866 lines
26 KiB
C
866 lines
26 KiB
C
/*++
|
|
|
|
Copyright (c) 1990 Microsoft Corporation
|
|
Copyright (c) 1993 IBM Corporation
|
|
|
|
Module Name:
|
|
|
|
initppc.c
|
|
|
|
Abstract:
|
|
|
|
This module contains the machine dependent initialization for the
|
|
memory management component. It is specifically tailored to the
|
|
PowerPC environment.
|
|
|
|
Author:
|
|
|
|
Lou Perazzoli (loup) 3-Apr-1990
|
|
|
|
Modified for PowerPC by Mark Mergen (mergen@watson.ibm.com) 8-Oct-1993
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
|
|
#include "mi.h"
|
|
|
|
|
|
// Local definitions
|
|
|
|
|
|
#define _16MB ((16*1024*1024)/PAGE_SIZE)
|
|
|
|
|
|
VOID
|
|
MiInitMachineDependent (
|
|
IN PLOADER_PARAMETER_BLOCK LoaderBlock
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine performs the necessary operations to enable virtual
|
|
memory. This includes building the page directory page, building
|
|
page table pages to map the code section, the data section, the'
|
|
stack section and the trap handler.
|
|
|
|
It also initializes the PFN database and populates the free list.
|
|
|
|
|
|
Arguments:
|
|
|
|
None.
|
|
|
|
Return Value:
|
|
|
|
None.
|
|
|
|
Environment:
|
|
|
|
Kernel mode.
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
ULONG i, j;
|
|
ULONG HighPage;
|
|
ULONG PdePageNumber;
|
|
ULONG PdePage;
|
|
ULONG PageFrameIndex;
|
|
ULONG NextPhysicalPage;
|
|
ULONG PfnAllocation;
|
|
ULONG NumberOfPages;
|
|
ULONG MaxPool;
|
|
KIRQL OldIrql;
|
|
PEPROCESS CurrentProcess;
|
|
ULONG DirBase;
|
|
ULONG MostFreePage = 0;
|
|
ULONG MostFreeLowMem = 0;
|
|
PLIST_ENTRY NextMd;
|
|
PMEMORY_ALLOCATION_DESCRIPTOR FreeDescriptor = NULL;
|
|
PMEMORY_ALLOCATION_DESCRIPTOR FreeDescriptorLowMem = NULL;
|
|
PMEMORY_ALLOCATION_DESCRIPTOR MemoryDescriptor;
|
|
MMPTE TempPte;
|
|
PMMPTE PointerPde;
|
|
PMMPTE PointerPte;
|
|
PMMPTE LastPte;
|
|
PMMPTE Pde;
|
|
PMMPTE StartPde;
|
|
PMMPTE EndPde;
|
|
PMMPFN Pfn1;
|
|
PMMPFN Pfn2;
|
|
ULONG va;
|
|
|
|
PointerPte = MiGetPdeAddress (PDE_BASE);
|
|
|
|
// N.B. this will cause first HPT miss fault, DSI in real0.s should fix it!
|
|
PdePageNumber = PointerPte->u.Hard.PageFrameNumber;
|
|
|
|
DirBase = PdePageNumber << PAGE_SHIFT;
|
|
|
|
PsGetCurrentProcess()->Pcb.DirectoryTableBase[0] = DirBase;
|
|
|
|
KeSweepDcache (FALSE);
|
|
|
|
|
|
// Get the lower bound of the free physical memory and the
|
|
// number of physical pages by walking the memory descriptor lists.
|
|
|
|
|
|
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
|
|
|
|
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
|
|
|
|
MemoryDescriptor = CONTAINING_RECORD(NextMd,
|
|
MEMORY_ALLOCATION_DESCRIPTOR,
|
|
ListEntry);
|
|
|
|
HighPage = MemoryDescriptor->BasePage + MemoryDescriptor->PageCount - 1;
|
|
MmNumberOfPhysicalPages += MemoryDescriptor->PageCount;
|
|
|
|
if (MemoryDescriptor->BasePage < MmLowestPhysicalPage) {
|
|
MmLowestPhysicalPage = MemoryDescriptor->BasePage;
|
|
}
|
|
|
|
if (HighPage > MmHighestPhysicalPage) {
|
|
MmHighestPhysicalPage = HighPage;
|
|
}
|
|
|
|
|
|
// Locate the largest free block and the largest free block below 16MB.
