Windows2003-3790/multimedia/opengl/client/glcltgs.c

5165 lines
148 KiB
C
Raw Permalink Normal View History

2001-01-01 00:00:00 +01:00
/******************************Module*Header*******************************\
* Module Name: glcltgs.c
*
* Routines to batch function calls and primitives
*
* Copyright (c) 1993-1996 Microsoft Corporation
\**************************************************************************/
/*
** Copyright 1991-1993, Silicon Graphics, Inc.
** All Rights Reserved.
**
** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.;
** the contents of this file may not be disclosed to third parties, copied or
** duplicated in any form, in whole or in part, without the prior written
** permission of Silicon Graphics, Inc.
**
** RESTRICTED RIGHTS LEGEND:
** Use, duplication or disclosure by the Government is subject to restrictions
** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
** and Computer Software clause at DFARS 252.227-7013, and/or in similar or
** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished -
** rights reserved under the Copyright Laws of the United States.
*/
/*
* AUTOMATICALLY UPDATED OR GENERATED BY SGI: DO NOT EDIT
* IF YOU MUST MODIFY THIS FILE, PLEASE CONTACT ptar@sgi.com 415-390-1483
*/
#include "precomp.h"
#pragma hdrstop
/* Generic OpenGL Client using subbatching. */
#include <string.h>
#include "imports.h"
#include "types.h"
#include "glsbmsg.h"
#include "glsbmsgh.h"
#include "glsrvspt.h"
#include "subbatch.h"
#include "batchinf.h"
#include "glteb.h"
#include "glsbcltu.h"
#include "glclt.h"
#include "compsize.h"
#include "context.h"
#include "global.h"
#include "parray.h"
#include "glarray.h"
#include "lighting.h"
#include "imfuncs.h"
#include "..\dlist\dlistopt.h"
#ifdef NEW_PARTIAL_PRIM
// Vertex flags that should be propagated to polyarray flags
//
#define VERTEX_FLAGS_FOR_POLYARRAY (POLYDATA_VERTEX2 | POLYDATA_VERTEX3 | \
POLYDATA_VERTEX4)
#define VERTEX_MATERIAL(pm, pa, pd) (pm->pdMaterial0[pd - pa->pdBuffer0])
PDMATERIAL* FASTCALL GetVertexMaterial(POLYARRAY *pa, POLYDATA *pd)
{
POLYMATERIAL *pm = GLTEB_CLTPOLYMATERIAL();
if (!pm)
{
PAMatAlloc();
pm = GLTEB_CLTPOLYMATERIAL();
if (!pm)
return NULL;
}
return &VERTEX_MATERIAL(pm, pa, pd);
}
//------------------------------------------------------------------------
// Assumes that POLYMATERIAL structure is valid
//
PDMATERIAL* FASTCALL GetVertexMaterialSafe(POLYARRAY *pa, POLYDATA *pd)
{
POLYMATERIAL *pm = GLTEB_CLTPOLYMATERIAL();
return &VERTEX_MATERIAL(pm, pa, pd);
}
//------------------------------------------------------------------------
// Copy material changes from src to pd material
//
void FASTCALL SetVertexMaterial(POLYARRAY *pa,
POLYDATA *pd,
__GLmatChange *src,
GLint faceOrientation)
{
__GLmatChange *pdMat;
PDMATERIAL *mat;
// Get POLYMATERIAL pointer after PAMatAlloc!
mat = GetVertexMaterial(pa, pd);
if (!mat)
return;
if (faceOrientation == __GL_FRONTFACE)
{
mat->front = PAMatAlloc();
if (!mat->front)
return;
pdMat = mat->front;
}
else
{
mat->back = PAMatAlloc();
pdMat = mat->back;
}
if (pdMat)
*pdMat = *src;
}
//-----------------------------------------------------------------------------
// Save shared vertex for a partial primitive
//
// We have to save all data applicapable for vertex (all data that can be inside
// BEGIN END brackets): flags, color, texture, normal, coordinate, material, edge flag.
// We do not save evaluator data, because it was processed earlier.
//
void SaveSharedVertex(SAVEREGION *dst, POLYDATA *src, POLYARRAY *pa)
{
dst->pd.flags = src->flags;
dst->pd.obj = src->obj;
if (src->flags & POLYDATA_TEXTURE_VALID)
dst->pd.texture = src->texture;
if (src->flags & POLYDATA_NORMAL_VALID)
dst->pd.normal = src->normal;
if (src->flags & POLYDATA_COLOR_VALID)
dst->pd.colors[0] = src->colors[0];
if (src->flags & POLYDATA_MATERIAL_FRONT)
dst->front = *(GetVertexMaterial(pa, src)->front);
if (src->flags & POLYDATA_MATERIAL_BACK)
dst->back = *(GetVertexMaterial(pa, src)->back);
}
//
// dst - POLYDATA
// src - SAVEREGION
// pa - POLYARRAY
//
#define RESTOREMATERIAL(dst, src, pa) \
if (dst->flags & POLYDATA_MATERIAL_FRONT) \
{ \
SetVertexMaterial(pa, dst, &src->front, __GL_FRONTFACE); \
} \
if (dst->flags & POLYDATA_MATERIAL_BACK) \
{ \
SetVertexMaterial(pa, dst, &src->back, __GL_BACKFACE); \
}
// Restore shared vertex for a partial primitive
//
// We have to restore all data applicapable for vertex (all data that can be inside
// BEGIN END brackets): flags, color, texture, normal, coordinate, material, edge flag.
// We do not restore evaluator data, because it was processed earlier.
// We must update POLYARRAY flags and current color, normal, edge flag, texture pointers.
// We also must intitialize flags for a next vertex.
//
void RestoreSharedVertex(POLYDATA *dst, SAVEREGION *src, POLYARRAY *pa)
{
dst->flags = src->pd.flags;
dst->obj = src->pd.obj;
if (dst->flags & POLYDATA_TEXTURE_VALID)
{
dst->texture = src->pd.texture;
if (src->pd.flags & POLYDATA_EVAL_TEXCOORD)
pa->pdLastEvalTexture = dst;
else
pa->pdCurTexture = dst;
}
if (dst->flags & POLYDATA_NORMAL_VALID)
{
dst->normal = src->pd.normal;
if (src->pd.flags & POLYDATA_EVAL_NORMAL)
pa->pdLastEvalNormal = dst;
else
pa->pdCurNormal = dst;
}
if (dst->flags & POLYDATA_COLOR_VALID)
{
dst->colors[0] = src->pd.colors[0];
if (src->pd.flags & POLYDATA_EVAL_COLOR)
pa->pdLastEvalColor = dst;
else
pa->pdCurColor = dst;
}
if (dst->flags & POLYDATA_EDGEFLAG_VALID)
pa->pdCurEdgeFlag = dst;
RESTOREMATERIAL(dst, src, pa);
pa->flags |= (dst->flags & VERTEX_FLAGS_FOR_POLYARRAY);
(dst+1)->flags = 0; // Initialize flag for a next vertex
}
//------------------------------------------------------------------------------
// Copy data from Graphics Context
//
void FASTCALL CopyColorFromGC(__GLcontext *gc, POLYARRAY *pa, POLYDATA *pd)
{
__GLcolor scaledUserColor;
pd->flags |= POLYDATA_COLOR_VALID;
if (!gc->modes.colorIndexMode)
{
__GL_SCALE_AND_CHECK_CLAMP_RGBA(scaledUserColor.r,
scaledUserColor.g,
scaledUserColor.b,
scaledUserColor.a,
gc, pa->flags,
gc->state.current.userColor.r,
gc->state.current.userColor.g,
gc->state.current.userColor.b,
gc->state.current.userColor.a);
}
else
{
__GL_CHECK_CLAMP_CI(scaledUserColor.r, gc, pa->flags,
gc->state.current.userColorIndex);
}
pd->colors[0] = scaledUserColor;
}
void FASTCALL CopyTextureFromGC(__GLcontext *gc, POLYARRAY *pa, POLYDATA *pd)
{
pd->flags |= POLYDATA_TEXTURE_VALID;
pd->texture = gc->state.current.texture;
if (__GL_FLOAT_COMPARE_PONE(pd->texture.w, !=))
pa->flags |= POLYARRAY_TEXTURE4;
else if (__GL_FLOAT_NEZ(pd->texture.z))
pa->flags |= POLYARRAY_TEXTURE3;
else if (__GL_FLOAT_NEZ(pd->texture.y))
pa->flags |= POLYARRAY_TEXTURE2;
else
pa->flags |= POLYARRAY_TEXTURE1;
}
void FASTCALL CopyEdgeFlagFromGC(__GLcontext *gc, POLYDATA *pd)
{
pd->flags |= POLYDATA_EDGEFLAG_VALID;
if (gc->state.current.edgeTag)
pd->flags |= POLYDATA_EDGEFLAG_BOUNDARY;
}
void FASTCALL CopyNormalFromGC(__GLcontext *gc, POLYDATA *pd)
{
pd->flags |= POLYDATA_NORMAL_VALID;
pd->normal = gc->state.current.normal;
}
//-------------------------------------------------------------------------------
// Copy material state corresponding to changeBits from GC to mat.
// face defines front or back material to use.
//
void FASTCALL CopyMaterialFromGC(__GLcontext *gc, __GLmatChange *mat,
GLuint changeBits, GLint face)
{
__GLmaterialState *ms;
ms = &gc->state.light.front;
if (face != __GL_FRONTFACE)
ms = &gc->state.light.back;
// Take data from graphics context
if (changeBits & __GL_MATERIAL_AMBIENT)
mat->ambient = ms->ambient;
if (changeBits & __GL_MATERIAL_DIFFUSE)
mat->diffuse = ms->diffuse;
if (changeBits & __GL_MATERIAL_SPECULAR)
mat->specular = ms->specular;
if (changeBits & __GL_MATERIAL_EMISSIVE)
{
mat->emissive.r = ms->emissive.r * gc->oneOverRedVertexScale;
mat->emissive.g = ms->emissive.g * gc->oneOverGreenVertexScale;
mat->emissive.b = ms->emissive.b * gc->oneOverBlueVertexScale;
mat->emissive.a = ms->emissive.a * gc->oneOverAlphaVertexScale;
}
if (changeBits & __GL_MATERIAL_SHININESS)
mat->shininess = ms->specularExponent;
if (changeBits & __GL_MATERIAL_COLORINDEXES)
{
mat->cmapa = ms->cmapa;
mat->cmapd = ms->cmapd;
mat->cmaps = ms->cmaps;
}
}
//-------------------------------------------------------------------------------
// Compute complete vertex state to restore state modified by pdLast vertex.
//
// We have to preserve the following state for a vertex:
// - normal
// - texture
// - color
// - edge flag
// - material
//
// Input:
// dst - where to copy vertex state
// pdStart - we go from this vertex to the beginning of a polyarray to find
// material changes
// pdLast - we have to update vertex state only if the state is changed by
// this vertex
//
void FASTCALL UpdateVertexState(__GLcontext *gc,
POLYARRAY *pa,
SAVEREGION *dst,
POLYDATA *pdStart,
POLYDATA *pdLast)
{
GLuint flags = dst->pd.flags;
GLuint flagsLast = pdLast ? pdLast->flags : 0xFFFFFFFF;
POLYDATA *pd0 = pa->pd0;
ASSERTOPENGL(pdStart >= pd0, "Infinite loop possible!");
// If last vertex changes normal we have to find nearest previous normal
// and propagate it to the dst
if (flagsLast & POLYDATA_NORMAL_VALID && !(flags & POLYDATA_NORMAL_VALID))
{
POLYDATA *pd;
// Find nearest normal
for (pd = pdStart; pd >= pd0; pd--)
{
if (pd->flags & POLYDATA_NORMAL_VALID &&
!(pd->flags & POLYDATA_EVAL_NORMAL))
break;
}
flags |= POLYDATA_NORMAL_VALID;
if (pd < pd0)
// We have not found any normal, so take value from graphics state
CopyNormalFromGC(gc, &dst->pd);
else
dst->pd.normal = pd->normal;
}
// If last vertex changes texture we have to find nearest previous texture
// and propagate it to the dst
if (flagsLast & POLYDATA_TEXTURE_VALID && !(flags & POLYDATA_TEXTURE_VALID))
{
POLYDATA *pd;
// Find latest texture
for (pd = pdStart; pd >= pd0; pd--)
{
if (pd->flags & POLYDATA_TEXTURE_VALID &&
!(pd->flags & POLYDATA_EVAL_TEXCOORD))
break;
}
flags |= POLYDATA_TEXTURE_VALID;
if (pd < pd0)
// We have not found any vertex, so take value from graphics state
CopyTextureFromGC(gc, pa, &dst->pd);
else
dst->pd.texture = pd->texture;
}
// If last vertex changes color we have to find nearest previous color
// and propagate it to the dst
if (flagsLast & POLYDATA_COLOR_VALID && !(flags & POLYDATA_COLOR_VALID))
{
POLYDATA *pd;
// Find latest color
for (pd = pdStart; pd >= pd0; pd--)
{
if (pd->flags & POLYDATA_COLOR_VALID &&
!(pd->flags & POLYDATA_EVAL_COLOR))
break;
}
flags |= POLYDATA_COLOR_VALID;
if (pd < pd0)
// We have not found any vertex, so take value from graphics state
CopyColorFromGC(gc, pa, &dst->pd);
else
dst->pd.colors[0] = pd->colors[0];
}
if (flagsLast & POLYDATA_EDGEFLAG_VALID && !(flags & POLYDATA_EDGEFLAG_VALID))
{
POLYDATA *pd;
// Find latest edge flag
for (pd = pdStart; pd >= pd0; pd--)
{
if (pd->flags & POLYDATA_EDGEFLAG_VALID)
break;
}
flags |= POLYDATA_EDGEFLAG_VALID;
if (pd < pd0)
{
// We have not found any vertex, so take value from graphics state
if (gc->state.current.edgeTag)
flags |= POLYDATA_EDGEFLAG_BOUNDARY;
}
else
flags |= (pd->flags & POLYDATA_EDGEFLAG_BOUNDARY);
}
dst->pd.flags |= flags;
// Now we have to update material state
if (pdLast->flags & (POLYARRAY_MATERIAL_FRONT | POLYARRAY_MATERIAL_BACK))
{
// We have to compute material state for pdLast1, because after the primitive is
// processed, current material state will have changes from pdLast2 vertex.
__GLmatChange *mat;
__GLmatChange *pdMatLast;
POLYDATA *pd;
GLint face;
GLuint matMask;
GLuint changeBits;
for (face = __GL_BACKFACE, matMask = POLYARRAY_MATERIAL_BACK;
face >= 0;
face--, matMask = POLYARRAY_MATERIAL_FRONT
)
{
if (!(pa->flags & matMask))
continue;
// Only reset material data changed by pdLast
if (face == __GL_FRONTFACE)
{
pdMatLast = GetVertexMaterial(pa, pdLast)->front;
changeBits = pdMatLast->dirtyBits;
mat = &dst->front;
// Don't modify color materials if they are in effect!
changeBits &= ~gc->light.front.colorMaterialChange;
}
else
{
pdMatLast = GetVertexMaterial(pa, pdLast)->back;
changeBits = pdMatLast->dirtyBits;
mat = &dst->back;
// Don't modify color materials if they are in effect!
changeBits &= ~gc->light.back.colorMaterialChange;
}
// Don't modify material settings used by this vertex
changeBits &= ~mat->dirtyBits;
if (!changeBits)
continue;
mat->dirtyBits |= changeBits;
// Apply changes from vertices
// We go backwards and apply the latest change
for (pd = pdStart; pd >= pd0; pd--)
{
__GLmatChange *pdMat;
GLuint dirtyBits;
if (pd->flags & matMask)
{
GLuint dirtyBits;
pdMat = GetVertexMaterial(pa, pd)->front + face;
dirtyBits = pdMat->dirtyBits & changeBits;
if (!dirtyBits)
continue;
if (dirtyBits & __GL_MATERIAL_AMBIENT)
{
mat->ambient = pdMat->ambient;
}
if (dirtyBits & __GL_MATERIAL_DIFFUSE)
{
mat->diffuse = pdMat->diffuse;
}
if (dirtyBits & __GL_MATERIAL_SPECULAR)
{
mat->specular = pdMat->specular;
}
if (dirtyBits & __GL_MATERIAL_EMISSIVE)
{
mat->emissive = pdMat->emissive;
}
if (dirtyBits & __GL_MATERIAL_SHININESS)
{
mat->shininess = pdMat->shininess;
}
if (dirtyBits & __GL_MATERIAL_COLORINDEXES)
{
mat->cmapa = pdMat->cmapa;
mat->cmapd = pdMat->cmapd;
mat->cmaps = pdMat->cmaps;
}
// Clear processed bits
changeBits &= ~dirtyBits;
if (!changeBits)
break;
}
}
if (changeBits)
CopyMaterialFromGC (gc, mat, changeBits, face);
dst->pd.flags |= matMask;
}
}
}
//-------------------------------------------------------------------------------------
// Propagate vertex state from GC to the vertex.
//
// Already set vertex data should be preserved.
//
void FASTCALL UpdateVertexStateUsingGC(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *dst)
{
POLYDATA * const pd = &dst->pd;
if (!(pd->flags & POLYDATA_NORMAL_VALID))
CopyNormalFromGC(gc, pd);
if (!(pd->flags & POLYDATA_TEXTURE_VALID))
CopyTextureFromGC(gc, pa, pd);
if (!(pd->flags & POLYDATA_COLOR_VALID))
CopyColorFromGC(gc, pa, pd);
if (!(pd->flags & POLYDATA_EDGEFLAG_VALID))
CopyEdgeFlagFromGC(gc, pd);
if (pa->flags & (POLYARRAY_MATERIAL_FRONT | POLYARRAY_MATERIAL_BACK))
{
// Compute material state for the vertex, using GC
// Do not override material changes in the vertex
__GLmatChange *mat;
GLint face;
GLuint matMask;
GLuint changeBits;
for (face = __GL_BACKFACE, matMask = POLYARRAY_MATERIAL_BACK;
face >= 0;
face--, matMask = POLYARRAY_MATERIAL_FRONT
)
{
GLuint dirtyBits;
if (!(pa->flags & matMask))
continue;
// Don't modify color materials if they are in effect or if they are set
// by pdFirst!
changeBits = 0xFFFFFFFF;
if (face == __GL_FRONTFACE)
{
if (pd->flags & matMask)
changeBits &= ~dst->front.dirtyBits;
changeBits &= ~gc->light.front.colorMaterialChange;
mat = &dst->front;
}
else
{
if (pd->flags & matMask)
changeBits &= ~dst->back.dirtyBits;
changeBits = ~gc->light.back.colorMaterialChange;
mat = &dst->back;
}
// Apply changes from vertices
// We go backwards and remember the latest change
if (changeBits)
{
CopyMaterialFromGC (gc, mat, changeBits, face);
// Update changes for the vertex
pd->flags |= matMask;
mat->dirtyBits |= changeBits;
}
}
}
}
#endif // NEW_PARTIAL_PRIM
//
// extension apis these are not exported
//
void APIENTRY
glAddSwapHintRectWIN(IN GLint x, IN GLint y, IN GLint width, IN GLint height)
{
PLRC plrc = GLTEB_CLTCURRENTRC();
if (plrc == NULL || plrc->dhrc != 0) {
// this api should only be called if there is a generic rc
// currently selected.
return;
}
GLCLIENT_BEGIN( AddSwapHintRectWIN, ADDSWAPHINTRECTWIN )
pMsg->xs = x;
pMsg->ys = y;
pMsg->xe = x + width;
pMsg->ye = y + height;
return;
GLCLIENT_END
}
#ifdef PRIMITIVE_TRACK
static ULONG prim_entries;
static ULONG prim_total = 0;
static ULONG prim_count = 0;
#endif
// Polyarray begin flags. Reset line stipple for new line loop,
// line strip, and polygon.
