1; \
(OUTPTE).u.Hard.Cache = MM_PTE_CACHE_ENABLED; \
(OUTPTE).u.Hard.Exception = 1; \
(OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \
{ \
PWOW64_PROCESS _Wow64Process = PsGetCurrentProcess()->Wow64Process; \
if ((_Wow64Process != NULL) && \
((PPTE >= (PMMPTE)PTE_UBASE) && \
(PPTE < MiGetPteAddress(_MAX_WOW64_ADDRESS)))) { \
(OUTPTE).u.Long |= MM_PTE_READONLY; \
} else { \
(OUTPTE).u.Hard.Accessed = 1; \
(OUTPTE).u.Long |=(MmProtectToPteMask[(PPTE)->u.Trans.Protection]);\
}\
}
#endif
#define LOCK_ALTERNATE_TABLE(PWOW64) \
ExAcquireFastMutex( &(PWOW64)->AlternateTableLock)
#define UNLOCK_ALTERNATE_TABLE(PWOW64) \
ExReleaseFastMutex(&(PWOW64)->AlternateTableLock)
#define MI_IS_ALT_PAGE_TABLE_ADDRESS(PPTE) \
(((PPTE) >= (PMMPTE)ALT4KB_PERMISSION_TABLE_START) && \
((PPTE) < (PMMPTE)ALT4KB_PERMISSION_TABLE_END))
#endif
//VOID
//MI_BARRIER_SYNCHRONIZE (
// IN ULONG TimeStamp
// );
// Routine Description:
// MI_BARRIER_SYNCHRONIZE compares the argument timestamp against the
// current IPI barrier sequence stamp. When equal, all processors will
// issue memory barriers to ensure that newly created pages remain coherent.
// When a page is put in the zeroed or free page list the current
// barrier sequence stamp is read (interlocked - this is necessary
// to get the correct value - memory barriers won't do the trick)
// and stored in the pfn entry for the page. The current barrier
// sequence stamp is maintained by the IPI send logic and is
// incremented (interlocked) when the target set of an IPI send
// includes all processors, but the one doing the send. When a page
// is needed its sequence number is compared against the current
// barrier sequence number. If it is equal, then the contents of
// the page may not be coherent on all processors, and an IPI must
// be sent to all processors to ensure a memory barrier is
// executed (generic call can be used for this). Sending the IPI
// automatically updates the barrier sequence number. The compare
// is for equality as this is the only value that requires the IPI
// (i.e., the sequence number wraps, values in both directions are
// older). When a page is removed in this fashion and either found
// to be coherent or made coherent, it cannot be modified between
// that time and writing the PTE. If the page is modified between
// these times, then an IPI must be sent.
// Arguments
// TimeStamp - Supplies the timestamp at the time when the page was zeroed.
// Return Value:
// None.
// currently does nothing on MERCED.
#define MI_BARRIER_SYNCHRONIZE(TimeStamp)
//VOID
//MI_BARRIER_STAMP_ZEROED_PAGE (
// IN PULONG PointerTimeStamp
// );
// Routine Description:
// MI_BARRIER_STAMP_ZEROED_PAGE issues an interlocked read to get the
// current IPI barrier sequence stamp. This is called AFTER a page is
// zeroed.
// Arguments
// PointerTimeStamp - Supplies a timestamp pointer to fill with the
// current IPI barrier sequence stamp.
// Return Value:
// None.
// currently does nothing on MERCED.
#define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp)
//VOID
//MI_FLUSH_SINGLE_SESSION_TB (
// IN PVOID Virtual,
// IN ULONG Invalid,
// IN LOGICAL AllProcessors,
// IN PMMPTE PtePointer,
// IN MMPTE PteValue,
// IN MMPTE PreviousPte
// );
// Routine Description:
// MI_FLUSH_SINGLE_SESSION_TB flushes the requested single address
// translation from the TB.
// Since IA64 supports ASNs and session space doesn't have one, the entire
// TB needs to be flushed.
// Arguments
// Virtual - Supplies the virtual address to invalidate.
// Invalid - TRUE if invalidating.
// AllProcessors - TRUE if all processors need to be IPI'd.
// PtePointer - Supplies the PTE to invalidate.
// PteValue - Supplies the new PTE value.
// PreviousPte - The previous PTE value is returned here.
// Return Value:
// None.
#define MI_FLUSH_SINGLE_SESSION_TB(Virtual, Invalid, AllProcessors, PtePointer, PteValue, PreviousPte) \
PreviousPte.u.Flush = *PtePointer; \
*PtePointer = PteValue; \
KeFlushEntireTb (TRUE, TRUE);
//VOID
//MI_FLUSH_ENTIRE_SESSION_TB (
// IN ULONG Invalid,
// IN LOGICAL AllProcessors
// );
// Routine Description:
// MI_FLUSH_ENTIRE_SESSION_TB flushes the entire TB on IA64 since
// the IA64 supports ASNs.
// Arguments
// Invalid - TRUE if invalidating.
// AllProcessors - TRUE if all processors need to be IPI'd.
// Return Value:
// None.
#define MI_FLUSH_ENTIRE_SESSION_TB(Invalid, AllProcessors) \
KeFlushEntireTb (Invalid, AllProcessors);
VOID
MiSweepCacheMachineDependent(
IN PVOID VirtualAddress,
IN SIZE_T Size,
IN MEMORY_CACHING_TYPE CacheType
);
#define MI_IS_PCR_PAGE(Va) (((PVOID)PCR <= Va) && (Va < (PVOID)(PCR+PAGE_SIZE)))
//BOOLEAN
//MI_IS_ADDRESS_VALID_FOR_KD (
// IN PVOID VirtualAddress
// );
// Routine Description:
// This macro deterines if a give virtual address is really a valid
// virtual address for the kerenl debugger memory references
// Argments
// VirtualAddress - Supplies the virtual address.
// Return Value:
// FALSE if it is not a physical address, TRUE if it is.
#define MI_IS_ADDRESS_VALID_FOR_KD(VirtualAddress) \
((VirtualAddress <= (PVOID)(HYPER_SPACE_END)) || \
(MI_IS_PTE_ADDRESS((PMMPTE)VirtualAddress)) || \
(MI_IS_PAGE_DIRECTORY_ADDRESS((PMMPTE)VirtualAddress)) || \
(MI_IS_PPE_ADDRESS((PMMPTE)VirtualAddress)) || \
((VirtualAddress >= MM_SYSTEM_RANGE_START) && \
(VirtualAddress < (PVOID)MM_SYSTEM_SPACE_END)) || \
(MI_IS_SESSION_ADDRESS(VirtualAddress)) || \
(MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) || \
(MI_IS_PCR_PAGE(VirtualAddress)))