|
|
|
|
|
|
if ((MemoryDescriptor->MemoryType == LoaderFree) ||
|
|
(MemoryDescriptor->MemoryType == LoaderLoadedProgram) ||
|
|
(MemoryDescriptor->MemoryType == LoaderFirmwareTemporary) ||
|
|
(MemoryDescriptor->MemoryType == LoaderOsloaderStack)) {
|
|
|
|
if ((MemoryDescriptor->BasePage < _16MB) &&
|
|
(MostFreeLowMem < MemoryDescriptor->PageCount) &&
|
|
(MostFreeLowMem < ((ULONG)_16MB - MemoryDescriptor->BasePage))) {
|
|
|
|
MostFreeLowMem = (ULONG)_16MB - MemoryDescriptor->BasePage;
|
|
if (MemoryDescriptor->PageCount < MostFreeLowMem) {
|
|
MostFreeLowMem = MemoryDescriptor->PageCount;
|
|
}
|
|
FreeDescriptorLowMem = MemoryDescriptor;
|
|
|
|
} else if (MemoryDescriptor->PageCount > MostFreePage) {
|
|
|
|
MostFreePage = MemoryDescriptor->PageCount;
|
|
FreeDescriptor = MemoryDescriptor;
|
|
}
|
|
}
|
|
|
|
NextMd = MemoryDescriptor->ListEntry.Flink;
|
|
}
|
|
|
|
|
|
// This printout must be updated when the HAL goes to unicode
|
|
|
|
|
|
if (MmNumberOfPhysicalPages < 1024) {
|
|
KeBugCheckEx (INSTALL_MORE_MEMORY,
|
|
MmNumberOfPhysicalPages,
|
|
MmLowestPhysicalPage,
|
|
MmHighestPhysicalPage,
|
|
0);
|
|
}
|
|
|
|
|
|
// Build non-paged pool using the physical pages following the
|
|
// data page in which to build the pool from. Non-page pool grows
|
|
// from the high range of the virtual address space and expands
|
|
// downward.
|
|
|
|
// At this time non-paged pool is constructed so virtual addresses
|
|
// are also physically contiguous.
|
|
|
|
|
|
if ((MmSizeOfNonPagedPoolInBytes >> PAGE_SHIFT) >
|
|
(7 * (MmNumberOfPhysicalPages << 3))) {
|
|
|
|
|
|
// More than 7/8 of memory allocated to nonpagedpool, reset to 0.
|
|
|
|
|
|
MmSizeOfNonPagedPoolInBytes = 0;
|
|
}
|
|
|
|
if (MmSizeOfNonPagedPoolInBytes < MmMinimumNonPagedPoolSize) {
|
|
|
|
|
|
// Calculate the size of nonpaged pool.
|
|
// Use the minimum size, then for every MB about 4mb add extra
|
|
// pages.
|
|
|
|
|
|
MmSizeOfNonPagedPoolInBytes = MmMinimumNonPagedPoolSize;
|
|
|
|
MmSizeOfNonPagedPoolInBytes +=
|
|
((MmNumberOfPhysicalPages - 1024)/256) *
|
|
MmMinAdditionNonPagedPoolPerMb;
|
|
}
|
|
|
|
if (MmSizeOfNonPagedPoolInBytes > MM_MAX_INITIAL_NONPAGED_POOL) {
|
|
MmSizeOfNonPagedPoolInBytes = MM_MAX_INITIAL_NONPAGED_POOL;
|
|
}
|
|
|
|
|
|
// Align to page size boundary.
|
|
|
|
|
|
MmSizeOfNonPagedPoolInBytes &= ~(PAGE_SIZE - 1);
|
|
|
|
|
|
// Calculate the maximum size of pool.
|
|
|
|
|
|
if (MmMaximumNonPagedPoolInBytes == 0) {
|
|
|
|
|
|
// Calculate the size of nonpaged pool. If 4mb of less use
|
|
// the minimum size, then for every MB about 4mb add extra
|
|
// pages.
|
|
|
|
|
|
MmMaximumNonPagedPoolInBytes = MmDefaultMaximumNonPagedPool;
|
|
|
|
|
|
// Make sure enough expansion for pfn database exists.