// Assume that all vertices have the same color.
GLuint aPolyArrayBeginFlags[] =
{
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA, // GL_POINTS
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA, // GL_LINES
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA | POLYARRAY_RESET_STIPPLE, // GL_LINE_LOOP
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA | POLYARRAY_RESET_STIPPLE, // GL_LINE_STRIP
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA, // GL_TRIANGLES
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA, // GL_TRIANGLE_STRIP
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA, // GL_TRIANGLE_FAN
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA, // GL_QUADS
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA, // GL_QUAD_STRIP
POLYARRAY_IN_BEGIN | POLYARRAY_SAME_COLOR_DATA | POLYARRAY_RESET_STIPPLE // GL_POLYGON
};
// If you modify this function, you need to also modify VA_DrawElementsBegin.
void APIENTRY
glcltBegin ( IN GLenum mode )
{
POLYARRAY *pa;
POLYDATA *pd0, *pdFlush;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
__GL_SETUP();
DWORD flags = GET_EVALSTATE (gc);
// The invalid functions within begin/end are detected in glsbAttention.
pa = GLTEB_CLTPOLYARRAY();
// The vertex buffer is used as follows. The first entry contains the
// POLYARRAY structure. The incoming vertices will be saved beginning
// at a following entry. As an optimization, the POLYARRAY structure is
// kept in the TEB. When glEnd is called, it will be copied to the
// vertex buffer.
#ifndef _WIN95_
ASSERTOPENGL(sizeof(POLYARRAY) <= sizeof(NtCurrentTeb()->glReserved1),
"POLYARRAY and TEB sizes mismatch!");
#endif
ASSERTOPENGL(sizeof(POLYDATA) == sizeof(__GLvertex),
"POLYDATA and __GLvertex sizes mismatch!");
ASSERTOPENGL(sizeof(POLYARRAY) <= sizeof(POLYDATA),
"POLYARRAY and POLYDATA sizes mismatch!");
// Keep vertex structure a multiple of 4 bytes (or 8 bytes).
// The vertex buffer must be 4-byte aligned.
ASSERTOPENGL(!(sizeof(POLYDATA) & 0x3), "bad POLYDATA size!");
ASSERTOPENGL(!((ULONG_PTR)pa->pdBuffer0 & 0x3), "POLYDATA should be aligned!\n");
// If we are already in the begin/end bracket, return an error.
if (pa->flags & POLYARRAY_IN_BEGIN)
{
GLSETERROR(GL_INVALID_OPERATION);
return;
}
if ((GLuint) mode > GL_POLYGON)
{
GLSETERROR(GL_INVALID_ENUM);
return;
}
// if there are any pending API calls that affect the Evaluator state
// then flush the message buffer
if (flags & (__EVALS_AFFECTS_ALL_EVAL|
__EVALS_AFFECTS_1D_EVAL|
__EVALS_AFFECTS_2D_EVAL))
glsbAttention ();
// Flush the command buffer if the vertex buffer is nearly full.
// Otherwise, just continue with the next available vertex buffer entry.
if (pa->pdBufferNext > pa->pdBufferMax - MIN_POLYDATA_BATCH_SIZE)
{
#ifdef PRIMITIVE_TRACK
DbgPrint("* Min-not-present flush\n");
#endif
glsbAttention(); // it resets pdBufferNext pointer too
ASSERTOPENGL(pa->nextMsgOffset == PA_nextMsgOffset_RESET_VALUE,
"bad nextMsgOffset\n");
}
// Batch POLYARRAY command in the command buffer.
// We want to leave enough room to accomodate at least one invalid command
// that may be batched in the begin/end bracket. When glsbAttention,
// glsbAttentionAlt, or glcltEnd is called, we will remove these invalid
// commands.
//
// Combine adjacent DrawPolyArray commands into one command.
// request DRAWPOLYARRAY_LARGE structure to make room for invalid commands
GLCLIENT_BEGIN(DrawPolyArray, DRAWPOLYARRAY_LARGE)
// need msg pointer to update pa later
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *) pMsg;
if (pa->nextMsgOffset == CurrentOffset)
{
// rewind command buffer pointer
pMsgBatchInfo->NextOffset = CurrentOffset;
((BYTE *) pMsgDrawPolyArray) -=
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY));
// chain adjacent DrawPolyArray commands
((POLYARRAY *) pMsgDrawPolyArray->paLast)->paNext
= (POLYARRAY *) pa->pdBufferNext;
((POLYARRAY *) pMsgDrawPolyArray->paLast)
= (POLYARRAY *) pa->pdBufferNext;
}
else
{
// resize the msg to the real size
pMsgBatchInfo->NextOffset = CurrentOffset
+ GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY));
// remember the end of the primitive command
pa->nextMsgOffset = pMsgBatchInfo->NextOffset;
// start of a new chain
pMsgDrawPolyArray->pa0 =
pMsgDrawPolyArray->paLast = (PVOID) pa->pdBufferNext;
}
GLCLIENT_END
// Compute the start of the primitive. A new primitive always begins with a
// POLYARRAY entry immediately followed by vertex entries.
pd0 = pa->pdBufferNext + 1;
// Initialize first polydata.
pd0->flags = 0;
ASSERTOPENGL(pd0->color == &pd0->colors[__GL_FRONTFACE],
"bad color pointer!\n");
// Initialize the polyarray structure in the TEB.
pa->flags = aPolyArrayBeginFlags[mode];
pa->pdNextVertex =
pa->pd0 = pd0;
pa->primType = mode;
pa->pdCurColor =
pa->pdCurNormal =
pa->pdCurTexture =
pa->pdCurEdgeFlag = NULL;
pa->paNext = NULL;
pa->nIndices = 0;
pa->aIndices = NULL; // identity mapping
pa->pdLastEvalColor =
pa->pdLastEvalNormal =
pa->pdLastEvalTexture = NULL;
// Compute the flush vertex for this primitive. When the flush vertex is
// reached, we will have accumulated enough vertices to render a partially
// composed primitive.
pdFlush = pa->pdBufferMax;
switch (mode)
{
case GL_POINTS:
case GL_LINE_STRIP:
case GL_TRIANGLE_FAN:
break;
case GL_LINE_LOOP:
// Line loop reserves an additional end vertex to close the loop.
pdFlush--;
break;
case GL_POLYGON:
// The polygon decomposer can only handle up to
// __GL_MAX_POLYGON_CLIP_SIZE vertices.
if (pdFlush > pd0 + __GL_MAX_POLYGON_CLIP_SIZE - 1)
pdFlush = pd0 + __GL_MAX_POLYGON_CLIP_SIZE - 1;
break;
case GL_LINES:
case GL_TRIANGLE_STRIP:
case GL_QUAD_STRIP:
// number of vertices must be a multiple of 2
if ((pdFlush - pd0 + 1) % 2)
pdFlush--;
break;
case GL_TRIANGLES:
// number of vertices must be a multiple of 3
switch ((pdFlush - pd0 + 1) % 3)
{
case 2: pdFlush--; // fall through
case 1: pdFlush--;
}
break;
case GL_QUADS:
// number of vertices must be a multiple of 4
switch ((pdFlush - pd0 + 1) % 4)
{
case 3: pdFlush--; // fall through
case 2: pdFlush--; // fall through
case 1: pdFlush--;
}
break;
}
pa->pdFlush = pdFlush;
#ifdef PRIMITIVE_TRACK
DbgPrint("glcltBegin with %3d space left\n", pdFlush-pd0+1);
prim_entries = 0;
#endif
}
// Special version of Begin for DrawElements.
// If you modify this function, you need to also modify glcltBegin.
void FASTCALL VA_DrawElementsBegin(POLYARRAY *pa, GLenum mode, GLsizei count)
{
POLYDATA *pd0;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
GLint maxVertexCount;
// The vertex buffer is used as follows. The first entry contains the
// POLYARRAY structure. The incoming vertices will be saved beginning
// at a following entry. As an optimization, the POLYARRAY structure is
// kept in the TEB. When VA_DrawElementsEnd is called, it will be copied
// to the vertex buffer.
// We don't handle Points, Line Loop, and Polygon here. They should
// have been sent to Begin/End.
ASSERTOPENGL(mode != GL_POINTS && mode != GL_LINE_LOOP && mode != GL_POLYGON,
"Primitive type not handled\n");
// Flush the command buffer if the vertex buffer will overflow.
// Otherwise, just continue with the next available vertex buffer entry.
// Maximum number of vertex entries that we will handle in next batch
maxVertexCount = min(count,VA_DRAWELEM_MAP_SIZE)
// Add maximum number of entries used for index map
+ (VA_DRAWELEM_INDEX_SIZE + sizeof(POLYDATA) - 1) / sizeof(POLYDATA)
// Reserve an extra vertex entry to prevent calling
// PolyArrayFlushPartialPrimitive in the Vertex routines.
// It should call VA_DrawElementsFlushPartialPrimitive instead.
+ 1
// Add an entry for POLYARRAY
+ 1
// Add a few more entries to be safe
+ 4;
if (pa->pdBufferNext > pa->pdBufferMax - maxVertexCount + 1)
{
#ifdef PRIMITIVE_TRACK
DbgPrint("* Min-not-present flush\n");
#endif
glsbAttention(); // it resets pdBufferNext pointer too
ASSERTOPENGL(pa->nextMsgOffset == PA_nextMsgOffset_RESET_VALUE,
"bad nextMsgOffset\n");
}
// The vertex buffer must have at least maxVertexCount (currently <= 277)
// entries.
ASSERTOPENGL(maxVertexCount <= pa->pdBufferMax - pa->pdBuffer0 + 1,
"vertex buffer is too small!\n");
// Batch POLYARRAY command in the command buffer.
// Combine adjacent DrawPolyArray commands into one command.
GLCLIENT_BEGIN(DrawPolyArray, DRAWPOLYARRAY)
// need msg pointer to update pa later
pMsgDrawPolyArray = pMsg;
if (pa->nextMsgOffset == CurrentOffset)
{
// rewind command buffer pointer
pMsgBatchInfo->NextOffset = CurrentOffset;
((BYTE *) pMsgDrawPolyArray) -=
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY));
// chain adjacent DrawPolyArray commands
((POLYARRAY *) pMsgDrawPolyArray->paLast)->paNext
= (POLYARRAY *) pa->pdBufferNext;
((POLYARRAY *) pMsgDrawPolyArray->paLast)
= (POLYARRAY *) pa->pdBufferNext;
}
else
{
// remember the end of the primitive command
pa->nextMsgOffset = pMsgBatchInfo->NextOffset;
// start of a new chain
pMsgDrawPolyArray->pa0 =
pMsgDrawPolyArray->paLast = (PVOID) pa->pdBufferNext;
}
GLCLIENT_END
// Compute the start of the primitive. A new primitive always begins with a
// POLYARRAY entry immediately followed by vertex entries.
pd0 = pa->pdBufferNext + 1;
// Initialize first polydata.
pd0->flags = 0;
ASSERTOPENGL(pd0->color == &pd0->colors[__GL_FRONTFACE],
"bad color pointer!\n");
// Initialize the polyarray structure in the TEB.
pa->flags = aPolyArrayBeginFlags[mode] | POLYARRAY_SAME_POLYDATA_TYPE;
pa->pdNextVertex =
pa->pd0 = pd0;
pa->primType = mode;
pa->pdCurColor =
pa->pdCurNormal =
pa->pdCurTexture =
pa->pdCurEdgeFlag = NULL;
pa->paNext = NULL;
pa->nIndices = 0;
pa->aIndices = PA_aIndices_INITIAL_VALUE; // this is updated in End
// For consistency
pa->pdLastEvalColor =
pa->pdLastEvalNormal =
pa->pdLastEvalTexture = NULL;
// The flush vertex for this primitive should never be reached. We have
// reserved enough room for a vertex batch. Set it to maximum and assert
// that we never reach the vertex in PolyArrayFlushPartialPrimitive!
pa->pdFlush = pa->pdBufferMax;
#ifdef PRIMITIVE_TRACK
DbgPrint("VA_DrawElementsBegin with %3d space left\n", pa->pdBufferMax-pd0+1);
#endif
return;
}
void APIENTRY
glcltEnd ( void )
{
POLYARRAY *pa;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
#ifdef NEW_PARTIAL_PRIM
__GL_SETUP();
pa = gc->paTeb;
#else
pa = GLTEB_CLTPOLYARRAY();
#endif
// Flush invalid commands accumulated in the command buffer if there is any.
glsbAttention();
// If we are not in the begin/end bracket, return an error.
if (!(pa->flags & POLYARRAY_IN_BEGIN))
{
GLSETERROR(GL_INVALID_OPERATION);
return;
}
// Clear the POLYARRAY_IN_BEGIN flag in the TEB. We are now out of
// the begin/end bracket.
pa->flags &= ~POLYARRAY_IN_BEGIN;
// Clear POLYARRAY_SAME_COLOR_DATA flag if the primitive uses more than
// one color. Also clear the flag if an evaluator is used. We cannot
// tell if an evaluator modifies the color on the client side.
// If there are evaluator calls in this polyarray that also generate
// color, then too, remove the POLYARRAY_SAME_COLOR_DATA flag
if ((pa->pdCurColor != pa->pd0) ||
((pa->pd0->flags & POLYDATA_COLOR_VALID) &&
(pa->flags & POLYARRAY_PARTIAL_BEGIN)) ||
(pa->pdLastEvalColor != NULL))
pa->flags &= ~POLYARRAY_SAME_COLOR_DATA;
// Compute nIndices. It is the final number of vertices passed to the low
// level render routines and is different from the number of polydata's
// accumulated. The final number includes the reserved vertices and the
// accumulated vertices.
pa->nIndices += (GLint)((ULONG_PTR)(pa->pdNextVertex - pa->pd0));
/*
// If there are no vertices and no attributes to propagate to a next
// primitive, we can remove this polyarray from the batch
if (pa->nIndices == 0 && pa->pdNextVertex->flags == 0)
return;
*/
#ifdef NEW_PARTIAL_PRIM
if (pa->primType == GL_LINE_LOOP)
{
if (pa->nIndices > 1)
{
// We have to add an additional vertex at the end. It could be
// - saved vertex if primitive is partial begin OR
// - first vertex
// We will change primitive type to GL_LINE_STRIP after we update
// current color, normal, texture, edge flag in __glim_DrawPolyArray
//
POLYDATA *pd = pa->pdNextVertex++;
SAVEREGION firstVertex;
SAVEREGION lastVertex;
SAVEREGION *reg;
// We have to propagate vertex state for next primitive before we
// insert the vertex.
pa->nIndices++;
if (pa->flags & POLYARRAY_PARTIAL_BEGIN)
{ // This is partial primitive
reg = &gc->vertex.regSaved;
}
else
{ // This is non partial primitive
SaveSharedVertex(&firstVertex, pa->pd0, pa);
reg = &firstVertex;
}
// Save pdNextVertex before we override it
SaveSharedVertex(&lastVertex, pd, pa);
// Insert first vertex at the end
RestoreSharedVertex(pd, reg, pa);
// Compute state for last vertex, because we have to override
// changes made by first vertex.
UpdateVertexState(gc, pa, &lastVertex, pd-1, pd);
// pdNextVertex will have state for a next primitive
RestoreSharedVertex(pa->pdNextVertex, &lastVertex, pa);
}
pa->primType = GL_LINE_STRIP;
}
#else // NEW_PARTIAL_PRIM
if (pa->primType == GL_LINE_LOOP)
pa->nIndices++; // add one extra vertex when a line loop is closed.
// It's okay not to advance pdBufferNext since we
// don't need attributes after they've been
// processed.
#endif // NEWFLUSH
// Save the POLYARRAY structure in the batch.
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *)
((BYTE *) pa->pMsgBatchInfo + pa->nextMsgOffset -
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY)));
*(POLYARRAY *) pMsgDrawPolyArray->paLast = *pa;
#ifdef PRIMITIVE_TRACK
prim_entries += pa->pdNextVertex-pa->pd0;
prim_total += prim_entries;
prim_count++;
DbgPrint("glcltEnd with %3d polydata entries, %3d now, avg %d\n",
prim_entries, pa->pdNextVertex-pa->pd0, prim_total/prim_count);
#endif
// Advance polyarray batch pointer.
// Skip a vertex because it may contain attributes for the current batch.
pa->pdBufferNext = pa->pdNextVertex + 1;
}
void FASTCALL VA_DrawElementsEnd(POLYARRAY *pa)
{
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
ASSERTOPENGL(pa->flags & POLYARRAY_IN_BEGIN, "not in begin\n");
ASSERTOPENGL(pa->aIndices && (pa->aIndices != PA_aIndices_INITIAL_VALUE),
"no output index array!\n");
// Clear the POLYARRAY_IN_BEGIN flag in the TEB. We are now out of
// the begin/end bracket.
pa->flags &= ~POLYARRAY_IN_BEGIN;
// Clear POLYARRAY_SAME_COLOR_DATA flag if the primitive uses more than
// one color.
if (pa->pdCurColor != pa->pd0)
pa->flags &= ~POLYARRAY_SAME_COLOR_DATA;
// Save the POLYARRAY structure in the batch.
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *)
((BYTE *) pa->pMsgBatchInfo + pa->nextMsgOffset -
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY)));
*(POLYARRAY *) pMsgDrawPolyArray->paLast = *pa;
#ifdef PRIMITIVE_TRACK
prim_count++;
DbgPrint("VA_DrawElementsEnd called\n");
#endif
// Advance polyarray batch pointer.
pa->pdBufferNext = (POLYDATA *) (pa->aIndices +
(pa->nIndices + sizeof(POLYDATA) - 1) / sizeof(POLYDATA) * sizeof(POLYDATA));
}
#ifdef NEW_PARTIAL_PRIM
typedef void (*PFNSAVERESTORE)(__GLcontext*, POLYARRAY*, SAVEREGION*);
void FASTCALL SaveFirstVertex(__GLcontext* gc, POLYARRAY* pa)
{
if (!(pa->flags & POLYARRAY_PARTIAL_BEGIN))
{
GLuint flags = pa->flags & (POLYARRAY_MATERIAL_FRONT | POLYARRAY_MATERIAL_BACK);
SaveSharedVertex(&gc->vertex.regSaved, pa->pd0, pa);
// Save vertex state to restore it later
pa->flags |= (POLYARRAY_MATERIAL_FRONT | POLYARRAY_MATERIAL_BACK);
UpdateVertexStateUsingGC(gc, pa, &gc->vertex.regSaved);
// Restore pa flags
pa->flags &= ~(POLYARRAY_MATERIAL_FRONT | POLYARRAY_MATERIAL_BACK);
pa->flags |= flags;
}
}
// This function is used by GL_POINTS, GL_LINES, GL_TRIANGLES, GL_QUADS,
// because for these cases parts of broken primitive are not connected.