|
|
|
|
|
|
MmMaximumNonPagedPoolInBytes += (ULONG)PAGE_ALIGN (
|
|
MmHighestPhysicalPage * sizeof(MMPFN));
|
|
|
|
MmMaximumNonPagedPoolInBytes +=
|
|
((MmNumberOfPhysicalPages - 1024)/256) *
|
|
MmMaxAdditionNonPagedPoolPerMb;
|
|
}
|
|
|
|
MaxPool = MmSizeOfNonPagedPoolInBytes + PAGE_SIZE * 16 +
|
|
(ULONG)PAGE_ALIGN (
|
|
MmHighestPhysicalPage * sizeof(MMPFN));
|
|
|
|
if (MmMaximumNonPagedPoolInBytes < MaxPool) {
|
|
MmMaximumNonPagedPoolInBytes = MaxPool;
|
|
}
|
|
|
|
if (MmMaximumNonPagedPoolInBytes > MM_MAX_ADDITIONAL_NONPAGED_POOL) {
|
|
MmMaximumNonPagedPoolInBytes = MM_MAX_ADDITIONAL_NONPAGED_POOL;
|
|
}
|
|
|
|
MmNonPagedPoolStart = (PVOID)((ULONG)MmNonPagedPoolEnd
|
|
- (MmMaximumNonPagedPoolInBytes - 1));
|
|
|
|
MmNonPagedPoolStart = (PVOID)PAGE_ALIGN(MmNonPagedPoolStart);
|
|
|
|
|
|
// Calculate the starting PDE for the system PTE pool which is
|
|
// right below the nonpaged pool.
|
|
|
|
|
|
MmNonPagedSystemStart = (PVOID)(((ULONG)MmNonPagedPoolStart -
|
|
((MmNumberOfSystemPtes + 1) * PAGE_SIZE)) &
|
|
(~PAGE_DIRECTORY_MASK));
|
|
|
|
if (MmNonPagedSystemStart < MM_LOWEST_NONPAGED_SYSTEM_START) {
|
|
MmNonPagedSystemStart = MM_LOWEST_NONPAGED_SYSTEM_START;
|
|
MmNumberOfSystemPtes = (((ULONG)MmNonPagedPoolStart -
|
|
(ULONG)MmNonPagedSystemStart) >> PAGE_SHIFT)-1;
|
|
ASSERT (MmNumberOfSystemPtes > 1000);
|
|
}
|
|
|
|
StartPde = MiGetPdeAddress (MmNonPagedSystemStart);
|
|
|
|
EndPde = MiGetPdeAddress((PVOID)((PCHAR)MmNonPagedPoolEnd - 1));
|
|
|
|
ASSERT ((ULONG)(EndPde - StartPde) < FreeDescriptorLowMem->PageCount);
|
|
|
|
|
|
// Start building the nonpaged pool with the largest free chunk of memory
|
|
// below 16MB.
|
|
|
|
|
|
NextPhysicalPage = FreeDescriptorLowMem->BasePage;
|
|
NumberOfPages = FreeDescriptorLowMem->PageCount;
|
|
TempPte = ValidKernelPte;
|
|
|
|
while (StartPde <= EndPde) {
|
|
if (StartPde->u.Hard.Valid == 0) {
|
|
|
|
|
|
// Map in a page directory page.
|
|
|
|
|
|
TempPte.u.Hard.PageFrameNumber = NextPhysicalPage;
|
|
NextPhysicalPage += 1;
|
|
NumberOfPages -= 1;
|
|
*StartPde = TempPte;
|
|
|
|
}
|
|
StartPde += 1;
|
|
}
|
|
|
|
ASSERT(NumberOfPages > 0);
|
|
|
|
|
|
// Zero the PTEs before nonpaged pool.
|
|
|
|
|
|
StartPde = MiGetPteAddress(MmNonPagedSystemStart);
|
|
PointerPte = MiGetPteAddress(MmNonPagedPoolStart);
|
|
|
|
RtlZeroMemory (StartPde, ((ULONG)PointerPte - (ULONG)StartPde));
|
|
|
|
|
|
// Fill in the PTEs for non-paged pool.
|
|
|
|
|
|
LastPte = MiGetPteAddress((ULONG)MmNonPagedPoolStart +
|
|
MmSizeOfNonPagedPoolInBytes - 1);
|
|
while (PointerPte <= LastPte) {
|
|
TempPte.u.Hard.PageFrameNumber = NextPhysicalPage;
|
|
NextPhysicalPage += 1;
|
|
NumberOfPages -= 1;
|
|
if (NumberOfPages == 0) {
|
|
ASSERT (NextPhysicalPage != (FreeDescriptor->BasePage +
|
|
FreeDescriptor->PageCount));
|
|
NextPhysicalPage = FreeDescriptor->BasePage;
|
|
NumberOfPages = FreeDescriptor->PageCount;
|
|
}
|
|
*PointerPte = TempPte;
|
|
PointerPte++;
|
|
}
|
|
|
|
|
|
// Zero the remaining PTEs (if any).