// We also clear POLYARRAY_PARTIAL_END flag, because in DrawPolyArray we
// can remove this partial primitive if it is clipped out (we do not have
// to preserve line stipple for these primitives).
//
void SaveEmpty(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
pa->flags &= ~POLYARRAY_PARTIAL_END;
}
// A line loop is the same as a line strip except that a final segment is
// added from the final specified vertex to the first vertex. We convert
// the line loop into a strip here. We have to save first vertex of line
// loop only if the primitive is not partial begin (i.e. it is not a middle
// part of a line loop broken into more than two polyarrays).
// We do not clear POLYARRAY_PARTIAL_END flag, because in DrawPolyArray we
// can not remove this partial primitive if it is clipped out to preserve
// line stipple.
// Index mapping is always indentity for GL_LINE_LOOP.
// We save first vertex in graphics state, because it will be restored in glcltEnd.
// We change line loop to line strip here.
//
// When the first vertex is saved we have preserve its state to restore it in the next part
// of partial primitive.
//
void SaveLineLoop(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
POLYDATA* pd;
SaveFirstVertex(gc, pa);
pd = pa->pdNextVertex-1;
SaveSharedVertex(r, pd, pa);
pa->primType = GL_LINE_STRIP;
}
// For GL_LINE_STRIP we save last vertex. We do not clear POLYARRAY_PARTIAL_END flag,
// because in DrawPolyArray we can not remove this partial primitive if it is clipped
// out to preserve line stipple.
// We do not preserve index because it is assumed to be 0 for the next part
// of the primitive.
//
void SaveLineStrip(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
POLYDATA *pd;
if (pa->aIndices)
pd = &pa->pd0[pa->aIndices[pa->nIndices-1]];
else
pd = pa->pdNextVertex-1;
SaveSharedVertex(r, pd, pa);
}
// For GL_TRIANLE_FAN we save first and last vertices. Line stipple is reset for every
// triangle in a fan, so we can clear POLYARRAY_PARTIAL_END flag
// We do not preserve indices because they are assumed to be 0 and 1 for the next part
// of the primitive.
//
// When we restore first vertex it must have the same state as when we saved it.
// But this state should no affect vertex last vertex.
// So we have to compute vertex state for the first when we save it and compute
// vertex state for the lase vertex when we restore it.
// First vertex and its state should be computed only once, even if a primitive is broken
// several times.
//
void SaveTFan(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
if (pa->aIndices)
{
POLYDATA *pd;
GLubyte *aIndices = pa->aIndices;
pd = &pa->pd0[aIndices[0]];
SaveSharedVertex(&gc->vertex.regSaved, pd, pa);
pd = &pa->pd0[aIndices[pa->nIndices-1]];
SaveSharedVertex(r, pd, pa);
}
else
{
POLYDATA *pd;
// Compute state for the first vertex only for the very first part
// of partial primitive
SaveFirstVertex(gc, pa);
pd = pa->pdNextVertex-1;
SaveSharedVertex(r, pd, pa);
}
pa->flags &= ~POLYARRAY_PARTIAL_END;
}
// This function handles GL_TRIANGLE_STRIP and GL_QUAD_STRIP.
// We save two last vertices.
// Line stipple is reset for every triangle (quad) in a strip, so we can clear
// POLYARRAY_PARTIAL_END flag.
// We do not preserve indices because they are assumed to be 0 and 1 for the
// next part of the primitive.
//
// We have to save 2 last vertices: v1 and v2 (last vertex).
// Next part of partial primitive will start with vertex v1.
// v2 could change vertex state, so we have to compute vertex state for v1 and
// restore it. This should be done only for non indexed case.
//
void SaveTStrip(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
if (pa->aIndices)
{
POLYDATA *pd;
GLint nIndices = pa->nIndices;
GLubyte *aIndices = pa->aIndices;
pd = &pa->pd0[aIndices[nIndices-2]];
SaveSharedVertex(r, pd, pa);
pd = &pa->pd0[aIndices[nIndices-1]];
SaveSharedVertex(r+1, pd, pa);
}
else
{
POLYDATA *pd = pa->pdNextVertex-2;
SaveSharedVertex(r, pd, pa);
// Compute vertex state, changed by vertex pd+1
UpdateVertexState(gc, pa, r, pd-1, pd+1);
pd++;
SaveSharedVertex(r+1, pd, pa);
}
pa->flags &= ~POLYARRAY_PARTIAL_END;
}
// For GL_POLYGON we first and last two vertices, because we do not know
// if the last vertex of this part is the last vertex for the primitive. We need this
// information to compute edge flag for the last vertex.
// We remove last vertex from the primitive. It will be processed in the next part of
// the primitive.
// We need POLYARRAY_PARTIAL_END flag when we compute edge flag in DrawPolyArray.
//
void SavePolygon(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
POLYDATA *pd;
// Compute state for the first vertex only for the very first part
// of partial primitive
SaveFirstVertex(gc, pa);
pd = pa->pdNextVertex-2;
SaveSharedVertex(r, pd, pa);
r++;
pd = pa->pdNextVertex-1;
SaveSharedVertex(r, pd, pa);
// Remove last vertex from the primitive
pa->nIndices--;
pa->pdNextVertex--;
}
PFNSAVERESTORE pfnSaveFunc[] =
{
SaveEmpty, // GL_POINTS
SaveEmpty, // GL_LINES
SaveLineLoop, // GL_LINE_LOOP
SaveLineStrip, // GL_LINE_STRIP
SaveEmpty, // GL_TRIANGLES
SaveTStrip, // GL_TRIANGLE_STRIP
SaveTFan, // GL_TRIANGLE_FAN
SaveEmpty, // GL_QUADS
SaveTStrip, // GL_QUAD_STRIP
SavePolygon // GL_POLYGON
};
// This function is used by GL_POINTS, GL_LINES, GL_TRIANGLES, GL_QUADS,
// because for these cases parts of broken primitive are not connected. We
// also clear POLYARRAY_PARTIAL_BEGIN flag, because in DrawPolyArray we can
// remove this partial primitive if it is clipped out (we do not have to
// preserve line stipple for these primitives).
//
void RestoreEmpty(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
pa->flags &= ~POLYARRAY_PARTIAL_BEGIN;
}
// For GL_LINE_LOOP and GL_LINE_STRIP last vertex from previous part will be the first.
// We will convert line loop into line strip in glcltEnd or PolyArrayFlushPartialPrimitive
// To preserve line stipple we need POLYARRAY_PARTIAL_BEGIN flag.
//
void RestoreLineStrip(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
POLYDATA *pd = pa->pdNextVertex++;
RestoreSharedVertex(pd, r, pa);
}
// For GL_TRIANGLE_STRIP and GL_QUAD_STRIP we have to add two saved
// vertices at the beginning of primitive.
// We do not to preserve line stipple, so we clear POLYARRAY_PARTIAL_BEGIN flag.
//
void RestoreTStrip(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
POLYDATA *pd = pa->pdNextVertex++;
RestoreSharedVertex(pd, r, pa);
r++;
pd = pa->pdNextVertex++;
RestoreSharedVertex(pd, r, pa);
pa->flags &= ~POLYARRAY_PARTIAL_BEGIN;
}
// For GL_TRIANGLE_FAN we have to add two saved vertices at the beginning
// of primitive. Last vertex should have a state, not modified by previous vertex.
// We do not to preserve line stipple, so we clear POLYARRAY_PARTIAL_BEGIN flag.
//
void RestoreTFan(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
POLYDATA *pd = pa->pdNextVertex++;
RestoreSharedVertex(pd, &gc->vertex.regSaved, pa);
pd = pa->pdNextVertex++;
if (!pa->aIndices)
// Compute state for last vertex, because it could be modified
// by first vertex
UpdateVertexStateUsingGC(gc, pa, r);
RestoreSharedVertex(pd, r, pa);
}
// For GL_POLYGON we have to add three saved vertices at the beginning of primitive.
// We need POLYARRAY_PARTIAL_BEGIN flag to compute edge flag in DrawPolyArray.
//
void RestorePolygon(__GLcontext *gc, POLYARRAY *pa, SAVEREGION *r)
{
POLYDATA *pd = pa->pdNextVertex++;
RestoreSharedVertex(pd, &gc->vertex.regSaved, pa);
// Compute state for this vertex, because it could be modified
// by first vertex
UpdateVertexStateUsingGC(gc, pa, r);
pd = pa->pdNextVertex++;
RestoreSharedVertex(pd, r, pa);
r++;
pd = pa->pdNextVertex++;
RestoreSharedVertex(pd, r, pa);
}
PFNSAVERESTORE pfnRestoreFunc[] =
{
RestoreEmpty, // GL_POINTS
RestoreEmpty, // GL_LINES
RestoreLineStrip, // GL_LINE_LOOP
RestoreLineStrip, // GL_LINE_STRIP
RestoreEmpty, // GL_TRIANGLES
RestoreTStrip, // GL_TRIANGLE_STRIP
RestoreTFan, // GL_TRIANGLE_FAN
RestoreEmpty, // GL_QUADS
RestoreTStrip, // GL_QUAD_STRIP
RestorePolygon // GL_POLYGON
};
#endif // NEW_PARTIAL_PRIM
// Number of reserved vertices for partial Begin.
GLint nReservedIndicesPartialBegin[] =
{
0, // GL_POINTS
0, // GL_LINES
1, // GL_LINE_LOOP
1, // GL_LINE_STRIP
0, // GL_TRIANGLES
2, // GL_TRIANGLE_STRIP
2, // GL_TRIANGLE_FAN
0, // GL_QUADS
2, // GL_QUAD_STRIP
3 // GL_POLYGON
};
// If you modify this function, you need to also modify
// VA_DrawElementsFlushPartialPrimitive.
void FASTCALL PolyArrayFlushPartialPrimitive()
{
POLYARRAY *pa;
POLYDATA *pd0, *pdFlush;
GLenum mode;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
GLuint paFlags;
#ifdef NEW_PARTIAL_PRIM
SAVEREGION savereg[3]; // Temporary storage for vertices, shared between
#endif // NEW_PARTIAL_PRIM // parts of decomposed primitive
__GL_SETUP();
pa = gc->paTeb;
#ifdef PRIMITIVE_TRACK
prim_entries += pa->pdNextVertex-pa->pd0;
DbgPrint("* Flush partial primitive with %d polydata entries\n",
pa->pdNextVertex-pa->pd0);
#endif
ASSERTOPENGL(pa->flags & POLYARRAY_IN_BEGIN, "not in begin\n");
ASSERTOPENGL(!pa->aIndices || (pa->aIndices == PA_aIndices_INITIAL_VALUE),
"Flushing DrawElements unexpected!\n");
// Flush invalid commands accumulated in the command buffer if there is any.
glsbAttention();
// Clear the POLYARRAY_IN_BEGIN flag in the TEB. We are now out of
// the begin/end bracket temporarily. glsbAttention does not flush
// unless the flag is clear.
pa->flags &= ~POLYARRAY_IN_BEGIN;
// Mark it as a partially completed primitive batch.
pa->flags |= POLYARRAY_PARTIAL_END;
// Clear POLYARRAY_SAME_COLOR_DATA flag if the primitive uses more than
// one color. Also clear the flag if an evaluator is used. We cannot
// tell if an evaluator modifies the color on the client side.
if ((pa->pdCurColor != pa->pd0) ||
((pa->pd0->flags & POLYDATA_COLOR_VALID) &&
(pa->flags & POLYARRAY_PARTIAL_BEGIN)) ||
(pa->pdLastEvalColor != pa->pd0))
pa->flags &= ~POLYARRAY_SAME_COLOR_DATA;
// Save some pa flags for next partial primitive.
// Need to preserve POLYARRAY_CLAMP_COLOR flag in dlist playback.
#ifdef NEW_PARTIAL_PRIM
// We have to preserve material flags to handle first vertex
//
paFlags = pa->flags & (POLYARRAY_SAME_POLYDATA_TYPE |
POLYARRAY_SAME_COLOR_DATA |
POLYARRAY_TEXTURE1 |
POLYARRAY_TEXTURE2 |
POLYARRAY_TEXTURE3 |
POLYARRAY_TEXTURE4 |
POLYARRAY_VERTEX2 |
POLYARRAY_VERTEX3 |
POLYARRAY_VERTEX4 |
POLYDATA_MATERIAL_FRONT |
POLYDATA_MATERIAL_BACK |
POLYARRAY_CLAMP_COLOR);
#else
paFlags = pa->flags & (POLYARRAY_SAME_POLYDATA_TYPE |
POLYARRAY_SAME_COLOR_DATA |
POLYARRAY_CLAMP_COLOR);
#endif
// Compute nIndices. It is the final number of vertices passed to the low
// level render routines and is different from the number of polydata's
// accumulated. The final number includes the reserved vertices and the
// accumulated vertices.
pa->nIndices += (GLint)((ULONG_PTR)(pa->pdNextVertex - pa->pd0));
// Save states before flushing the batch.
mode = pa->primType;
#ifdef NEW_PARTIAL_PRIM
// Save shared vertices for the next part of the partial primitive
pfnSaveFunc[mode](gc, pa, savereg);
#endif // NEW_PARTIAL_PRIM
// Save the POLYARRAY structure in the batch.
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *)
((BYTE *) pa->pMsgBatchInfo + pa->nextMsgOffset -
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY)));
*(POLYARRAY *) pMsgDrawPolyArray->paLast = *pa;
// Flush the command buffer and reset pointer for the next batch.
// If we are compiling poly array primitive in dlist, record the last poly
// data record.
if (gc->dlist.beginRec)
{
// Record the poly data.
__glDlistCompilePolyData(gc, GL_FALSE);
// We just recorded this vertex, don't record it in the compile
// code again!
gc->dlist.skipPolyData = GL_TRUE;
if (gc->dlist.mode == GL_COMPILE_AND_EXECUTE)
glsbAttention(); // reset pdBufferNext pointer too!
else
glsbResetBuffers(TRUE); // reset pointers but no execution
}
else
{
glsbAttention(); // reset pdBufferNext pointer too!
}
ASSERTOPENGL(pa->nextMsgOffset == PA_nextMsgOffset_RESET_VALUE,
"bad nextMsgOffset\n");
// Batch new POLYARRAY command in the command buffer.
GLCLIENT_BEGIN(DrawPolyArray, DRAWPOLYARRAY)
// need msg pointer to update pa later
pMsgDrawPolyArray = pMsg;
// start of a new chain
pMsgDrawPolyArray->pa0 =
pMsgDrawPolyArray->paLast = (PVOID) pa->pdBufferNext;
// remember the end of the primitive command
pa->nextMsgOffset = pMsgBatchInfo->NextOffset;
GLCLIENT_END
#ifdef NEW_PARTIAL_PRIM
// Compute the start of the PARTIAL primitive. A partial primitive begins
// with a POLYARRAY entry followed by vertex entries. We DO NOT not need to
// reserve additional vertex entries at the beginning for connectivity
// between decomposed primitives. Because we just add them at the beginning
pd0 = pa->pdBufferNext + 1;
#else
// Compute the start of the PARTIAL primitive. A partial primitive begins
// with a POLYARRAY entry followed by vertex entries. We need to
// reserve additional vertex entries at the beginning for connectivity
// between decomposed primitives.
pd0 = pa->pdBufferNext + 1 + nReservedIndicesPartialBegin[mode];
#endif // NEW_PARTIAL_PRIM
// Initialize first polydata.
pd0->flags = 0;
ASSERTOPENGL(pd0->color == &pd0->colors[__GL_FRONTFACE],
"bad color pointer!\n");
// Initialize the polyarray structure in the TEB.
pa->flags = POLYARRAY_IN_BEGIN | POLYARRAY_PARTIAL_BEGIN | paFlags;
pa->pdNextVertex =
pa->pd0 = pd0;
pa->primType = mode;
pa->paNext = NULL;
#ifdef NEW_PARTIAL_PRIM
pa->nIndices = 0; // WE do not reserve any vertices
#else
pa->nIndices = nReservedIndicesPartialBegin[mode];
#endif // NEW_PARTIAL_PRIM
pa->aIndices = NULL; // identity mapping
pa->pdCurColor =
pa->pdCurNormal =
pa->pdCurTexture =
pa->pdCurEdgeFlag =
pa->pdLastEvalColor =
pa->pdLastEvalNormal =
pa->pdLastEvalTexture = NULL;
// Compute the flush vertex for this primitive. When the flush vertex is
// reached, we will have accumulated enough vertices to render a partially
// composed primitive.
pdFlush = pa->pdBufferMax;
switch (mode)
{
case GL_POINTS:
case GL_LINE_STRIP:
case GL_TRIANGLE_FAN:
break;
case GL_LINE_LOOP:
// Line loop reserves an additional end vertex to close the loop.
pdFlush--;
break;
case GL_POLYGON:
// The polygon decomposer can only handle up to
// __GL_MAX_POLYGON_CLIP_SIZE vertices. We also need to give
// allowance for 3 vertices in the decomposed polygons.
if (pdFlush > (pd0 - 3) + __GL_MAX_POLYGON_CLIP_SIZE - 1)
pdFlush = (pd0 - 3) + __GL_MAX_POLYGON_CLIP_SIZE - 1;
ASSERTOPENGL(nReservedIndicesPartialBegin[GL_POLYGON] == 3,
"bad reserved size!\n");
break;
case GL_LINES:
case GL_TRIANGLE_STRIP:
case GL_QUAD_STRIP:
// number of vertices must be a multiple of 2
if ((pdFlush - pd0 + 1) % 2)
pdFlush--;
break;
case GL_TRIANGLES:
// number of vertices must be a multiple of 3
switch ((pdFlush - pd0 + 1) % 3)
{
case 2: pdFlush--; // fall through
case 1: pdFlush--;
}
break;
case GL_QUADS:
// number of vertices must be a multiple of 4
switch ((pdFlush - pd0 + 1) % 4)
{
case 3: pdFlush--; // fall through
case 2: pdFlush--; // fall through
case 1: pdFlush--;
}
break;
}
pa->pdFlush = pdFlush;
#ifdef NEW_PARTIAL_PRIM
// Add saved vertices into the new part of the primitive
pfnRestoreFunc[mode](gc, pa, savereg);
#endif // NEW_PARTIAL_PRIM
}
// Special version of Flush for DrawElements.
// If you modify this function, you need to also modify
// PolyArrayFlushPartialPrimitive.
void FASTCALL VA_DrawElementsFlushPartialPrimitive(POLYARRAY *pa, GLenum mode)
{
POLYDATA *pd0;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
GLuint paFlags;
#ifdef NEW_PARTIAL_PRIM
SAVEREGION savereg[3]; // Temporary storage for vertices, shared between
#endif // NEW_PARTIAL_PRIM // parts of decomposed primitive
__GL_SETUP();
#ifdef PRIMITIVE_TRACK
DbgPrint("VA_DrawElementsFlushPartialPrimitive called\n");
#endif
// We don't handle Points, Line Loop, and Polygon here. They should
// have been sent to Begin/End.
ASSERTOPENGL(mode != GL_POINTS && mode != GL_LINE_LOOP && mode != GL_POLYGON,
"Primitive type not handled\n");
ASSERTOPENGL(pa->flags & POLYARRAY_IN_BEGIN, "not in begin\n");
ASSERTOPENGL(pa->aIndices && (pa->aIndices != PA_aIndices_INITIAL_VALUE),
"no output index array!\n");
// Clear the POLYARRAY_IN_BEGIN flag in the TEB. We are now out of
// the begin/end bracket temporarily. glsbAttention does not flush
// unless the flag is clear.
pa->flags &= ~POLYARRAY_IN_BEGIN;
// Mark it as a partially completed primitive batch.
pa->flags |= POLYARRAY_PARTIAL_END;
// Clear POLYARRAY_SAME_COLOR_DATA flag if the primitive uses more than
// one color.
if (pa->pdCurColor != pa->pd0)
pa->flags &= ~POLYARRAY_SAME_COLOR_DATA;
// Save some pa flags for next partial primitive.
paFlags = pa->flags & (POLYARRAY_SAME_COLOR_DATA |
POLYARRAY_TEXTURE1 |
POLYARRAY_TEXTURE2 |
POLYARRAY_TEXTURE3 |
POLYARRAY_TEXTURE4 |
POLYARRAY_VERTEX2 |
POLYARRAY_VERTEX3 |
POLYARRAY_VERTEX4 |
POLYARRAY_CLAMP_COLOR);
#ifdef NEW_PARTIAL_PRIM
// Save shared vertices for the next part of partial primitive
pfnSaveFunc[mode](gc, pa, savereg);
#endif // NEW_PARTIAL_PRIM
// Save the POLYARRAY structure in the batch.
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *)
((BYTE *) pa->pMsgBatchInfo + pa->nextMsgOffset -
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY)));
*(POLYARRAY *) pMsgDrawPolyArray->paLast = *pa;
// Flush the command buffer and reset pointer for the next batch.
ASSERTOPENGL(!gc->dlist.beginRec
|| gc->dlist.mode == GL_COMPILE_AND_EXECUTE,
"dlist complilation unexpected!\n");
glsbAttention(); // reset pdBufferNext pointer too!
ASSERTOPENGL(pa->nextMsgOffset == PA_nextMsgOffset_RESET_VALUE,
"bad nextMsgOffset\n");
// Batch new POLYARRAY command in the command buffer.
GLCLIENT_BEGIN(DrawPolyArray, DRAWPOLYARRAY)
// need msg pointer to update pa later
pMsgDrawPolyArray = pMsg;
// start of a new chain
pMsgDrawPolyArray->pa0 =
pMsgDrawPolyArray->paLast = (PVOID) pa->pdBufferNext;
// remember the end of the primitive command
pa->nextMsgOffset = pMsgBatchInfo->NextOffset;
GLCLIENT_END
#ifdef NEW_PARTIAL_PRIM
// Compute the start of the PARTIAL primitive. A partial primitive begins
// with a POLYARRAY entry followed by vertex entries. We DO NOT need to
// reserve additional vertex entries at the beginning for connectivity
// between decomposed primitives.
pd0 = pa->pdBufferNext + 1;
#else
// Compute the start of the PARTIAL primitive. A partial primitive begins
// with a POLYARRAY entry followed by vertex entries. We need to
// reserve additional vertex entries at the beginning for connectivity
// between decomposed primitives.
pd0 = pa->pdBufferNext + 1 + nReservedIndicesPartialBegin[mode];
#endif
// Initialize first polydata.
pd0->flags = 0;
ASSERTOPENGL(pd0->color == &pd0->colors[__GL_FRONTFACE],
"bad color pointer!\n");
// Initialize the polyarray structure in the TEB.
pa->flags = POLYARRAY_IN_BEGIN | POLYARRAY_PARTIAL_BEGIN |
POLYARRAY_SAME_POLYDATA_TYPE | paFlags;
pa->pdNextVertex =
pa->pd0 = pd0;
pa->primType = mode;
pa->pdCurColor =
pa->pdCurNormal =
pa->pdCurTexture =
pa->pdCurEdgeFlag = NULL;
pa->paNext = NULL;
#ifdef NEW_PARTIAL_PRIM
pa->nIndices = 0;
#else
pa->nIndices = nReservedIndicesPartialBegin[mode];
#endif // NEW_PARTIAL_PRIM
pa->aIndices = PA_aIndices_INITIAL_VALUE; // this is updated in End
// The flush vertex for this primitive should never be reached. The call
// to glsbAttention in this function has left enough room for a vertex batch.
// Set it to maximum and assert that we never reach the vertex in
// PolyArrayFlushPartialPrimitive!
pa->pdFlush = pa->pdBufferMax;
#ifdef NEW_PARTIAL_PRIM
// Add saved vertices into the new part of the primitive
pfnRestoreFunc[mode](gc, pa, savereg);
#endif // NEW_PARTIAL_PRIM
}
// The vertex functions are called in begin/end only.
#define PA_VERTEX2(x1,y1) \
\
POLYARRAY *pa; \
POLYDATA *pd; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pa->flags |= POLYARRAY_VERTEX2; \
\
pd = pa->pdNextVertex++; \
pd->flags |= POLYDATA_VERTEX2; \
pd->obj.x = x1; \
pd->obj.y = y1; \
pd->obj.z = __glZero; \
pd->obj.w = __glOne; \
\
pd[1].flags = 0; \
\
if (pd >= pa->pdFlush) \
PolyArrayFlushPartialPrimitive(); \
}
#define PA_VERTEX3(x1,y1,z1) \
{ \
GLfloat t1; \
POLYARRAY *pa; \
POLYDATA *pd, *pd1; \
ULONG flag1, flag2, flag3; \
register GLfloat tone; \
\
pa = GLTEB_CLTPOLYARRAY(); \
tone = 1.0; \
\
pd1 = pa->pdFlush; \
flag1 = pa->flags; \
pd = pa->pdNextVertex; \
\
if (flag1 & POLYARRAY_IN_BEGIN) \
{ \
flag3 = pd->flags; \
pa->pdNextVertex++; \
flag2 = flag1 | POLYARRAY_VERTEX3; \
flag3 = flag3 | POLYDATA_VERTEX3; \
\
pd->obj.x = x1; \
pd->obj.y = y1; \
pd->obj.z = z1; \
pd->obj.w = tone; \
pa->flags = flag2; \
pd->flags = flag3; \
\
pd[1].flags = 0; \
\
if (pd >= pd1) \
PolyArrayFlushPartialPrimitive(); \
} \
}
#define PA_VERTEX4(x1,y1,z1,w1) \
\
POLYARRAY *pa; \
POLYDATA *pd; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pa->flags |= POLYARRAY_VERTEX4; \
\
pd = pa->pdNextVertex++; \
pd->flags |= POLYDATA_VERTEX4; \
pd->obj.x = x1; \
pd->obj.y = y1; \
pd->obj.z = z1; \
pd->obj.w = w1; \
\
pd[1].flags = 0; \
\
if (pd >= pa->pdFlush) \
PolyArrayFlushPartialPrimitive(); \
}
#define PA_COLOR_IN_RGBA_NO_CLAMP1(red,green,blue) \
POLYARRAY *pa; \
POLYDATA *pd; \
__GL_SETUP(); \
\
pa = gc->paTeb; \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pd = pa->pdNextVertex; \
pa->pdCurColor = pd; \
\
__GL_SCALE_RGB(pd->colors[0].r, pd->colors[0].g, pd->colors[0].b, \
gc, red, green, blue); \
pd->colors[0].a = gc->alphaVertexScale; \
\
pd->flags |= POLYDATA_COLOR_VALID; \
} \
else \
{ \
glcltColor4f_InRGBA_NotInBegin(gc, pa, \
POLYDATA_COLOR_VALID, red, green, blue, __glOne); \
}
#define PA_COLOR_IN_RGBA_NO_CLAMP(red,green,blue,alpha) \
POLYARRAY *pa; \
POLYDATA *pd; \
__GL_SETUP(); \
\
pa = gc->paTeb; \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pd = pa->pdNextVertex; \
pa->pdCurColor = pd; \
\
__GL_SCALE_RGBA(pd->colors[0].r, \
pd->colors[0].g, \
pd->colors[0].b, \
pd->colors[0].a, \
gc, red, green, blue, alpha); \
\
pd->flags |= POLYDATA_COLOR_VALID | POLYDATA_DLIST_COLOR_4; \
} \
else \
{ \
glcltColor4f_InRGBA_NotInBegin(gc, pa, \
POLYDATA_COLOR_VALID | POLYDATA_DLIST_COLOR_4, red, green, blue, alpha);\
}
#define PA_COLOR_IN_RGB1(red,green,blue) \
POLYARRAY *pa; \
POLYDATA *pd; \
__GL_SETUP(); \
\
pa = gc->paTeb; \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pd = pa->pdNextVertex; \
pa->pdCurColor = pd; \
\
__GL_SCALE_AND_CHECK_CLAMP_RGB(pd->colors[0].r, \
pd->colors[0].g, \
pd->colors[0].b, \
gc, pa->flags, \
red, green, blue); \
pd->colors[0].a = gc->alphaVertexScale; \
\
pd->flags |= POLYDATA_COLOR_VALID; \
} \
else \
{ \
glcltColor4f_InRGBA_NotInBegin(gc, pa, \
POLYDATA_COLOR_VALID, red, green, blue, __glOne); \
}
#define PA_COLOR_IN_RGB2(red, green, blue) \
{ \
POLYARRAY *pa; \
POLYDATA *pd; \
GLfloat sr, sg, sb; \
ULONG f1, f2, f3, f4, f5, f6; \
LONG t1, t2, t3; \
\
__GL_SETUP(); \
\
pa = gc->paTeb; \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
\
t1 = (LONG) (CASTINT(gc->redVertexScale)); \
t2 = (LONG) (CASTINT(gc->greenVertexScale)); \
t3 = (LONG) (CASTINT(gc->blueVertexScale)); \
\
pd = pa->pdNextVertex; \
pa->pdCurColor = pd; \
\
sr = red * gc->redVertexScale; \
sg = green * gc->greenVertexScale; \
sb = blue * gc->blueVertexScale; \
\
f1 = (ULONG) (CASTINT(sr)); \
f2 = (ULONG) (CASTINT(sg)); \
f3 = (ULONG) (CASTINT(sb)); \
\
f4 = (ULONG) (t1 - CASTINT(sr)); \
f5 = (ULONG) (t2 - CASTINT(sg)); \
f6 = (ULONG) (t3 - CASTINT(sb)); \
\
f1 = f1 | f2; \
f3 = f3 | f4; \
f5 = f5 | f6; \
\
pd->colors[0].r = sr; \
pd->colors[0].g = sg; \
pd->colors[0].b = sb; \
\
f1 = f1 | f3 | f5; \
\
pa->flags |= (f1 & 0x80000000); \
\
pd->colors[0].a = gc->alphaVertexScale; \
\
pd->flags |= POLYDATA_COLOR_VALID; \
} \
else \
{ \
glcltColor4f_InRGBA_NotInBegin(gc, pa, \
POLYDATA_COLOR_VALID, red, green, blue, __glOne); \
} \
}
#define PA_COLOR_IN_RGBA(red,green,blue,alpha) \
POLYARRAY *pa; \
POLYDATA *pd; \
__GL_SETUP(); \
\
pa = gc->paTeb; \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pd = pa->pdNextVertex; \
pa->pdCurColor = pd; \
\
__GL_SCALE_AND_CHECK_CLAMP_RGBA(pd->colors[0].r, \
pd->colors[0].g, \
pd->colors[0].b, \
pd->colors[0].a, \
gc, pa->flags, \
red, green, blue, alpha); \
\
pd->flags |= POLYDATA_COLOR_VALID | POLYDATA_DLIST_COLOR_4; \
} \
else \
{ \
glcltColor4f_InRGBA_NotInBegin(gc, pa, \
POLYDATA_COLOR_VALID | POLYDATA_DLIST_COLOR_4, red, green, blue, alpha);\
}
#define PA_COLOR_IN_CI(red,green,blue,alpha) \
\
POLYARRAY *pa; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pa->flags |= POLYARRAY_OTHER_COLOR; \
/* need only record the latest values */ \
/* otherColor in the TEB may not be aligned at 16-byte boundary */ \
pa->otherColor.r = red; \
pa->otherColor.g = green; \
pa->otherColor.b = blue; \
pa->otherColor.a = alpha; \
} \
else \
{ \
glcltColor4f_NotInBegin(red, green, blue, alpha); \
}
void FASTCALL glcltColor4f_NotInBegin(GLfloat red, GLfloat green,
GLfloat blue, GLfloat alpha)
{
GLCLIENT_BEGIN( Color4fv, COLOR4FV )
pMsg->v[0] = red;
pMsg->v[1] = green;
pMsg->v[2] = blue;
pMsg->v[3] = alpha;
GLCLIENT_END
}
void FASTCALL glcltColor4f_InRGBA_NotInBegin(__GLcontext *gc, POLYARRAY *pa,
GLuint pdFlags, GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
{
POLYDATA *pd;
GLMSGBATCHINFO *pMsgBatchInfo;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
pMsgBatchInfo = (GLMSGBATCHINFO *) pa->pMsgBatchInfo;
// If the last command is DrawPolyArray, add it to the command.
// This allows us to chain primitives separated by the attribute.
if (pMsgBatchInfo->NextOffset == pa->nextMsgOffset)
{
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *)
((BYTE *) pMsgBatchInfo + pMsgBatchInfo->NextOffset -
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY)));
pa = (POLYARRAY *) pMsgDrawPolyArray->paLast;
pd = pa->pdNextVertex;
pa->pdCurColor = pd;
__GL_SCALE_AND_CHECK_CLAMP_RGBA(pd->colors[0].r,
pd->colors[0].g,
pd->colors[0].b,
pd->colors[0].a,
gc, pa->flags,
red, green, blue, alpha);
pd->flags |= pdFlags;
}
else
{
glcltColor4f_NotInBegin(red, green, blue, alpha);
}
}
#define PA_INDEX_IN_RGBA(i) \
\
POLYARRAY *pa; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pa->flags |= POLYARRAY_OTHER_COLOR; \
/* need only record the latest value */ \
pa->otherColor.r = i; \
} \
else \
{ \
glcltIndexf_NotInBegin(i); \
}
#define PA_INDEX_IN_CI(i) \
\
POLYARRAY *pa; \
POLYDATA *pd; \
__GL_SETUP(); \
\
pa = gc->paTeb; \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pd = pa->pdNextVertex; \
pa->pdCurColor = pd; \
__GL_CHECK_CLAMP_CI(pd->colors[0].r, gc, pa->flags, i); \
pd->flags |= POLYDATA_COLOR_VALID; \
} \
else \
{ \
glcltIndexf_InCI_NotInBegin(gc, pa, i); \
}
void FASTCALL glcltIndexf_NotInBegin(GLfloat c)
{
GLCLIENT_BEGIN( Indexf, INDEXF )
pMsg->c = c;
GLCLIENT_END
}
void FASTCALL glcltIndexf_InCI_NotInBegin(__GLcontext *gc, POLYARRAY *pa, GLfloat c)
{
POLYDATA *pd;
GLMSGBATCHINFO *pMsgBatchInfo;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
pMsgBatchInfo = (GLMSGBATCHINFO *) pa->pMsgBatchInfo;
// If the last command is DrawPolyArray, add it to the command.
// This allows us to chain primitives separated by the attribute.
if (pMsgBatchInfo->NextOffset == pa->nextMsgOffset)
{
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *)
((BYTE *) pMsgBatchInfo + pMsgBatchInfo->NextOffset -
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY)));
pa = (POLYARRAY *) pMsgDrawPolyArray->paLast;
pd = pa->pdNextVertex;
pa->pdCurColor = pd;
__GL_CHECK_CLAMP_CI(pd->colors[0].r, gc, pa->flags, c);
pd->flags |= POLYDATA_COLOR_VALID;
}
else
{
glcltIndexf_NotInBegin(c);
}
}
#define PA_TEXTURE1(s1) \
\
POLYARRAY *pa; \
POLYDATA *pd; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pa->flags |= POLYARRAY_TEXTURE1; \
\
pd = pa->pdNextVertex; \
pa->pdCurTexture = pd; \
pd->flags |= POLYDATA_TEXTURE_VALID | POLYDATA_DLIST_TEXTURE1; \
pd->texture.x = s1; \
pd->texture.y = __glZero; \
pd->texture.z = __glZero; \
pd->texture.w = __glOne; \
} \
else \
{ \
glcltTexCoord4f_NotInBegin(pa, POLYARRAY_TEXTURE1, \
s1, __glZero, __glZero, __glOne); \
}
#define PA_TEXTURE2(s1,t1) \
\
POLYARRAY *pa; \
POLYDATA *pd; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pa->flags |= POLYARRAY_TEXTURE2; \
\
pd = pa->pdNextVertex; \
pa->pdCurTexture = pd; \
pd->flags |= POLYDATA_TEXTURE_VALID | POLYDATA_DLIST_TEXTURE2; \
pd->texture.x = s1; \
pd->texture.y = t1; \
pd->texture.z = __glZero; \
pd->texture.w = __glOne; \
} \
else \
{ \
glcltTexCoord4f_NotInBegin(pa, POLYARRAY_TEXTURE2, \
s1, t1, __glZero, __glOne); \
}
#define PA_TEXTURE3(s1,t1,r1) \
\
POLYARRAY *pa; \
POLYDATA *pd; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pa->flags |= POLYARRAY_TEXTURE3; \
\
pd = pa->pdNextVertex; \
pa->pdCurTexture = pd; \
pd->flags |= POLYDATA_TEXTURE_VALID | POLYDATA_DLIST_TEXTURE3; \
pd->texture.x = s1; \
pd->texture.y = t1; \
pd->texture.z = r1; \
pd->texture.w = __glOne; \
} \
else \
{ \
glcltTexCoord4f_NotInBegin(pa, POLYARRAY_TEXTURE3, \
s1, t1, r1, __glOne); \
}
#define PA_TEXTURE4(s1,t1,r1,q1) \
\
POLYARRAY *pa; \
POLYDATA *pd; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pa->flags |= POLYARRAY_TEXTURE4; \
\
pd = pa->pdNextVertex; \
pa->pdCurTexture = pd; \
pd->flags |= POLYDATA_TEXTURE_VALID | POLYDATA_DLIST_TEXTURE4; \
pd->texture.x = s1; \
pd->texture.y = t1; \
pd->texture.z = r1; \
pd->texture.w = q1; \
} \
else \
{ \
glcltTexCoord4f_NotInBegin(pa, POLYARRAY_TEXTURE4, \
s1, t1, r1, q1); \
}
void FASTCALL glcltTexCoord4f_NotInBegin(POLYARRAY *pa, GLuint paFlags,
GLfloat s, GLfloat t, GLfloat r, GLfloat q)
{
POLYDATA *pd;
GLMSGBATCHINFO *pMsgBatchInfo;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
pMsgBatchInfo = (GLMSGBATCHINFO *) pa->pMsgBatchInfo;
// If the last command is DrawPolyArray, add it to the command.