|
|
|
|
|
|
while (((ULONG)PointerPte & (PAGE_SIZE - 1)) != 0) {
|
|
*PointerPte = ZeroKernelPte;
|
|
PointerPte++;
|
|
}
|
|
|
|
MmPageAlignedPoolBase[NonPagedPool] = MmNonPagedPoolStart;
|
|
|
|
|
|
// Non-paged pages now exist, build the pool structures.
|
|
|
|
|
|
MmNonPagedPoolExpansionStart = (PVOID)((PCHAR)MmNonPagedPoolStart +
|
|
MmSizeOfNonPagedPoolInBytes);
|
|
MiInitializeNonPagedPool (MmNonPagedPoolStart);
|
|
|
|
|
|
// Before Non-paged pool can be used, the PFN database must
|
|
// be built. This is due to the fact that the start and end of
|
|
// allocation bits for nonpaged pool are maintained in the
|
|
// PFN elements for the corresponding pages.
|
|
|
|
|
|
|
|
// Calculate the number of pages required from page zero to
|
|
// the highest page.
|
|
|
|
// Get the number of secondary colors and add the arrary for tracking
|
|
// secondary colors to the end of the PFN database.
|
|
|
|
|
|
|
|
// Get secondary color value from registry.
|
|
|
|
|
|
if (MmSecondaryColors == 0) {
|
|
MmSecondaryColors = PCR->SecondLevelDcacheSize;
|
|
}
|
|
|
|
MmSecondaryColors = MmSecondaryColors >> PAGE_SHIFT;
|
|
|
|
|
|
// Make sure value is power of two and within limits.
|
|
|
|
|
|
if (((MmSecondaryColors & (MmSecondaryColors -1)) != 0) ||
|
|
(MmSecondaryColors < MM_SECONDARY_COLORS_MIN) ||
|
|
(MmSecondaryColors > MM_SECONDARY_COLORS_MAX)) {
|
|
MmSecondaryColors = MM_SECONDARY_COLORS_DEFAULT;
|
|
}
|
|
|
|
MmSecondaryColorMask = (MmSecondaryColors - 1) & ~MM_COLOR_MASK;
|
|
|
|
PfnAllocation = 1 + ((((MmHighestPhysicalPage + 1) * sizeof(MMPFN)) +
|
|
(MmSecondaryColors * sizeof(MMCOLOR_TABLES)*2))
|
|
>> PAGE_SHIFT);
|
|
|
|
|
|
// Calculate the start of the Pfn Database (it starts a physical
|
|
// page zero, even if the Lowest physical page is not zero).
|
|
|
|
|
|
PointerPte = MiReserveSystemPtes (PfnAllocation,
|
|
NonPagedPoolExpansion,
|
|
0,
|
|
0,
|
|
TRUE);
|
|
|
|
MmPfnDatabase = (PMMPFN)(MiGetVirtualAddressMappedByPte (PointerPte));
|
|
|
|
|
|
// Go through the memory descriptors and for each physical page
|
|
// make the PFN database has a valid PTE to map it. This allows
|
|
// machines with sparse physical memory to have a minimal PFN
|
|
// database.
|
|
|
|
|
|
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
|
|
|
|
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
|
|
|
|
MemoryDescriptor = CONTAINING_RECORD(NextMd,
|
|
MEMORY_ALLOCATION_DESCRIPTOR,
|
|
ListEntry);
|
|
|
|
PointerPte = MiGetPteAddress (MI_PFN_ELEMENT(
|
|
MemoryDescriptor->BasePage));
|
|
|
|
LastPte = MiGetPteAddress (((PCHAR)(MI_PFN_ELEMENT(
|
|
MemoryDescriptor->BasePage +
|
|
MemoryDescriptor->PageCount))) - 1);
|
|
|
|
while (PointerPte <= LastPte) {
|
|
if (PointerPte->u.Hard.Valid == 0) {
|
|
TempPte.u.Hard.PageFrameNumber = NextPhysicalPage;
|
|
NextPhysicalPage += 1;
|
|
NumberOfPages -= 1;
|
|
if (NumberOfPages == 0) {
|
|
ASSERT (NextPhysicalPage != (FreeDescriptor->BasePage +
|
|
FreeDescriptor->PageCount));
|
|
NextPhysicalPage = FreeDescriptor->BasePage;
|
|
NumberOfPages = FreeDescriptor->PageCount;
|
|
}
|
|
*PointerPte = TempPte;
|
|
RtlZeroMemory (MiGetVirtualAddressMappedByPte (PointerPte),
|
|
PAGE_SIZE);
|
|
}
|
|
PointerPte++;
|
|
}
|
|
NextMd = MemoryDescriptor->ListEntry.Flink;
|
|
}
|
|
|
|
MmFreePagesByColor[0] = (PMMCOLOR_TABLES)
|
|
&MmPfnDatabase[MmHighestPhysicalPage + 1];
|
|
|
|
MmFreePagesByColor[1] = &MmFreePagesByColor[0][MmSecondaryColors];
|
|
|
|
|
|
// Make sure the PTEs are mapped.
|
|
|
|
|
|
|
|
if (!MI_IS_PHYSICAL_ADDRESS(MmFreePagesByColor[0])) {
|
|
PointerPte = MiGetPteAddress (&MmFreePagesByColor[0][0]);
|
|
|
|
LastPte = MiGetPteAddress (
|
|
(PVOID)((PCHAR)&MmFreePagesByColor[1][MmSecondaryColors] - 1));
|
|
|
|
while (PointerPte <= LastPte) {
|
|
if (PointerPte->u.Hard.Valid == 0) {
|
|
TempPte.u.Hard.PageFrameNumber = NextPhysicalPage;
|
|
NextPhysicalPage += 1;
|
|
*PointerPte = TempPte;
|
|
RtlZeroMemory (MiGetVirtualAddressMappedByPte (PointerPte),
|
|
PAGE_SIZE);
|
|
}
|
|
PointerPte++;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < MmSecondaryColors; i++) {
|
|
MmFreePagesByColor[ZeroedPageList][i].Flink = MM_EMPTY_LIST;
|
|
MmFreePagesByColor[FreePageList][i].Flink = MM_EMPTY_LIST;
|
|
}
|
|
|
|
#if MM_MAXIMUM_NUMBER_OF_COLORS > 1
|
|
for (i = 0; i < MM_MAXIMUM_NUMBER_OF_COLORS; i++) {
|
|
MmFreePagesByPrimaryColor[ZeroedPageList][i].ListName = ZeroedPageList;
|
|
MmFreePagesByPrimaryColor[FreePageList][i].ListName = FreePageList;
|
|
MmFreePagesByPrimaryColor[ZeroedPageList][i].Flink = MM_EMPTY_LIST;
|
|
MmFreePagesByPrimaryColor[FreePageList][i].Flink = MM_EMPTY_LIST;
|
|
MmFreePagesByPrimaryColor[ZeroedPageList][i].Blink = MM_EMPTY_LIST;
|
|
MmFreePagesByPrimaryColor[FreePageList][i].Blink = MM_EMPTY_LIST;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Go through the page table entries and for any page which is
|
|
// valid, update the corresponding PFN database element.
|
|
|
|
|
|
Pde = MiGetPdeAddress (NULL);
|
|
PointerPde = MiGetPdeAddress (PTE_BASE);
|
|
va = 0;
|
|
|
|
for (i = 0; i < PDE_PER_PAGE; i++) {
|
|
if (Pde->u.Hard.Valid == 1) {
|
|
|
|
PdePage = Pde->u.Hard.PageFrameNumber;
|
|
Pfn1 = MI_PFN_ELEMENT(PdePage);
|
|
Pfn1->PteFrame = PointerPde->u.Hard.PageFrameNumber;
|
|
Pfn1->PteAddress = Pde;
|
|
Pfn1->u2.ShareCount += 1;
|
|
Pfn1->u3.e2.ReferenceCount = 1;
|
|
Pfn1->u3.e1.PageLocation = ActiveAndValid;
|
|
Pfn1->u3.e1.PageColor = MI_GET_COLOR_FROM_SECONDARY(
|
|
MI_GET_PAGE_COLOR_FROM_PTE (Pde));
|
|
|
|
PointerPte = MiGetPteAddress (va);
|
|
|
|
for (j = 0 ; j < PTE_PER_PAGE; j++) {
|
|
if (PointerPte->u.Hard.Valid == 1) {
|
|
|
|
Pfn1->u2.ShareCount += 1;
|
|
|
|
PageFrameIndex = PointerPte->u.Hard.PageFrameNumber;
|
|
|
|
if (PageFrameIndex <= MmHighestPhysicalPage) {
|
|
|
|
Pfn2 = MI_PFN_ELEMENT(PageFrameIndex);
|
|
|
|
if (MmIsAddressValid(Pfn2) &&
|
|
MmIsAddressValid((PUCHAR)(Pfn2+1)-1)) {
|
|
|
|
Pfn2->PteFrame = PdePage;
|
|
Pfn2->PteAddress = PointerPte;
|
|
Pfn2->u2.ShareCount += 1;
|
|
Pfn2->u3.e2.ReferenceCount = 1;
|
|
Pfn2->u3.e1.PageLocation = ActiveAndValid;
|
|
Pfn2->u3.e1.PageColor = MI_GET_COLOR_FROM_SECONDARY(
|
|
MI_GET_PAGE_COLOR_FROM_PTE (
|
|
PointerPte));
|
|
}
|
|
}
|
|
}
|
|
va += PAGE_SIZE;
|
|
PointerPte++;
|
|
}
|
|
} else {
|
|
va += (ULONG)PDE_PER_PAGE * (ULONG)PAGE_SIZE;
|
|
}
|
|
Pde++;
|
|
}
|
|
|
|
|
|
// If page zero is still unused, mark it as in use. This is
|
|
// temporary as we want to find bugs where a physical page
|
|
// is specified as zero.