// This allows us to chain primitives separated by the attribute.
if (pMsgBatchInfo->NextOffset == pa->nextMsgOffset)
{
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *)
((BYTE *) pMsgBatchInfo + pMsgBatchInfo->NextOffset -
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY)));
pa = (POLYARRAY *) pMsgDrawPolyArray->paLast;
pa->flags |= paFlags;
pd = pa->pdNextVertex;
pa->pdCurTexture = pd;
pd->flags |= POLYDATA_TEXTURE_VALID | paFlags;
pd->texture.x = s;
pd->texture.y = t;
pd->texture.z = r;
pd->texture.w = q;
}
else
{
GLCLIENT_BEGIN( TexCoord4fv, TEXCOORD4FV )
pMsg->v[0] = s;
pMsg->v[1] = t;
pMsg->v[2] = r;
pMsg->v[3] = q;
GLCLIENT_END
}
}
#define PA_NORMAL(x1, y1, z1) \
{ \
POLYARRAY *pa; \
POLYDATA *pd; \
ULONG flag1, flag2; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
pd = pa->pdNextVertex; \
flag1 = pa->flags; \
\
if (flag1 & POLYARRAY_IN_BEGIN) \
{ \
flag2 = pd->flags; \
flag2 |= POLYDATA_NORMAL_VALID; \
pa->pdCurNormal = pd; \
pd->normal.x = x1; \
pd->normal.y = y1; \
pd->normal.z = z1; \
pd->flags = flag2; \
} \
else \
{ \
glcltNormal3f_NotInBegin(pa, x1, y1, z1); \
} \
\
}
void FASTCALL glcltNormal3f_NotInBegin(POLYARRAY *pa, GLfloat nx, GLfloat ny, GLfloat nz)
{
POLYDATA *pd;
GLMSGBATCHINFO *pMsgBatchInfo;
GLMSG_DRAWPOLYARRAY *pMsgDrawPolyArray;
pMsgBatchInfo = (GLMSGBATCHINFO *) pa->pMsgBatchInfo;
// If the last command is DrawPolyArray, add it to the command.
// This allows us to chain primitives separated by the attribute.
if (pMsgBatchInfo->NextOffset == pa->nextMsgOffset)
{
pMsgDrawPolyArray = (GLMSG_DRAWPOLYARRAY *)
((BYTE *) pMsgBatchInfo + pMsgBatchInfo->NextOffset -
GLMSG_ALIGN(sizeof(GLMSG_DRAWPOLYARRAY)));
pa = (POLYARRAY *) pMsgDrawPolyArray->paLast;
pd = pa->pdNextVertex;
pa->pdCurNormal = pd;
pd->flags |= POLYDATA_NORMAL_VALID;
pd->normal.x = nx;
pd->normal.y = ny;
pd->normal.z = nz;
}
else
{
GLCLIENT_BEGIN( Normal3fv, NORMAL3FV )
pMsg->v[ 0] = nx;
pMsg->v[ 1] = ny;
pMsg->v[ 2] = nz;
GLCLIENT_END
}
}
#define PA_EDGEFLAG(edgeflag) \
\
POLYARRAY *pa; \
POLYDATA *pd; \
\
pa = GLTEB_CLTPOLYARRAY(); \
\
if (pa->flags & POLYARRAY_IN_BEGIN) \
{ \
pd = pa->pdNextVertex; \
pa->pdCurEdgeFlag = pd; \
if (edgeflag) \
pd->flags |= POLYDATA_EDGEFLAG_VALID|POLYDATA_EDGEFLAG_BOUNDARY;\
else \
{ \
/* must clear POLYDATA_EDGEFLAG_BOUNDARY flag here since */ \
/* there may have been a previous edge flag for this same */ \
/* vertex! */ \
pd->flags &= ~POLYDATA_EDGEFLAG_BOUNDARY; \
pd->flags |= POLYDATA_EDGEFLAG_VALID; \
} \
} \
else \
{ \
glcltEdgeFlag_NotInBegin(edgeflag); \
}
void FASTCALL glcltEdgeFlag_NotInBegin(GLboolean flag)
{
GLCLIENT_BEGIN( EdgeFlag, EDGEFLAG )
pMsg->flag = flag;
GLCLIENT_END
}
void APIENTRY
glcltColor3b_InRGBA ( IN GLbyte red, IN GLbyte green, IN GLbyte blue )
{
PA_COLOR_IN_RGB1(__GL_B_TO_FLOAT(red), __GL_B_TO_FLOAT(green),
__GL_B_TO_FLOAT(blue));
}
void APIENTRY
glcltColor3bv_InRGBA ( IN const GLbyte v[3] )
{
PA_COLOR_IN_RGB1(__GL_B_TO_FLOAT(v[0]), __GL_B_TO_FLOAT(v[1]),
__GL_B_TO_FLOAT(v[2]));
}
void APIENTRY
glcltColor3d_InRGBA ( IN GLdouble red, IN GLdouble green, IN GLdouble blue )
{
PA_COLOR_IN_RGB1((GLfloat) red, (GLfloat) green,
(GLfloat) blue);
}
void APIENTRY
glcltColor3dv_InRGBA ( IN const GLdouble v[3] )
{
PA_COLOR_IN_RGB1((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2]);
}
#ifndef __GL_ASM_GLCLTCOLOR3F_INRGBA
void APIENTRY
glcltColor3f_InRGBA ( IN GLfloat red, IN GLfloat green, IN GLfloat blue )
{
PA_COLOR_IN_RGB2(red, green, blue);
}
#endif // __GL_ASM_GLCLTCOLOR3F_INRGBA
#ifndef __GL_ASM_GLCLTCOLOR3FV_INRGBA
void APIENTRY
glcltColor3fv_InRGBA ( IN const GLfloat v[3] )
{
GLfloat red, green, blue;
red = (GLfloat) v[0];
green = (GLfloat) v[1];
blue = (GLfloat) v[2];
PA_COLOR_IN_RGB2(red, green, blue);
}
#endif // __GL_ASM_GLCLTCOLOR3FV_INRGBA
void APIENTRY
glcltColor3i_InRGBA ( IN GLint red, IN GLint green, IN GLint blue )
{
PA_COLOR_IN_RGB1(__GL_I_TO_FLOAT(red), __GL_I_TO_FLOAT(green),
__GL_I_TO_FLOAT(blue));
}
void APIENTRY
glcltColor3iv_InRGBA ( IN const GLint v[3] )
{
PA_COLOR_IN_RGB1(__GL_I_TO_FLOAT(v[0]), __GL_I_TO_FLOAT(v[1]),
__GL_I_TO_FLOAT(v[2]));
}
void APIENTRY
glcltColor3s_InRGBA ( IN GLshort red, IN GLshort green, IN GLshort blue )
{
PA_COLOR_IN_RGB1(__GL_S_TO_FLOAT(red), __GL_S_TO_FLOAT(green),
__GL_S_TO_FLOAT(blue));
}
void APIENTRY
glcltColor3sv_InRGBA ( IN const GLshort v[3] )
{
PA_COLOR_IN_RGB1(__GL_S_TO_FLOAT(v[0]), __GL_S_TO_FLOAT(v[1]),
__GL_S_TO_FLOAT(v[2]));
}
void APIENTRY
glcltColor3ub_InRGBA ( IN GLubyte red, IN GLubyte green, IN GLubyte blue )
{
PA_COLOR_IN_RGBA_NO_CLAMP1(__GL_UB_TO_FLOAT(red), __GL_UB_TO_FLOAT(green),
__GL_UB_TO_FLOAT(blue));
}
void APIENTRY
glcltColor3ubv_InRGBA ( IN const GLubyte v[3] )
{
PA_COLOR_IN_RGBA_NO_CLAMP1(__GL_UB_TO_FLOAT(v[0]), __GL_UB_TO_FLOAT(v[1]),
__GL_UB_TO_FLOAT(v[2]));
}
void APIENTRY
glcltColor3ui_InRGBA ( IN GLuint red, IN GLuint green, IN GLuint blue )
{
PA_COLOR_IN_RGB1(__GL_UI_TO_FLOAT(red), __GL_UI_TO_FLOAT(green),
__GL_UI_TO_FLOAT(blue));
}
void APIENTRY
glcltColor3uiv_InRGBA ( IN const GLuint v[3] )
{
PA_COLOR_IN_RGB1(__GL_UI_TO_FLOAT(v[0]), __GL_UI_TO_FLOAT(v[1]),
__GL_UI_TO_FLOAT(v[2]));
}
void APIENTRY
glcltColor3us_InRGBA ( IN GLushort red, IN GLushort green, IN GLushort blue )
{
PA_COLOR_IN_RGBA_NO_CLAMP1(__GL_US_TO_FLOAT(red), __GL_US_TO_FLOAT(green),
__GL_US_TO_FLOAT(blue));
}
void APIENTRY
glcltColor3usv_InRGBA ( IN const GLushort v[3] )
{
PA_COLOR_IN_RGBA_NO_CLAMP1(__GL_US_TO_FLOAT(v[0]), __GL_US_TO_FLOAT(v[1]),
__GL_US_TO_FLOAT(v[2]));
}
void APIENTRY
glcltColor4b_InRGBA ( IN GLbyte red, IN GLbyte green, IN GLbyte blue, IN GLbyte alpha )
{
PA_COLOR_IN_RGBA(__GL_B_TO_FLOAT(red), __GL_B_TO_FLOAT(green),
__GL_B_TO_FLOAT(blue), __GL_B_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4bv_InRGBA ( IN const GLbyte v[4] )
{
PA_COLOR_IN_RGBA(__GL_B_TO_FLOAT(v[0]), __GL_B_TO_FLOAT(v[1]),
__GL_B_TO_FLOAT(v[2]), __GL_B_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4d_InRGBA ( IN GLdouble red, IN GLdouble green, IN GLdouble blue, IN GLdouble alpha )
{
PA_COLOR_IN_RGBA((GLfloat) red, (GLfloat) green,
(GLfloat) blue, (GLfloat) alpha);
}
void APIENTRY
glcltColor4dv_InRGBA ( IN const GLdouble v[4] )
{
PA_COLOR_IN_RGBA((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
#ifndef __GL_ASM_GLCLTCOLOR4F_INRGBA
void APIENTRY
glcltColor4f_InRGBA ( IN GLfloat red, IN GLfloat green, IN GLfloat blue, IN GLfloat alpha )
{
PA_COLOR_IN_RGBA(red, green, blue, alpha);
}
#endif // __GL_ASM_GLCLTCOLOR4F_INRGBA
#ifndef __GL_ASM_GLCLTCOLOR4FV_INRGBA
void APIENTRY
glcltColor4fv_InRGBA ( IN const GLfloat v[4] )
{
PA_COLOR_IN_RGBA(v[0], v[1], v[2], v[3]);
}
#endif // __GL_ASM_GLCLTCOLOR4FV_INRGBA
void APIENTRY
glcltColor4i_InRGBA ( IN GLint red, IN GLint green, IN GLint blue, IN GLint alpha )
{
PA_COLOR_IN_RGBA(__GL_I_TO_FLOAT(red), __GL_I_TO_FLOAT(green),
__GL_I_TO_FLOAT(blue), __GL_I_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4iv_InRGBA ( IN const GLint v[4] )
{
PA_COLOR_IN_RGBA(__GL_I_TO_FLOAT(v[0]), __GL_I_TO_FLOAT(v[1]),
__GL_I_TO_FLOAT(v[2]), __GL_I_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4s_InRGBA ( IN GLshort red, IN GLshort green, IN GLshort blue, IN GLshort alpha )
{
PA_COLOR_IN_RGBA(__GL_S_TO_FLOAT(red), __GL_S_TO_FLOAT(green),
__GL_S_TO_FLOAT(blue), __GL_S_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4sv_InRGBA ( IN const GLshort v[4] )
{
PA_COLOR_IN_RGBA(__GL_S_TO_FLOAT(v[0]), __GL_S_TO_FLOAT(v[1]),
__GL_S_TO_FLOAT(v[2]), __GL_S_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4ub_InRGBA ( IN GLubyte red, IN GLubyte green, IN GLubyte blue, IN GLubyte alpha )
{
PA_COLOR_IN_RGBA_NO_CLAMP(__GL_UB_TO_FLOAT(red), __GL_UB_TO_FLOAT(green),
__GL_UB_TO_FLOAT(blue), __GL_UB_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4ubv_InRGBA ( IN const GLubyte v[4] )
{
PA_COLOR_IN_RGBA_NO_CLAMP(__GL_UB_TO_FLOAT(v[0]), __GL_UB_TO_FLOAT(v[1]),
__GL_UB_TO_FLOAT(v[2]), __GL_UB_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4ui_InRGBA ( IN GLuint red, IN GLuint green, IN GLuint blue, IN GLuint alpha )
{
PA_COLOR_IN_RGBA(__GL_UI_TO_FLOAT(red), __GL_UI_TO_FLOAT(green),
__GL_UI_TO_FLOAT(blue), __GL_UI_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4uiv_InRGBA ( IN const GLuint v[4] )
{
PA_COLOR_IN_RGBA(__GL_UI_TO_FLOAT(v[0]), __GL_UI_TO_FLOAT(v[1]),
__GL_UI_TO_FLOAT(v[2]), __GL_UI_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4us_InRGBA ( IN GLushort red, IN GLushort green, IN GLushort blue, IN GLushort alpha )
{
PA_COLOR_IN_RGBA_NO_CLAMP(__GL_US_TO_FLOAT(red), __GL_US_TO_FLOAT(green),
__GL_US_TO_FLOAT(blue), __GL_US_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4usv_InRGBA ( IN const GLushort v[4] )
{
PA_COLOR_IN_RGBA_NO_CLAMP(__GL_US_TO_FLOAT(v[0]), __GL_US_TO_FLOAT(v[1]),
__GL_US_TO_FLOAT(v[2]), __GL_US_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor3b_InCI ( IN GLbyte red, IN GLbyte green, IN GLbyte blue )
{
PA_COLOR_IN_CI(__GL_B_TO_FLOAT(red), __GL_B_TO_FLOAT(green),
__GL_B_TO_FLOAT(blue), __glOne);
}
void APIENTRY
glcltColor3bv_InCI ( IN const GLbyte v[3] )
{
PA_COLOR_IN_CI(__GL_B_TO_FLOAT(v[0]), __GL_B_TO_FLOAT(v[1]),
__GL_B_TO_FLOAT(v[2]), __glOne);
}
void APIENTRY
glcltColor3d_InCI ( IN GLdouble red, IN GLdouble green, IN GLdouble blue )
{
PA_COLOR_IN_CI((GLfloat) red, (GLfloat) green,
(GLfloat) blue, __glOne);
}
void APIENTRY
glcltColor3dv_InCI ( IN const GLdouble v[3] )
{
PA_COLOR_IN_CI((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], __glOne);
}
void APIENTRY
glcltColor3f_InCI ( IN GLfloat red, IN GLfloat green, IN GLfloat blue )
{
PA_COLOR_IN_CI(red, green, blue, __glOne);
}
void APIENTRY
glcltColor3fv_InCI ( IN const GLfloat v[3] )
{
PA_COLOR_IN_CI(v[0], v[1], v[2], __glOne);
}
void APIENTRY
glcltColor3i_InCI ( IN GLint red, IN GLint green, IN GLint blue )
{
PA_COLOR_IN_CI(__GL_I_TO_FLOAT(red), __GL_I_TO_FLOAT(green),
__GL_I_TO_FLOAT(blue), __glOne);
}
void APIENTRY
glcltColor3iv_InCI ( IN const GLint v[3] )
{
PA_COLOR_IN_CI(__GL_I_TO_FLOAT(v[0]), __GL_I_TO_FLOAT(v[1]),
__GL_I_TO_FLOAT(v[2]), __glOne);
}
void APIENTRY
glcltColor3s_InCI ( IN GLshort red, IN GLshort green, IN GLshort blue )
{
PA_COLOR_IN_CI(__GL_S_TO_FLOAT(red), __GL_S_TO_FLOAT(green),
__GL_S_TO_FLOAT(blue), __glOne);
}
void APIENTRY
glcltColor3sv_InCI ( IN const GLshort v[3] )
{
PA_COLOR_IN_CI(__GL_S_TO_FLOAT(v[0]), __GL_S_TO_FLOAT(v[1]),
__GL_S_TO_FLOAT(v[2]), __glOne);
}
void APIENTRY
glcltColor3ub_InCI ( IN GLubyte red, IN GLubyte green, IN GLubyte blue )
{
PA_COLOR_IN_CI(__GL_UB_TO_FLOAT(red), __GL_UB_TO_FLOAT(green),
__GL_UB_TO_FLOAT(blue), __glOne);
}
void APIENTRY
glcltColor3ubv_InCI ( IN const GLubyte v[3] )
{
PA_COLOR_IN_CI(__GL_UB_TO_FLOAT(v[0]), __GL_UB_TO_FLOAT(v[1]),
__GL_UB_TO_FLOAT(v[2]), __glOne);
}
void APIENTRY
glcltColor3ui_InCI ( IN GLuint red, IN GLuint green, IN GLuint blue )
{
PA_COLOR_IN_CI(__GL_UI_TO_FLOAT(red), __GL_UI_TO_FLOAT(green),
__GL_UI_TO_FLOAT(blue), __glOne);
}
void APIENTRY
glcltColor3uiv_InCI ( IN const GLuint v[3] )
{
PA_COLOR_IN_CI(__GL_UI_TO_FLOAT(v[0]), __GL_UI_TO_FLOAT(v[1]),
__GL_UI_TO_FLOAT(v[2]), __glOne);
}
void APIENTRY
glcltColor3us_InCI ( IN GLushort red, IN GLushort green, IN GLushort blue )
{
PA_COLOR_IN_CI(__GL_US_TO_FLOAT(red), __GL_US_TO_FLOAT(green),
__GL_US_TO_FLOAT(blue), __glOne);
}
void APIENTRY
glcltColor3usv_InCI ( IN const GLushort v[3] )
{
PA_COLOR_IN_CI(__GL_US_TO_FLOAT(v[0]), __GL_US_TO_FLOAT(v[1]),
__GL_US_TO_FLOAT(v[2]), __glOne);
}
void APIENTRY
glcltColor4b_InCI ( IN GLbyte red, IN GLbyte green, IN GLbyte blue, IN GLbyte alpha )
{
PA_COLOR_IN_CI(__GL_B_TO_FLOAT(red), __GL_B_TO_FLOAT(green),
__GL_B_TO_FLOAT(blue), __GL_B_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4bv_InCI ( IN const GLbyte v[4] )
{
PA_COLOR_IN_CI(__GL_B_TO_FLOAT(v[0]), __GL_B_TO_FLOAT(v[1]),
__GL_B_TO_FLOAT(v[2]), __GL_B_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4d_InCI ( IN GLdouble red, IN GLdouble green, IN GLdouble blue, IN GLdouble alpha )
{
PA_COLOR_IN_CI((GLfloat) red, (GLfloat) green,
(GLfloat) blue, (GLfloat) alpha);
}
void APIENTRY
glcltColor4dv_InCI ( IN const GLdouble v[4] )
{
PA_COLOR_IN_CI((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltColor4f_InCI ( IN GLfloat red, IN GLfloat green, IN GLfloat blue, IN GLfloat alpha )
{
PA_COLOR_IN_CI(red, green, blue, alpha);
}
void APIENTRY
glcltColor4fv_InCI ( IN const GLfloat v[4] )
{
PA_COLOR_IN_CI(v[0], v[1], v[2], v[3]);
}
void APIENTRY
glcltColor4i_InCI ( IN GLint red, IN GLint green, IN GLint blue, IN GLint alpha )
{
PA_COLOR_IN_CI(__GL_I_TO_FLOAT(red), __GL_I_TO_FLOAT(green),
__GL_I_TO_FLOAT(blue), __GL_I_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4iv_InCI ( IN const GLint v[4] )
{
PA_COLOR_IN_CI(__GL_I_TO_FLOAT(v[0]), __GL_I_TO_FLOAT(v[1]),
__GL_I_TO_FLOAT(v[2]), __GL_I_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4s_InCI ( IN GLshort red, IN GLshort green, IN GLshort blue, IN GLshort alpha )
{
PA_COLOR_IN_CI(__GL_S_TO_FLOAT(red), __GL_S_TO_FLOAT(green),
__GL_S_TO_FLOAT(blue), __GL_S_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4sv_InCI ( IN const GLshort v[4] )
{
PA_COLOR_IN_CI(__GL_S_TO_FLOAT(v[0]), __GL_S_TO_FLOAT(v[1]),
__GL_S_TO_FLOAT(v[2]), __GL_S_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4ub_InCI ( IN GLubyte red, IN GLubyte green, IN GLubyte blue, IN GLubyte alpha )
{
PA_COLOR_IN_CI(__GL_UB_TO_FLOAT(red), __GL_UB_TO_FLOAT(green),
__GL_UB_TO_FLOAT(blue), __GL_UB_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4ubv_InCI ( IN const GLubyte v[4] )
{
PA_COLOR_IN_CI(__GL_UB_TO_FLOAT(v[0]), __GL_UB_TO_FLOAT(v[1]),
__GL_UB_TO_FLOAT(v[2]), __GL_UB_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4ui_InCI ( IN GLuint red, IN GLuint green, IN GLuint blue, IN GLuint alpha )
{
PA_COLOR_IN_CI(__GL_UI_TO_FLOAT(red), __GL_UI_TO_FLOAT(green),
__GL_UI_TO_FLOAT(blue), __GL_UI_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4uiv_InCI ( IN const GLuint v[4] )
{
PA_COLOR_IN_CI(__GL_UI_TO_FLOAT(v[0]), __GL_UI_TO_FLOAT(v[1]),
__GL_UI_TO_FLOAT(v[2]), __GL_UI_TO_FLOAT(v[3]));
}
void APIENTRY
glcltColor4us_InCI ( IN GLushort red, IN GLushort green, IN GLushort blue, IN GLushort alpha )
{
PA_COLOR_IN_CI(__GL_US_TO_FLOAT(red), __GL_US_TO_FLOAT(green),
__GL_US_TO_FLOAT(blue), __GL_US_TO_FLOAT(alpha));
}
void APIENTRY
glcltColor4usv_InCI ( IN const GLushort v[4] )
{
PA_COLOR_IN_CI(__GL_US_TO_FLOAT(v[0]), __GL_US_TO_FLOAT(v[1]),
__GL_US_TO_FLOAT(v[2]), __GL_US_TO_FLOAT(v[3]));
}
// Allocate a __GLmatChange structure.