|
|
|
|
|
|
Pfn1 = &MmPfnDatabase[MmLowestPhysicalPage];
|
|
if (Pfn1->u3.e2.ReferenceCount == 0) {
|
|
|
|
|
|
// Make the reference count non-zero and point it into a
|
|
// page directory.
|
|
|
|
|
|
Pde = MiGetPdeAddress (0xb0000000);
|
|
PdePage = Pde->u.Hard.PageFrameNumber;
|
|
Pfn1->PteFrame = PdePageNumber;
|
|
Pfn1->PteAddress = Pde;
|
|
Pfn1->u2.ShareCount += 1;
|
|
Pfn1->u3.e2.ReferenceCount = 1;
|
|
Pfn1->u3.e1.PageLocation = ActiveAndValid;
|
|
Pfn1->u3.e1.PageColor = MI_GET_COLOR_FROM_SECONDARY(
|
|
MI_GET_PAGE_COLOR_FROM_PTE (Pde));
|
|
}
|
|
|
|
// end of temporary set to physical page zero.
|
|
|
|
|
|
|
|
// Walk through the memory descriptors and add pages to the
|
|
// free list in the PFN database.
|
|
|
|
|
|
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
|
|
|
|
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
|
|
|
|
MemoryDescriptor = CONTAINING_RECORD(NextMd,
|
|
MEMORY_ALLOCATION_DESCRIPTOR,
|
|
ListEntry);
|
|
|
|
i = MemoryDescriptor->PageCount;
|
|
NextPhysicalPage = MemoryDescriptor->BasePage;
|
|
|
|
switch (MemoryDescriptor->MemoryType) {
|
|
case LoaderBad:
|
|
while (i != 0) {
|
|
MiInsertPageInList (MmPageLocationList[BadPageList],
|
|
NextPhysicalPage);
|
|
i -= 1;
|
|
NextPhysicalPage += 1;
|
|
}
|
|
break;
|
|
|
|
case LoaderFree:
|
|
case LoaderLoadedProgram:
|
|
case LoaderFirmwareTemporary:
|
|
case LoaderOsloaderStack:
|
|
|
|
Pfn1 = MI_PFN_ELEMENT (NextPhysicalPage);
|
|
while (i != 0) {
|
|
if (Pfn1->u3.e2.ReferenceCount == 0) {
|
|
|
|
|
|
// Set the PTE address to the phyiscal page for
|
|
// virtual address alignment checking.
|
|
|
|
|
|
Pfn1->PteAddress =
|
|
(PMMPTE)(NextPhysicalPage << PTE_SHIFT);
|
|
|
|
Pfn1->u3.e1.PageColor = MI_GET_COLOR_FROM_SECONDARY(
|
|
MI_GET_PAGE_COLOR_FROM_PTE (
|
|
Pfn1->PteAddress));
|
|
MiInsertPageInList (MmPageLocationList[FreePageList],
|
|
NextPhysicalPage);
|
|
}
|
|
Pfn1++;
|
|
i -= 1;
|
|
NextPhysicalPage += 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
|
|
PointerPte = MiGetPteAddress (KSEG0_BASE +
|
|
(NextPhysicalPage << PAGE_SHIFT));
|
|
Pfn1 = MI_PFN_ELEMENT (NextPhysicalPage);
|
|
while (i != 0) {
|
|
|
|
|
|
// Set page as in use.
|
|
|
|
|
|
if (Pfn1->u3.e2.ReferenceCount == 0) {
|
|
Pfn1->PteFrame = PdePageNumber;
|
|
Pfn1->PteAddress = PointerPte;
|
|
Pfn1->u2.ShareCount += 1;
|
|
Pfn1->u3.e2.ReferenceCount = 1;
|
|
Pfn1->u3.e1.PageLocation = ActiveAndValid;
|
|
Pfn1->u3.e1.PageColor = MI_GET_COLOR_FROM_SECONDARY(
|
|
MI_GET_PAGE_COLOR_FROM_PTE (
|
|
PointerPte));
|
|
}
|
|
Pfn1++;
|
|
i -= 1;
|
|
NextPhysicalPage += 1;
|
|
PointerPte += 1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
NextMd = MemoryDescriptor->ListEntry.Flink;
|
|
}
|
|
|
|
|
|
// Indicate that the PFN database is allocated in NonPaged pool.