//
// The POLYMATERIAL structure contains pointers to __GLmatChange arrays.
// These __GLmatChange structures are used to record material changes to
// vertices in the vertex buffer.
//
// To reduce memory requirement, the POLYMATERIAL structure keeps an array
// of pointers to __GLmatChange arrays. Each __GLmatChange array is
// allocated as needed.
//
// An iMat index is used to keep track of the next free __GLmatChange
// entry. When the poly array buffer is flushed in glsbAttention, iMat
// is reset to 0.
//
// The POLYMATERIAL structure and its __GLmatChange arrays are part of
// a thread local storage and are freed when the thread exits.
__GLmatChange * FASTCALL PAMatAlloc()
{
POLYMATERIAL *pm;
GLuint iArray, iMat;
#if DBG
__GL_SETUP();
#endif
pm = GLTEB_CLTPOLYMATERIAL();
// Allocate a POLYMATERIAL structure for this thread if one does not exist.
if (!pm)
{
GLuint nv, aMatSize;
__GL_SETUP();
nv = gc->vertex.pdBufSize;
aMatSize = nv * 2 / POLYMATERIAL_ARRAY_SIZE + 1;
if (!(pm = (POLYMATERIAL *) ALLOCZ(
// Base size
sizeof(POLYMATERIAL) - sizeof(__GLmatChange *) +
// array of pointers to __GLmatChange arrays
aMatSize * sizeof(__GLmatChange *) +
// the PDMATERIAL array
nv * sizeof(PDMATERIAL))))
{
GLSETERROR(GL_OUT_OF_MEMORY);
return NULL;
}
pm->aMatSize = aMatSize;
// Initialize pointer to the PDMATERIAL array
pm->pdMaterial0 = (PDMATERIAL *) &pm->aMat[aMatSize];
GLTEB_SET_CLTPOLYMATERIAL(pm);
}
// Sanity check that pdBufSize has not changed.
ASSERTOPENGL
(
pm->aMatSize == gc->vertex.pdBufSize * 2 / POLYMATERIAL_ARRAY_SIZE + 1,
"vertex buffer size has changed!\n"
);
// Find the material array from which to allocate the material change structure.
iMat = pm->iMat;
iArray = iMat / POLYMATERIAL_ARRAY_SIZE;
iMat = iMat % POLYMATERIAL_ARRAY_SIZE;
ASSERTOPENGL(iArray < pm->aMatSize, "iArray exceeds range!\n");
// Allocate the material array if it has not been allocated.
if (!(pm->aMat[iArray]))
{
if (!(pm->aMat[iArray] = (__GLmatChange *) ALLOC(
sizeof(__GLmatChange) * POLYMATERIAL_ARRAY_SIZE)))
{
GLSETERROR(GL_OUT_OF_MEMORY);
return NULL;
}
}
// Advance next available material pointer.
pm->iMat++;
ASSERTOPENGL(pm->iMat <= gc->vertex.pdBufSize * 2,
"too many material changes!\n");
// Return the material change.
return (&pm->aMat[iArray][iMat]);
}
// Free polymaterial for current thread.
void FASTCALL FreePolyMaterial(void)
{
POLYMATERIAL *pm = GLTEB_CLTPOLYMATERIAL();
GLuint i;
if (pm)
{
for (i = 0; i < pm->aMatSize && pm->aMat[i]; i++)
{
FREE(pm->aMat[i]);
}
FREE(pm);
GLTEB_SET_CLTPOLYMATERIAL(NULL);
}
}
#if !((POLYARRAY_MATERIAL_FRONT == POLYDATA_MATERIAL_FRONT) \
&& (POLYARRAY_MATERIAL_BACK == POLYDATA_MATERIAL_BACK))
#error "bad material mask\n"
#endif
void APIENTRY
glcltMaterialfv ( IN GLenum face, IN GLenum pname, IN const GLfloat params[] )
{
POLYARRAY *pa;
POLYDATA *pd;
GLuint i, pdFlags, dirtyBits, matMask;
POLYMATERIAL *pm;
pa = GLTEB_CLTPOLYARRAY();
if (pa->flags & POLYARRAY_IN_BEGIN)
{
switch (pname)
{
case GL_SHININESS:
if (params[0] < (GLfloat) 0 || params[0] > (GLfloat) 128)
{
GLSETERROR(GL_INVALID_VALUE);
return;
}
dirtyBits = __GL_MATERIAL_SHININESS;
break;
case GL_EMISSION:
dirtyBits = __GL_MATERIAL_EMISSIVE;
break;
case GL_AMBIENT:
dirtyBits = __GL_MATERIAL_AMBIENT;
break;
case GL_DIFFUSE:
dirtyBits = __GL_MATERIAL_DIFFUSE;
break;
case GL_SPECULAR:
dirtyBits = __GL_MATERIAL_SPECULAR;
break;
case GL_AMBIENT_AND_DIFFUSE:
dirtyBits = __GL_MATERIAL_AMBIENT | __GL_MATERIAL_DIFFUSE;
break;
case GL_COLOR_INDEXES:
dirtyBits = __GL_MATERIAL_COLORINDEXES;
break;
default:
GLSETERROR(GL_INVALID_ENUM);
return;
}
switch (face)
{
case GL_FRONT:
pdFlags = POLYDATA_MATERIAL_FRONT;
break;
case GL_BACK:
pdFlags = POLYDATA_MATERIAL_BACK;
break;
case GL_FRONT_AND_BACK:
pdFlags = POLYDATA_MATERIAL_FRONT | POLYDATA_MATERIAL_BACK;
break;
default:
GLSETERROR(GL_INVALID_ENUM);
return;
}
// Update pa flags POLYARRAY_MATERIAL_FRONT and POLYARRAY_MATERIAL_BACK.
pa->flags |= pdFlags;
// Do front and back material for this vertex
// Overwrite the previous material changes for this vertex if they exist since
// only the last material changes matter.
pd = pa->pdNextVertex;
for (i = 0, matMask = POLYDATA_MATERIAL_FRONT;
i < 2;
i++, matMask = POLYDATA_MATERIAL_BACK)
{
__GLmatChange *pdMat;
if (!(pdFlags & matMask))
continue;
// allocate __GLmatChange structure if this vertex hasn't got one
if (!(pd->flags & matMask))
{
if (!(pdMat = PAMatAlloc()))
return;
// Get POLYMATERIAL pointer after PAMatAlloc!
pm = GLTEB_CLTPOLYMATERIAL();
if (matMask == POLYDATA_MATERIAL_FRONT)
pm->pdMaterial0[pd - pa->pdBuffer0].front = pdMat;
else
pm->pdMaterial0[pd - pa->pdBuffer0].back = pdMat;
pdMat->dirtyBits = dirtyBits;
}
else
{
pm = GLTEB_CLTPOLYMATERIAL();
if (matMask == POLYDATA_MATERIAL_FRONT)
pdMat = pm->pdMaterial0[pd - pa->pdBuffer0].front;
else
pdMat = pm->pdMaterial0[pd - pa->pdBuffer0].back;
pdMat->dirtyBits |= dirtyBits;
}
if (dirtyBits & __GL_MATERIAL_SHININESS)
{
pdMat->shininess = params[0];
}
else if (dirtyBits & __GL_MATERIAL_COLORINDEXES)
{
pdMat->cmapa = params[0];
pdMat->cmapd = params[1];
pdMat->cmaps = params[2];
}
else if (dirtyBits & __GL_MATERIAL_EMISSIVE)
{
pdMat->emissive.r = params[0];
pdMat->emissive.g = params[1];
pdMat->emissive.b = params[2];
pdMat->emissive.a = params[3];
}
else if (dirtyBits & __GL_MATERIAL_SPECULAR)
{
pdMat->specular.r = params[0];
pdMat->specular.g = params[1];
pdMat->specular.b = params[2];
pdMat->specular.a = params[3];
}
else
{
// ambient and/or diffuse
if (dirtyBits & __GL_MATERIAL_AMBIENT)
{
pdMat->ambient.r = params[0];
pdMat->ambient.g = params[1];
pdMat->ambient.b = params[2];
pdMat->ambient.a = params[3];
}
if (dirtyBits & __GL_MATERIAL_DIFFUSE)
{
pdMat->diffuse.r = params[0];
pdMat->diffuse.g = params[1];
pdMat->diffuse.b = params[2];
pdMat->diffuse.a = params[3];
}
}
}
// Finally, update pd flags
pd->flags |= pdFlags;
}
else
{
int cArgs;
switch (pname)
{
case GL_SHININESS:
if (params[0] < (GLfloat) 0 || params[0] > (GLfloat) 128)
{
GLSETERROR(GL_INVALID_VALUE);
return;
}
cArgs = 1;
break;
case GL_EMISSION:
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
case GL_AMBIENT_AND_DIFFUSE:
cArgs = 4;
break;
case GL_COLOR_INDEXES:
cArgs = 3;
break;
default:
GLSETERROR(GL_INVALID_ENUM);
return;
}
switch (face)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
break;
default:
GLSETERROR(GL_INVALID_ENUM);
return;
}
GLCLIENT_BEGIN( Materialfv, MATERIALFV )
pMsg->face = face;
pMsg->pname = pname;
while (--cArgs >= 0)
pMsg->params[cArgs] = params[cArgs];
GLCLIENT_END
}
}
void APIENTRY
glcltMaterialf ( IN GLenum face, IN GLenum pname, IN GLfloat param )
{
if (pname != GL_SHININESS)
{
GLSETERROR(GL_INVALID_ENUM);
return;
}
glcltMaterialfv(face, pname, &param);
}
void APIENTRY
glcltMateriali ( IN GLenum face, IN GLenum pname, IN GLint param )
{
GLfloat fParams[1];
if (pname != GL_SHININESS)
{
GLSETERROR(GL_INVALID_ENUM);
return;
}
fParams[0] = (GLfloat) param;
glcltMaterialfv(face, pname, fParams);
}
void APIENTRY
glcltMaterialiv ( IN GLenum face, IN GLenum pname, IN const GLint params[] )
{
GLfloat fParams[4];
switch (pname)
{
case GL_EMISSION:
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
case GL_AMBIENT_AND_DIFFUSE:
fParams[0] = __GL_I_TO_FLOAT(params[0]);
fParams[1] = __GL_I_TO_FLOAT(params[1]);
fParams[2] = __GL_I_TO_FLOAT(params[2]);
fParams[3] = __GL_I_TO_FLOAT(params[3]);
break;
case GL_COLOR_INDEXES:
fParams[2] = (GLfloat) params[2];
fParams[1] = (GLfloat) params[1];
case GL_SHININESS:
fParams[0] = (GLfloat) params[0];
break;
}
glcltMaterialfv(face, pname, fParams);
}
void APIENTRY
glcltEdgeFlag ( IN GLboolean flag )
{
PA_EDGEFLAG(flag);
}
void APIENTRY
glcltEdgeFlagv ( IN const GLboolean flag[1] )
{
PA_EDGEFLAG(flag[0]);
}
void APIENTRY
glcltIndexd_InCI ( IN GLdouble c )
{
PA_INDEX_IN_CI((GLfloat) c);
}
void APIENTRY
glcltIndexdv_InCI ( IN const GLdouble c[1] )
{
PA_INDEX_IN_CI((GLfloat) c[0]);
}
void APIENTRY
glcltIndexf_InCI ( IN GLfloat c )
{
PA_INDEX_IN_CI((GLfloat) c);
}
void APIENTRY
glcltIndexfv_InCI ( IN const GLfloat c[1] )
{
PA_INDEX_IN_CI((GLfloat) c[0]);
}
void APIENTRY
glcltIndexi_InCI ( IN GLint c )
{
PA_INDEX_IN_CI((GLfloat) c);
}
void APIENTRY
glcltIndexiv_InCI ( IN const GLint c[1] )
{
PA_INDEX_IN_CI((GLfloat) c[0]);
}
void APIENTRY
glcltIndexs_InCI ( IN GLshort c )
{
PA_INDEX_IN_CI((GLfloat) c);
}
void APIENTRY
glcltIndexsv_InCI ( IN const GLshort c[1] )
{
PA_INDEX_IN_CI((GLfloat) c[0]);
}
void APIENTRY
glcltIndexub_InCI ( IN GLubyte c )
{
PA_INDEX_IN_CI((GLfloat) c);
}
void APIENTRY
glcltIndexubv_InCI ( IN const GLubyte c[1] )
{
PA_INDEX_IN_CI((GLfloat) c[0]);
}
void APIENTRY
glcltIndexd_InRGBA ( IN GLdouble c )
{
PA_INDEX_IN_RGBA((GLfloat) c);
}
void APIENTRY
glcltIndexdv_InRGBA ( IN const GLdouble c[1] )
{
PA_INDEX_IN_RGBA((GLfloat) c[0]);
}
void APIENTRY
glcltIndexf_InRGBA ( IN GLfloat c )
{
PA_INDEX_IN_RGBA((GLfloat) c);
}
void APIENTRY
glcltIndexfv_InRGBA ( IN const GLfloat c[1] )
{
PA_INDEX_IN_RGBA((GLfloat) c[0]);
}
void APIENTRY
glcltIndexi_InRGBA ( IN GLint c )
{
PA_INDEX_IN_RGBA((GLfloat) c);
}
void APIENTRY
glcltIndexiv_InRGBA ( IN const GLint c[1] )
{
PA_INDEX_IN_RGBA((GLfloat) c[0]);
}
void APIENTRY
glcltIndexs_InRGBA ( IN GLshort c )
{
PA_INDEX_IN_RGBA((GLfloat) c);
}
void APIENTRY
glcltIndexsv_InRGBA ( IN const GLshort c[1] )
{
PA_INDEX_IN_RGBA((GLfloat) c[0]);
}
void APIENTRY
glcltIndexub_InRGBA ( IN GLubyte c )
{
PA_INDEX_IN_RGBA((GLfloat) c);
}
void APIENTRY
glcltIndexubv_InRGBA ( IN const GLubyte c[1] )
{
PA_INDEX_IN_RGBA((GLfloat) c[0]);
}
/******************************************************************/
void APIENTRY
glcltNormal3b ( IN GLbyte nx, IN GLbyte ny, IN GLbyte nz )
{
PA_NORMAL(__GL_B_TO_FLOAT(nx), __GL_B_TO_FLOAT(ny), __GL_B_TO_FLOAT(nz));
}
void APIENTRY
glcltNormal3bv ( IN const GLbyte v[3] )
{
PA_NORMAL(__GL_B_TO_FLOAT(v[0]), __GL_B_TO_FLOAT(v[1]), __GL_B_TO_FLOAT(v[2]));
}
void APIENTRY
glcltNormal3d ( IN GLdouble nx, IN GLdouble ny, IN GLdouble nz )
{
PA_NORMAL((GLfloat) nx, (GLfloat) ny, (GLfloat) nz);
}
void APIENTRY
glcltNormal3dv ( IN const GLdouble v[3] )
{
PA_NORMAL((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2]);
}
#ifndef __GL_ASM_GLCLTNORMAL3F
void APIENTRY
glcltNormal3f ( IN GLfloat x, IN GLfloat y, IN GLfloat z )
{
PA_NORMAL(x, y, z);
}
#endif //__GL_ASM_GLCLTNORMAL3F
#ifndef __GL_ASM_GLCLTNORMAL3FV
void APIENTRY
glcltNormal3fv ( IN const GLfloat v[3] )
{
GLfloat x, y, z;
x = v[0];
y = v[1];
z = v[2];
PA_NORMAL(x, y, z);
}
#endif //__GL_ASM_GLCLTNORMAL3FV
void APIENTRY
glcltNormal3i ( IN GLint nx, IN GLint ny, IN GLint nz )
{
PA_NORMAL(__GL_I_TO_FLOAT(nx), __GL_I_TO_FLOAT(ny), __GL_I_TO_FLOAT(nz));
}
void APIENTRY
glcltNormal3iv ( IN const GLint v[3] )
{
PA_NORMAL(__GL_I_TO_FLOAT(v[0]), __GL_I_TO_FLOAT(v[1]), __GL_I_TO_FLOAT(v[2]));
}
void APIENTRY
glcltNormal3s ( IN GLshort nx, IN GLshort ny, IN GLshort nz )
{
PA_NORMAL(__GL_S_TO_FLOAT(nx), __GL_S_TO_FLOAT(ny), __GL_S_TO_FLOAT(nz));
}
void APIENTRY
glcltNormal3sv ( IN const GLshort v[3] )
{
PA_NORMAL(__GL_S_TO_FLOAT(v[0]), __GL_S_TO_FLOAT(v[1]), __GL_S_TO_FLOAT(v[2]));
}
void APIENTRY
glcltRasterPos2d ( IN GLdouble x, IN GLdouble y )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) 0.0, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos2dv ( IN const GLdouble v[2] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) 0.0, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos2f ( IN GLfloat x, IN GLfloat y )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) 0.0, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos2fv ( IN const GLfloat v[2] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) 0.0, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos2i ( IN GLint x, IN GLint y )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) 0.0, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos2iv ( IN const GLint v[2] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) 0.0, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos2s ( IN GLshort x, IN GLshort y )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) 0.0, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos2sv ( IN const GLshort v[2] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) 0.0, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos3d ( IN GLdouble x, IN GLdouble y, IN GLdouble z )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos3dv ( IN const GLdouble v[3] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos3f ( IN GLfloat x, IN GLfloat y, IN GLfloat z )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos3fv ( IN const GLfloat v[3] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos3i ( IN GLint x, IN GLint y, IN GLint z )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos3iv ( IN const GLint v[3] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos3s ( IN GLshort x, IN GLshort y, IN GLshort z )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos3sv ( IN const GLshort v[3] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) 1.0);
}
void APIENTRY
glcltRasterPos4d ( IN GLdouble x, IN GLdouble y, IN GLdouble z, IN GLdouble w )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void APIENTRY
glcltRasterPos4dv ( IN const GLdouble v[4] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltRasterPos4f ( IN GLfloat x, IN GLfloat y, IN GLfloat z, IN GLfloat w )
{
GLCLIENT_BEGIN( RasterPos4fv, RASTERPOS4FV )
pMsg->v[0] = x;
pMsg->v[1] = y;
pMsg->v[2] = z;
pMsg->v[3] = w;
return;
GLCLIENT_END
}
void APIENTRY
glcltRasterPos4fv ( IN const GLfloat v[4] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltRasterPos4i ( IN GLint x, IN GLint y, IN GLint z, IN GLint w )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void APIENTRY
glcltRasterPos4iv ( IN const GLint v[4] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltRasterPos4s ( IN GLshort x, IN GLshort y, IN GLshort z, IN GLshort w )
{
glcltRasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void APIENTRY
glcltRasterPos4sv ( IN const GLshort v[4] )
{
glcltRasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltRectd ( IN GLdouble x1, IN GLdouble y1, IN GLdouble x2, IN GLdouble y2 )
{
glcltRectf((GLfloat) x1, (GLfloat) y1, (GLfloat) x2, (GLfloat) y2);
}
void APIENTRY
glcltRectdv ( IN const GLdouble v1[2], IN const GLdouble v2[2] )
{
glcltRectf((GLfloat) v1[0], (GLfloat) v1[1], (GLfloat) v2[0], (GLfloat) v2[1]);
}
void APIENTRY
glcltRectf ( IN GLfloat x1, IN GLfloat y1, IN GLfloat x2, IN GLfloat y2 )
{
POLYARRAY *pa;
// Not allowed in begin/end.