|
|
|
|
|
|
Pfn1 = MI_PFN_ELEMENT(MiGetPteAddress(&MmPfnDatabase[MmLowestPhysicalPage])->u.Hard.PageFrameNumber);
|
|
Pfn1->u3.e1.StartOfAllocation = 1;
|
|
Pfn1 = MI_PFN_ELEMENT(MiGetPteAddress(&MmPfnDatabase[MmHighestPhysicalPage])->u.Hard.PageFrameNumber);
|
|
Pfn1->u3.e1.EndOfAllocation = 1;
|
|
|
|
|
|
// Indicate that nonpaged pool must succeed is allocated in
|
|
// nonpaged pool.
|
|
|
|
|
|
i = MmSizeOfNonPagedMustSucceed;
|
|
Pfn1 = MI_PFN_ELEMENT(MiGetPteAddress(MmNonPagedMustSucceed)->u.Hard.PageFrameNumber);
|
|
|
|
while ((LONG)i > 0) {
|
|
Pfn1->u3.e1.StartOfAllocation = 1;
|
|
Pfn1->u3.e1.EndOfAllocation = 1;
|
|
i -= PAGE_SIZE;
|
|
Pfn1 += 1;
|
|
}
|
|
|
|
KeInitializeSpinLock (&MmSystemSpaceLock);
|
|
KeInitializeSpinLock (&MmPfnLock);
|
|
|
|
|
|
// Initialize the nonpaged available PTEs for mapping I/O space
|
|
// and kernel stacks.
|
|
|
|
|
|
PointerPte = MiGetPteAddress (MmNonPagedSystemStart);
|
|
|
|
PointerPte = (PMMPTE)PAGE_ALIGN (PointerPte);
|
|
|
|
MmNumberOfSystemPtes = MiGetPteAddress(MmNonPagedPoolStart) - PointerPte - 1;
|
|
|
|
MiInitializeSystemPtes (PointerPte, MmNumberOfSystemPtes, SystemPteSpace);
|
|
|
|
|
|
// Initialize the nonpaged pool.
|
|
|
|
|
|
InitializePool(NonPagedPool,0);
|
|
|
|
|
|
// Initialize memory management structures for this process.
|
|
|
|
|
|
|
|
// Build working set list. System initialization has created
|
|
// a PTE for hyperspace.
|
|
|
|
// Note, we can't remove a zeroed page as hyper space does not
|
|
// exist and we map non-zeroed pages into hyper space to zero.
|
|
|
|
|
|
PointerPte = MiGetPdeAddress(HYPER_SPACE);
|
|
|
|
ASSERT (PointerPte->u.Hard.Valid == 1);
|
|
PointerPte->u.Hard.Write = 1;
|
|
PageFrameIndex = PointerPte->u.Hard.PageFrameNumber;
|
|
|
|
|
|
// Point to the page table page we just created and zero it.
|
|
|
|
|
|
PointerPte = MiGetPteAddress(HYPER_SPACE);
|
|
RtlZeroMemory ((PVOID)PointerPte, PAGE_SIZE);
|
|
|
|
|
|
// Hyper space now exists, set the necessary variables.
|
|
|
|
|
|
MmFirstReservedMappingPte = MiGetPteAddress (FIRST_MAPPING_PTE);
|
|
MmLastReservedMappingPte = MiGetPteAddress (LAST_MAPPING_PTE);
|
|
|
|
MmWorkingSetList = WORKING_SET_LIST;
|
|
MmWsle = (PMMWSLE)((PUCHAR)WORKING_SET_LIST + sizeof(MMWSL));
|
|
|
|
|
|
// Initialize this process's memory management structures including
|
|
// the working set list.
|
|
|
|
|
|
|
|
// The pfn element for the page directory has already been initialized,
|
|
// zero the reference count and the share count so they won't be
|
|
// wrong.
|
|
|
|
|
|
Pfn1 = MI_PFN_ELEMENT (PdePageNumber);
|
|
Pfn1->u2.ShareCount = 0;
|
|
Pfn1->u3.e2.ReferenceCount = 0;
|
|
Pfn1->u3.e1.PageColor = 0;
|
|
|
|
|
|
// The pfn element for the PDE which maps hyperspace has already
|
|
// been initialized, zero the reference count and the share count
|
|
// so they won't be wrong.