pa = GLTEB_CLTPOLYARRAY();
if (pa->flags & POLYARRAY_IN_BEGIN)
{
GLSETERROR(GL_INVALID_OPERATION);
return;
}
// Call Begin/End to do polyarray correctly. Note that by calling these
// functions, we allow poly array to be batched correctly.
// Note also that we use quad strip instead of quad to force edge flag to be on.
//!!! Conformance fails if we use QUAD_STRIP!
//glcltBegin(GL_QUAD_STRIP);
glcltBegin(GL_QUADS);
pa->flags |= POLYARRAY_SAME_POLYDATA_TYPE;
glcltVertex2f(x1, y1);
glcltVertex2f(x2, y1);
glcltVertex2f(x2, y2);
glcltVertex2f(x1, y2);
glcltEnd();
}
void APIENTRY
glcltRectfv ( IN const GLfloat v1[2], IN const GLfloat v2[2] )
{
glcltRectf((GLfloat) v1[0], (GLfloat) v1[1], (GLfloat) v2[0], (GLfloat) v2[1]);
}
void APIENTRY
glcltRecti ( IN GLint x1, IN GLint y1, IN GLint x2, IN GLint y2 )
{
glcltRectf((GLfloat) x1, (GLfloat) y1, (GLfloat) x2, (GLfloat) y2);
}
void APIENTRY
glcltRectiv ( IN const GLint v1[2], IN const GLint v2[2] )
{
glcltRectf((GLfloat) v1[0], (GLfloat) v1[1], (GLfloat) v2[0], (GLfloat) v2[1]);
}
void APIENTRY
glcltRects ( IN GLshort x1, IN GLshort y1, IN GLshort x2, IN GLshort y2 )
{
glcltRectf((GLfloat) x1, (GLfloat) y1, (GLfloat) x2, (GLfloat) y2);
}
void APIENTRY
glcltRectsv ( IN const GLshort v1[2], IN const GLshort v2[2] )
{
glcltRectf((GLfloat) v1[0], (GLfloat) v1[1], (GLfloat) v2[0], (GLfloat) v2[1]);
}
void APIENTRY
glcltTexCoord1d ( IN GLdouble s )
{
PA_TEXTURE1((GLfloat) s);
}
void APIENTRY
glcltTexCoord1dv ( IN const GLdouble v[1] )
{
PA_TEXTURE1((GLfloat) v[0]);
}
void APIENTRY
glcltTexCoord1f ( IN GLfloat s )
{
PA_TEXTURE1((GLfloat) s);
}
void APIENTRY
glcltTexCoord1fv ( IN const GLfloat v[1] )
{
PA_TEXTURE1((GLfloat) v[0]);
}
void APIENTRY
glcltTexCoord1i ( IN GLint s )
{
PA_TEXTURE1((GLfloat) s);
}
void APIENTRY
glcltTexCoord1iv ( IN const GLint v[1] )
{
PA_TEXTURE1((GLfloat) v[0]);
}
void APIENTRY
glcltTexCoord1s ( IN GLshort s )
{
PA_TEXTURE1((GLfloat) s);
}
void APIENTRY
glcltTexCoord1sv ( IN const GLshort v[1] )
{
PA_TEXTURE1((GLfloat) v[0]);
}
void APIENTRY
glcltTexCoord2d ( IN GLdouble s, IN GLdouble t )
{
PA_TEXTURE2((GLfloat) s, (GLfloat) t);
}
void APIENTRY
glcltTexCoord2dv ( IN const GLdouble v[2] )
{
PA_TEXTURE2((GLfloat) v[0], (GLfloat) v[1]);
}
#ifndef __GL_ASM_GLCLTTEXCOORD2F
void APIENTRY
glcltTexCoord2f ( IN GLfloat s, IN GLfloat t )
{
PA_TEXTURE2((GLfloat) s, (GLfloat) t);
}
#endif //__GL_ASM_GLCLTTEXCOORD2F
#ifndef __GL_ASM_GLCLTTEXCOORD2FV
void APIENTRY
glcltTexCoord2fv ( IN const GLfloat v[2] )
{
PA_TEXTURE2((GLfloat) v[0], (GLfloat) v[1]);
}
#endif //__GL_ASM_GLCLTTEXCOORD2FV
void APIENTRY
glcltTexCoord2i ( IN GLint s, IN GLint t )
{
PA_TEXTURE2((GLfloat) s, (GLfloat) t);
}
void APIENTRY
glcltTexCoord2iv ( IN const GLint v[2] )
{
PA_TEXTURE2((GLfloat) v[0], (GLfloat) v[1]);
}
void APIENTRY
glcltTexCoord2s ( IN GLshort s, IN GLshort t )
{
PA_TEXTURE2((GLfloat) s, (GLfloat) t);
}
void APIENTRY
glcltTexCoord2sv ( IN const GLshort v[2] )
{
PA_TEXTURE2((GLfloat) v[0], (GLfloat) v[1]);
}
void APIENTRY
glcltTexCoord3d ( IN GLdouble s, IN GLdouble t, IN GLdouble r )
{
PA_TEXTURE3((GLfloat) s, (GLfloat) t, (GLfloat) r);
}
void APIENTRY
glcltTexCoord3dv ( IN const GLdouble v[3] )
{
PA_TEXTURE3((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2]);
}
#ifndef __GL_ASM_GLCLTTEXCOORD3F
void APIENTRY
glcltTexCoord3f ( IN GLfloat s, IN GLfloat t, IN GLfloat r )
{
PA_TEXTURE3((GLfloat) s, (GLfloat) t, (GLfloat) r);
}
#endif //__GL_ASM_GLCLTTEXCOORD3F
#ifndef __GL_ASM_GLCLTTEXCOORD3FV
void APIENTRY
glcltTexCoord3fv ( IN const GLfloat v[3] )
{
PA_TEXTURE3((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2]);
}
#endif //__GL_ASM_GLCLTTEXCOORD3FV
void APIENTRY
glcltTexCoord3i ( IN GLint s, IN GLint t, IN GLint r )
{
PA_TEXTURE3((GLfloat) s, (GLfloat) t, (GLfloat) r);
}
void APIENTRY
glcltTexCoord3iv ( IN const GLint v[3] )
{
PA_TEXTURE3((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2]);
}
void APIENTRY
glcltTexCoord3s ( IN GLshort s, IN GLshort t, IN GLshort r )
{
PA_TEXTURE3((GLfloat) s, (GLfloat) t, (GLfloat) r);
}
void APIENTRY
glcltTexCoord3sv ( IN const GLshort v[3] )
{
PA_TEXTURE3((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2]);
}
void APIENTRY
glcltTexCoord4d ( IN GLdouble s, IN GLdouble t, IN GLdouble r, IN GLdouble q )
{
PA_TEXTURE4((GLfloat) s, (GLfloat) t, (GLfloat) r, (GLfloat) q);
}
void APIENTRY
glcltTexCoord4dv ( IN const GLdouble v[4] )
{
PA_TEXTURE4((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltTexCoord4f ( IN GLfloat s, IN GLfloat t, IN GLfloat r, IN GLfloat q )
{
PA_TEXTURE4((GLfloat) s, (GLfloat) t, (GLfloat) r, (GLfloat) q);
}
void APIENTRY
glcltTexCoord4fv ( IN const GLfloat v[4] )
{
PA_TEXTURE4((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltTexCoord4i ( IN GLint s, IN GLint t, IN GLint r, IN GLint q )
{
PA_TEXTURE4((GLfloat) s, (GLfloat) t, (GLfloat) r, (GLfloat) q);
}
void APIENTRY
glcltTexCoord4iv ( IN const GLint v[4] )
{
PA_TEXTURE4((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltTexCoord4s ( IN GLshort s, IN GLshort t, IN GLshort r, IN GLshort q )
{
PA_TEXTURE4((GLfloat) s, (GLfloat) t, (GLfloat) r, (GLfloat) q);
}
void APIENTRY
glcltTexCoord4sv ( IN const GLshort v[4] )
{
PA_TEXTURE4((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
#ifdef GL_WIN_multiple_textures
void APIENTRY glcltMultiTexCoord1dWIN
(GLbitfield mask, GLdouble s)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord1dvWIN
(GLbitfield mask, const GLdouble *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord1fWIN
(GLbitfield mask, GLfloat s)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord1fvWIN
(GLbitfield mask, const GLfloat *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord1iWIN
(GLbitfield mask, GLint s)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord1ivWIN
(GLbitfield mask, const GLint *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord1sWIN
(GLbitfield mask, GLshort s)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord1svWIN
(GLbitfield mask, const GLshort *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord2dWIN
(GLbitfield mask, GLdouble s, GLdouble t)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord2dvWIN
(GLbitfield mask, const GLdouble *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord2fWIN
(GLbitfield mask, GLfloat s, GLfloat t)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord2fvWIN
(GLbitfield mask, const GLfloat *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord2iWIN
(GLbitfield mask, GLint s, GLint t)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord2ivWIN
(GLbitfield mask, const GLint *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord2sWIN
(GLbitfield mask, GLshort s, GLshort t)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord2svWIN
(GLbitfield mask, const GLshort *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord3dWIN
(GLbitfield mask, GLdouble s, GLdouble t, GLdouble r)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord3dvWIN
(GLbitfield mask, const GLdouble *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord3fWIN
(GLbitfield mask, GLfloat s, GLfloat t, GLfloat r)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord3fvWIN
(GLbitfield mask, const GLfloat *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord3iWIN
(GLbitfield mask, GLint s, GLint t, GLint r)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord3ivWIN
(GLbitfield mask, const GLint *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord3sWIN
(GLbitfield mask, GLshort s, GLshort t, GLshort r)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord3svWIN
(GLbitfield mask, const GLshort *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord4dWIN
(GLbitfield mask, GLdouble s, GLdouble t, GLdouble r, GLdouble q)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord4dvWIN
(GLbitfield mask, const GLdouble *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord4fWIN
(GLbitfield mask, GLfloat s, GLfloat t, GLfloat r, GLfloat q)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord4fvWIN
(GLbitfield mask, const GLfloat *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord4iWIN
(GLbitfield mask, GLint s, GLint t, GLint r, GLint q)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord4ivWIN
(GLbitfield mask, const GLint *v)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord4sWIN
(GLbitfield mask, GLshort s, GLshort t, GLshort r, GLshort q)
{
// ATTENTION
}
void APIENTRY glcltMultiTexCoord4svWIN
(GLbitfield mask, const GLshort *v)
{
// ATTENTION
}
#endif // GL_WIN_multiple_textures
void APIENTRY
glcltVertex2d ( IN GLdouble x, IN GLdouble y )
{
PA_VERTEX2((GLfloat) x, (GLfloat) y);
}
void APIENTRY
glcltVertex2dv ( IN const GLdouble v[2] )
{
PA_VERTEX2((GLfloat) v[0], (GLfloat) v[1]);
}
#ifndef __GL_ASM_GLCLTVERTEX2F
void APIENTRY
glcltVertex2f ( IN GLfloat x, IN GLfloat y )
{
PA_VERTEX2((GLfloat) x, (GLfloat) y);
}
#endif //__GL_ASM_GLCLTVERTEX2F
#ifndef __GL_ASM_GLCLTVERTEX2FV
void APIENTRY
glcltVertex2fv ( IN const GLfloat v[2] )
{
PA_VERTEX2((GLfloat) v[0], (GLfloat) v[1]);
}
#endif //__GL_ASM_GLCLTVERTEX2FV
void APIENTRY
glcltVertex2i ( IN GLint x, IN GLint y )
{
PA_VERTEX2((GLfloat) x, (GLfloat) y);
}
void APIENTRY
glcltVertex2iv ( IN const GLint v[2] )
{
PA_VERTEX2((GLfloat) v[0], (GLfloat) v[1]);
}
void APIENTRY
glcltVertex2s ( IN GLshort x, IN GLshort y )
{
PA_VERTEX2((GLfloat) x, (GLfloat) y);
}
void APIENTRY
glcltVertex2sv ( IN const GLshort v[2] )
{
PA_VERTEX2((GLfloat) v[0], (GLfloat) v[1]);
}
void APIENTRY
glcltVertex3d ( IN GLdouble x, IN GLdouble y, IN GLdouble z )
{
PA_VERTEX3((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
void APIENTRY
glcltVertex3dv ( IN const GLdouble v[3] )
{
PA_VERTEX3((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2]);
}
#ifndef __GL_ASM_GLCLTVERTEX3F
void APIENTRY
glcltVertex3f ( IN GLfloat x, IN GLfloat y, IN GLfloat z )
{
PA_VERTEX3((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
#endif //__GL_ASM_GLCLTVERTEX3F
#ifndef __GL_ASM_GLCLTVERTEX3FV
void APIENTRY
glcltVertex3fv ( IN const GLfloat v[3] )
{
GLfloat x1, y1, z1;
x1 = (GLfloat) v[0];
y1 = (GLfloat) v[1];
z1 = (GLfloat) v[2];
PA_VERTEX3(x1, y1, z1);
}
#endif //__GL_ASM_GLCLTVERTEX3FV
void APIENTRY
glcltVertex3i ( IN GLint x, IN GLint y, IN GLint z )
{
PA_VERTEX3((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
void APIENTRY
glcltVertex3iv ( IN const GLint v[3] )
{
PA_VERTEX3((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2]);
}
void APIENTRY
glcltVertex3s ( IN GLshort x, IN GLshort y, IN GLshort z )
{
PA_VERTEX3((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
void APIENTRY
glcltVertex3sv ( IN const GLshort v[3] )
{
PA_VERTEX3((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2]);
}
void APIENTRY
glcltVertex4d ( IN GLdouble x, IN GLdouble y, IN GLdouble z, IN GLdouble w )
{
PA_VERTEX4((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void APIENTRY
glcltVertex4dv ( IN const GLdouble v[4] )
{
PA_VERTEX4((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltVertex4f ( IN GLfloat x, IN GLfloat y, IN GLfloat z, IN GLfloat w )
{
PA_VERTEX4((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void APIENTRY
glcltVertex4fv ( IN const GLfloat v[4] )
{
PA_VERTEX4((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltVertex4i ( IN GLint x, IN GLint y, IN GLint z, IN GLint w )
{
PA_VERTEX4((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void APIENTRY
glcltVertex4iv ( IN const GLint v[4] )
{
PA_VERTEX4((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltVertex4s ( IN GLshort x, IN GLshort y, IN GLshort z, IN GLshort w )
{
PA_VERTEX4((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void APIENTRY
glcltVertex4sv ( IN const GLshort v[4] )
{
PA_VERTEX4((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]);
}
void APIENTRY
glcltClipPlane ( IN GLenum plane, IN const GLdouble equation[4] )
{
GLCLIENT_BEGIN( ClipPlane, CLIPPLANE )
pMsg->plane = plane ;
pMsg->equation[ 0] = equation[ 0];
pMsg->equation[ 1] = equation[ 1];
pMsg->equation[ 2] = equation[ 2];
pMsg->equation[ 3] = equation[ 3];
return;
GLCLIENT_END
}
void APIENTRY
glcltColorMaterial ( IN GLenum face, IN GLenum mode )
{
GLCLIENT_BEGIN( ColorMaterial, COLORMATERIAL )
pMsg->face = face ;
pMsg->mode = mode ;
return;
GLCLIENT_END
}
void APIENTRY
glcltCullFace ( IN GLenum mode )
{
GLCLIENT_BEGIN( CullFace, CULLFACE )
pMsg->mode = mode ;
return;
GLCLIENT_END
}
void APIENTRY
glcltFrontFace ( IN GLenum mode )
{
GLCLIENT_BEGIN( FrontFace, FRONTFACE )
pMsg->mode = mode ;
return;
GLCLIENT_END
}
void APIENTRY
glcltHint ( IN GLenum target, IN GLenum mode )
{
GLCLIENT_BEGIN( Hint, HINT )
pMsg->target = target ;
pMsg->mode = mode ;
return;
GLCLIENT_END
}
void APIENTRY
glcltLineStipple ( IN GLint factor, IN GLushort pattern )
{
GLCLIENT_BEGIN( LineStipple, LINESTIPPLE )
pMsg->factor = factor ;
pMsg->pattern = pattern ;
return;
GLCLIENT_END
}
void APIENTRY
glcltLineWidth ( IN GLfloat width )
{
GLCLIENT_BEGIN( LineWidth, LINEWIDTH )
pMsg->width = width ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPointSize ( IN GLfloat size )
{
GLCLIENT_BEGIN( PointSize, POINTSIZE )
pMsg->size = size ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPolygonMode ( IN GLenum face, IN GLenum mode )
{
GLCLIENT_BEGIN( PolygonMode, POLYGONMODE )
pMsg->face = face ;
pMsg->mode = mode ;
return;
GLCLIENT_END
}
void APIENTRY
glcltScissor ( IN GLint x, IN GLint y, IN GLsizei width, IN GLsizei height )
{
GLCLIENT_BEGIN( Scissor, SCISSOR )
pMsg->x = x ;
pMsg->y = y ;
pMsg->width = width ;
pMsg->height = height ;
return;
GLCLIENT_END
}
void APIENTRY
glcltShadeModel ( IN GLenum mode )
{
GLCLIENT_BEGIN( ShadeModel, SHADEMODEL )
pMsg->mode = mode ;
return;
GLCLIENT_END
}
void APIENTRY
glcltInitNames ( void )
{
GLCLIENT_BEGIN( InitNames, INITNAMES )
return;
GLCLIENT_END
}
void APIENTRY
glcltLoadName ( IN GLuint name )
{
GLCLIENT_BEGIN( LoadName, LOADNAME )
pMsg->name = name ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPassThrough ( IN GLfloat token )
{
GLCLIENT_BEGIN( PassThrough, PASSTHROUGH )
pMsg->token = token ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPopName ( void )
{
GLCLIENT_BEGIN( PopName, POPNAME )
return;
GLCLIENT_END
}
void APIENTRY
glcltPushName ( IN GLuint name )
{
GLCLIENT_BEGIN( PushName, PUSHNAME )
pMsg->name = name ;
return;
GLCLIENT_END
}
void APIENTRY
glcltDrawBuffer ( IN GLenum mode )
{
// We're doing something special here. By doing a glsbAttention after
// putting a glDrawBuffer in the batch, we are guaranteeing that all
// drawing done in the batch is in the same drawing mode and that the
// drawing mode cannot change until the end of the batch. This allows
// the server to sample the current drawing mode at the beginning of
// batch and to assume that it is constant for the entire batch.