|
|
|
|
|
|
Pfn1 = MI_PFN_ELEMENT (PageFrameIndex);
|
|
Pfn1->u2.ShareCount = 0;
|
|
Pfn1->u3.e2.ReferenceCount = 0;
|
|
Pfn1->u3.e1.PageColor = 1;
|
|
|
|
|
|
CurrentProcess = PsGetCurrentProcess ();
|
|
|
|
|
|
// Get a page for the working set list and map it into the Page
|
|
// directory at the page after hyperspace.
|
|
|
|
|
|
PointerPte = MiGetPteAddress (HYPER_SPACE);
|
|
PageFrameIndex = MiRemoveAnyPage (MI_GET_PAGE_COLOR_FROM_PTE(PointerPte));
|
|
CurrentProcess->WorkingSetPage = PageFrameIndex;
|
|
|
|
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
|
|
PointerPde = MiGetPdeAddress (HYPER_SPACE) + 1;
|
|
|
|
*PointerPde = TempPte;
|
|
|
|
PointerPte = MiGetVirtualAddressMappedByPte (PointerPde);
|
|
|
|
RtlZeroMemory ((PVOID)PointerPte, PAGE_SIZE);
|
|
|
|
TempPte = *PointerPde;
|
|
TempPte.u.Hard.Valid = 0;
|
|
|
|
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
|
|
KeFlushSingleTb (PointerPte,
|
|
TRUE,
|
|
FALSE,
|
|
(PHARDWARE_PTE)PointerPde,
|
|
TempPte.u.Hard);
|
|
|
|
KeLowerIrql(OldIrql);
|
|
|
|
CurrentProcess->Vm.MaximumWorkingSetSize = MmSystemProcessWorkingSetMax;
|
|
CurrentProcess->Vm.MinimumWorkingSetSize = MmSystemProcessWorkingSetMin;
|
|
|
|
MmInitializeProcessAddressSpace (CurrentProcess,
|
|
(PEPROCESS)NULL,
|
|
(PVOID)NULL);
|
|
|
|
*PointerPde = ZeroKernelPte;
|
|
|
|
|
|
// Check to see if moving the secondary page structures to the end
|
|
// of the PFN database is a waste of memory. And if so, copy it
|
|
// to paged pool.
|
|
|
|
// If the PFN datbase ends on a page aligned boundary and the
|
|
// size of the two arrays is less than a page, free the page
|
|
// and allocate nonpagedpool for this.
|
|
|
|
|
|
if ((((ULONG)MmFreePagesByColor[0] & (PAGE_SIZE - 1)) == 0) &&
|
|
((MmSecondaryColors * 2 * sizeof(MMCOLOR_TABLES)) < PAGE_SIZE)) {
|
|
|
|
PMMCOLOR_TABLES c;
|
|
|
|
c = MmFreePagesByColor[0];
|
|
|
|
MmFreePagesByColor[0] = ExAllocatePoolWithTag (NonPagedPoolMustSucceed, MmSecondaryColors * 2 * sizeof(MMCOLOR_TABLES), ' mM');
|
|
MmFreePagesByColor[1] = &MmFreePagesByColor[0][MmSecondaryColors];
|
|
RtlMoveMemory (MmFreePagesByColor[0], c, MmSecondaryColors * 2 * sizeof(MMCOLOR_TABLES));
|
|
|
|
// Free the page.
|
|
if (!MI_IS_PHYSICAL_ADDRESS(c)) {
|
|
PointerPte = MiGetPteAddress(c);
|
|
PageFrameIndex = PointerPte->u.Hard.PageFrameNumber;
|
|
*PointerPte = ZeroKernelPte;
|
|
} else {
|
|
PageFrameIndex = MI_CONVERT_PHYSICAL_TO_PFN (c);
|
|
}
|
|
|
|
Pfn1 = MI_PFN_ELEMENT (PageFrameIndex);
|
|
ASSERT ((Pfn1->u3.e2.ReferenceCount <= 1) && (Pfn1->u2.ShareCount <= 1));
|
|
Pfn1->u2.ShareCount = 0;
|
|
Pfn1->u3.e2.ReferenceCount = 0;
|
|
MI_SET_PFN_DELETED (Pfn1);
|
|
#if DBG
|
|
Pfn1->u3.e1.PageLocation = StandbyPageList;
|
|
#endif //DBG
|
|
MiInsertPageInList (MmPageLocationList[FreePageList], PageFrameIndex);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|