//
// The server might be able to take advantage of the fact, for example,
// that all drawing in a batch is only to the back buffer.
GLCLIENT_BEGIN( DrawBuffer, DRAWBUFFER )
pMsg->mode = mode ;
glsbAttention();
return;
GLCLIENT_END
}
void APIENTRY
glcltClear ( IN GLbitfield mask )
{
GLCLIENT_BEGIN( Clear, CLEAR )
pMsg->mask = mask ;
return;
GLCLIENT_END
}
void APIENTRY
glcltClearAccum ( IN GLfloat red, IN GLfloat green, IN GLfloat blue, IN GLfloat alpha )
{
GLCLIENT_BEGIN( ClearAccum, CLEARACCUM )
pMsg->red = red ;
pMsg->green = green ;
pMsg->blue = blue ;
pMsg->alpha = alpha ;
return;
GLCLIENT_END
}
void APIENTRY
glcltClearIndex ( IN GLfloat c )
{
GLCLIENT_BEGIN( ClearIndex, CLEARINDEX )
pMsg->c = c ;
return;
GLCLIENT_END
}
void APIENTRY
glcltClearColor ( IN GLclampf red, IN GLclampf green, IN GLclampf blue, IN GLclampf alpha )
{
GLCLIENT_BEGIN( ClearColor, CLEARCOLOR )
pMsg->red = red ;
pMsg->green = green ;
pMsg->blue = blue ;
pMsg->alpha = alpha ;
return;
GLCLIENT_END
}
void APIENTRY
glcltClearStencil ( IN GLint s )
{
GLCLIENT_BEGIN( ClearStencil, CLEARSTENCIL )
pMsg->s = s ;
return;
GLCLIENT_END
}
void APIENTRY
glcltClearDepth ( IN GLclampd depth )
{
GLCLIENT_BEGIN( ClearDepth, CLEARDEPTH )
pMsg->depth = depth ;
return;
GLCLIENT_END
}
void APIENTRY
glcltStencilMask ( IN GLuint mask )
{
GLCLIENT_BEGIN( StencilMask, STENCILMASK )
pMsg->mask = mask ;
return;
GLCLIENT_END
}
void APIENTRY
glcltColorMask ( IN GLboolean red, IN GLboolean green, IN GLboolean blue, IN GLboolean alpha )
{
GLCLIENT_BEGIN( ColorMask, COLORMASK )
pMsg->red = red ;
pMsg->green = green ;
pMsg->blue = blue ;
pMsg->alpha = alpha ;
return;
GLCLIENT_END
}
void APIENTRY
glcltDepthMask ( IN GLboolean flag )
{
GLCLIENT_BEGIN( DepthMask, DEPTHMASK )
pMsg->flag = flag ;
return;
GLCLIENT_END
}
void APIENTRY
glcltIndexMask ( IN GLuint mask )
{
GLCLIENT_BEGIN( IndexMask, INDEXMASK )
pMsg->mask = mask ;
return;
GLCLIENT_END
}
void APIENTRY
glcltAccum ( IN GLenum op, IN GLfloat value )
{
GLCLIENT_BEGIN( Accum, ACCUM )
pMsg->op = op ;
pMsg->value = value ;
return;
GLCLIENT_END
}
void APIENTRY
glcltDisable ( IN GLenum cap )
{
__GL_SETUP();
GLCLIENT_BEGIN( Disable, DISABLE )
pMsg->cap = cap ;
// Set the enable flags for the evaluators
switch (cap)
{
case GL_MAP1_COLOR_4:
case GL_MAP1_INDEX:
case GL_MAP1_NORMAL:
case GL_MAP1_TEXTURE_COORD_1:
case GL_MAP1_TEXTURE_COORD_2:
case GL_MAP1_TEXTURE_COORD_3:
case GL_MAP1_TEXTURE_COORD_4:
case GL_MAP1_VERTEX_3:
case GL_MAP1_VERTEX_4:
gc->eval.evalStateFlags |= __EVALS_AFFECTS_1D_EVAL;
break;
case GL_MAP2_COLOR_4:
case GL_MAP2_INDEX:
case GL_MAP2_NORMAL:
case GL_MAP2_TEXTURE_COORD_1:
case GL_MAP2_TEXTURE_COORD_2:
case GL_MAP2_TEXTURE_COORD_3:
case GL_MAP2_TEXTURE_COORD_4:
case GL_MAP2_VERTEX_3:
case GL_MAP2_VERTEX_4:
case GL_NORMALIZE:
case GL_AUTO_NORMAL:
gc->eval.evalStateFlags |= __EVALS_AFFECTS_2D_EVAL;
break;
case GL_LIGHTING:
gc->eval.evalStateFlags |= __EVALS_AFFECTS_ALL_EVAL;
break;
}
return;
GLCLIENT_END
}
void APIENTRY
glcltEnable ( IN GLenum cap )
{
__GL_SETUP();
GLCLIENT_BEGIN( Enable, ENABLE )
pMsg->cap = cap ;
// Set the enable flags for the evaluators
switch (cap)
{
case GL_MAP1_COLOR_4:
case GL_MAP1_INDEX:
case GL_MAP1_NORMAL:
case GL_MAP1_TEXTURE_COORD_1:
case GL_MAP1_TEXTURE_COORD_2:
case GL_MAP1_TEXTURE_COORD_3:
case GL_MAP1_TEXTURE_COORD_4:
case GL_MAP1_VERTEX_3:
case GL_MAP1_VERTEX_4:
gc->eval.evalStateFlags |= __EVALS_AFFECTS_1D_EVAL;
break;
case GL_MAP2_COLOR_4:
case GL_MAP2_INDEX:
case GL_MAP2_NORMAL:
case GL_MAP2_TEXTURE_COORD_1:
case GL_MAP2_TEXTURE_COORD_2:
case GL_MAP2_TEXTURE_COORD_3:
case GL_MAP2_TEXTURE_COORD_4:
case GL_MAP2_VERTEX_3:
case GL_MAP2_VERTEX_4:
case GL_NORMALIZE:
case GL_AUTO_NORMAL:
gc->eval.evalStateFlags |= __EVALS_AFFECTS_2D_EVAL;
break;
case GL_LIGHTING:
gc->eval.evalStateFlags |= __EVALS_AFFECTS_ALL_EVAL;
break;
}
return;
GLCLIENT_END
}
void APIENTRY
glcltFinish ( void )
{
// This function is invalid between glBegin and glEnd.
// This is detected in glsbAttention.
glsbAttention();
}
void APIENTRY
glcltFlush ( void )
{
// This function is invalid between glBegin and glEnd.
// This is detected in glsbAttention.
glsbAttention();
}
void APIENTRY
glcltPopAttrib ( void )
{
__GL_SETUP();
GLCLIENT_BEGIN( PopAttrib, POPATTRIB )
if (gc->eval.evalStackState & 0x1)
{
gc->eval.evalStateFlags = gc->eval.evalStateFlags |
__EVALS_AFFECTS_ALL_EVAL |
__EVALS_POP_EVAL_ATTRIB;
}
gc->eval.evalStackState = (gc->eval.evalStackState) >> 1;
return;
GLCLIENT_END
}
void APIENTRY
glcltPushAttrib ( IN GLbitfield mask )
{
__GL_SETUP ();
// Assert that the stack size is always less than 31 since the
// bitfield is a DWORD.
ASSERTOPENGL (gc->constants.maxAttribStackDepth < 31, "Attrib state stack is greater than the size of the bitfield used to track it\n");
GLCLIENT_BEGIN( PushAttrib, PUSHATTRIB )
pMsg->mask = mask ;
gc->eval.evalStackState = (gc->eval.evalStackState) << 1;
if (mask & GL_EVAL_BIT)
{
gc->eval.evalStateFlags = gc->eval.evalStateFlags |
__EVALS_AFFECTS_ALL_EVAL |
__EVALS_PUSH_EVAL_ATTRIB;
gc->eval.evalStackState = (gc->eval.evalStackState) | 0x1;
}
return;
GLCLIENT_END
}
void APIENTRY
glcltAlphaFunc ( IN GLenum func, IN GLclampf ref )
{
GLCLIENT_BEGIN( AlphaFunc, ALPHAFUNC )
pMsg->func = func ;
pMsg->ref = ref ;
return;
GLCLIENT_END
}
void APIENTRY
glcltBlendFunc ( IN GLenum sfactor, IN GLenum dfactor )
{
GLCLIENT_BEGIN( BlendFunc, BLENDFUNC )
pMsg->sfactor = sfactor ;
pMsg->dfactor = dfactor ;
return;
GLCLIENT_END
}
void APIENTRY
glcltLogicOp ( IN GLenum opcode )
{
GLCLIENT_BEGIN( LogicOp, LOGICOP )
pMsg->opcode = opcode ;
return;
GLCLIENT_END
}
void APIENTRY
glcltStencilFunc ( IN GLenum func, IN GLint ref, IN GLuint mask )
{
GLCLIENT_BEGIN( StencilFunc, STENCILFUNC )
pMsg->func = func ;
pMsg->ref = ref ;
pMsg->mask = mask ;
return;
GLCLIENT_END
}
void APIENTRY
glcltStencilOp ( IN GLenum fail, IN GLenum zfail, IN GLenum zpass )
{
GLCLIENT_BEGIN( StencilOp, STENCILOP )
pMsg->fail = fail ;
pMsg->zfail = zfail ;
pMsg->zpass = zpass ;
return;
GLCLIENT_END
}
void APIENTRY
glcltDepthFunc ( IN GLenum func )
{
GLCLIENT_BEGIN( DepthFunc, DEPTHFUNC )
pMsg->func = func ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPixelZoom ( IN GLfloat xfactor, IN GLfloat yfactor )
{
GLCLIENT_BEGIN( PixelZoom, PIXELZOOM )
pMsg->xfactor = xfactor ;
pMsg->yfactor = yfactor ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPixelTransferf ( IN GLenum pname, IN GLfloat param )
{
GLCLIENT_BEGIN( PixelTransferf, PIXELTRANSFERF )
pMsg->pname = pname ;
pMsg->param = param ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPixelTransferi ( IN GLenum pname, IN GLint param )
{
GLCLIENT_BEGIN( PixelTransferi, PIXELTRANSFERI )
pMsg->pname = pname ;
pMsg->param = param ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPixelStoref ( IN GLenum pname, IN GLfloat param )
{
GLCLIENT_BEGIN( PixelStoref, PIXELSTOREF )
pMsg->pname = pname ;
pMsg->param = param ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPixelStorei ( IN GLenum pname, IN GLint param )
{
GLCLIENT_BEGIN( PixelStorei, PIXELSTOREI )
pMsg->pname = pname ;
pMsg->param = param ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPixelMapfv ( IN GLenum map, IN GLint mapsize, IN const GLfloat values[] )
{
GLCLIENT_BEGIN_LARGE_SET( PixelMapfv, PIXELMAPFV, values, ulSize, valuesOff )
pMsg->map = map ;
pMsg->mapsize = mapsize ;
GLCLIENT_END_LARGE_SET
return;
}
void APIENTRY
glcltPixelMapuiv ( IN GLenum map, IN GLint mapsize, IN const GLuint values[] )
{
GLCLIENT_BEGIN_LARGE_SET( PixelMapuiv, PIXELMAPUIV, values, ulSize, valuesOff )
pMsg->map = map ;
pMsg->mapsize = mapsize ;
GLCLIENT_END_LARGE_SET
return;
}
void APIENTRY
glcltPixelMapusv ( IN GLenum map, IN GLint mapsize, IN const GLushort values[] )
{
GLCLIENT_BEGIN_LARGE_SET( PixelMapusv, PIXELMAPUSV, values, ulSize, valuesOff )
pMsg->map = map ;
pMsg->mapsize = mapsize ;
GLCLIENT_END_LARGE_SET
return;
}
void APIENTRY
glcltReadBuffer ( IN GLenum mode )
{
GLCLIENT_BEGIN( ReadBuffer, READBUFFER )
pMsg->mode = mode ;
glsbAttention();
return;
GLCLIENT_END
}
void APIENTRY
glcltCopyPixels ( IN GLint x, IN GLint y, IN GLsizei width, IN GLsizei height, IN GLenum type )
{
GLCLIENT_BEGIN( CopyPixels, COPYPIXELS )
pMsg->x = x ;
pMsg->y = y ;
pMsg->width = width ;
pMsg->height = height ;
pMsg->type = type ;
return;
GLCLIENT_END
}
void APIENTRY
glcltGetClipPlane ( IN GLenum plane, OUT GLdouble equation[4] )
{
GLCLIENT_BEGIN( GetClipPlane, GETCLIPPLANE )
pMsg->plane = plane ;
pMsg->equation = equation;
glsbAttention();
return;
GLCLIENT_END
}
GLenum APIENTRY
glcltGetError ( void )
{
GLCLIENT_BEGIN( GetError, GETERROR )
GLTEB_RETURNVALUE() = GL_INVALID_OPERATION; // assume error
glsbAttention();
return((GLenum)GLTEB_RETURNVALUE());
GLCLIENT_END
}
void APIENTRY
glcltGetMapdv ( IN GLenum target, IN GLenum query, OUT GLdouble v[] )
{
GLCLIENT_BEGIN_LARGE_GET( GetMapdv, GETMAPDV, v, ulSize, vOff )
pMsg->target = target ;
pMsg->query = query ;
GLCLIENT_END_LARGE_GET
return;
}
void APIENTRY
glcltGetMapfv ( IN GLenum target, IN GLenum query, OUT GLfloat v[] )
{
GLCLIENT_BEGIN_LARGE_GET( GetMapfv, GETMAPFV, v, ulSize, vOff )
pMsg->target = target ;
pMsg->query = query ;
GLCLIENT_END_LARGE_GET
return;
}
void APIENTRY
glcltGetMapiv ( IN GLenum target, IN GLenum query, OUT GLint v[] )
{
GLCLIENT_BEGIN_LARGE_GET( GetMapiv, GETMAPIV, v, ulSize, vOff )
pMsg->target = target ;
pMsg->query = query ;
GLCLIENT_END_LARGE_GET
return;
}
void APIENTRY
glcltGetPixelMapfv ( IN GLenum map, OUT GLfloat values[] )
{
GLCLIENT_BEGIN_LARGE_GET( GetPixelMapfv, GETPIXELMAPFV, values, ulSize, valuesOff )
pMsg->map = map ;
GLCLIENT_END_LARGE_GET
return;
}
void APIENTRY
glcltGetPixelMapuiv ( IN GLenum map, OUT GLuint values[] )
{
GLCLIENT_BEGIN_LARGE_GET( GetPixelMapuiv, GETPIXELMAPUIV, values, ulSize, valuesOff )
pMsg->map = map ;
GLCLIENT_END_LARGE_GET
return;
}
void APIENTRY
glcltGetPixelMapusv ( IN GLenum map, OUT GLushort values[] )
{
GLCLIENT_BEGIN_LARGE_GET( GetPixelMapusv, GETPIXELMAPUSV, values, ulSize, valuesOff )
pMsg->map = map ;
GLCLIENT_END_LARGE_GET
return;
}
GLboolean APIENTRY
glcltIsEnabled ( IN GLenum cap )
{
GLCLIENT_BEGIN( IsEnabled, ISENABLED )
pMsg->cap = cap ;
GLTEB_RETURNVALUE() = 0; // assume error
glsbAttention();
return((GLboolean)GLTEB_RETURNVALUE());
GLCLIENT_END
}
void APIENTRY
glcltDepthRange ( IN GLclampd zNear, IN GLclampd zFar )
{
GLCLIENT_BEGIN( DepthRange, DEPTHRANGE )
pMsg->zNear = zNear ;
pMsg->zFar = zFar ;
return;
GLCLIENT_END
}
void APIENTRY
glcltFrustum ( IN GLdouble left, IN GLdouble right, IN GLdouble bottom, IN GLdouble top, IN GLdouble zNear, IN GLdouble zFar )
{
GLCLIENT_BEGIN( Frustum, FRUSTUM )
pMsg->left = left ;
pMsg->right = right ;
pMsg->bottom = bottom ;
pMsg->top = top ;
pMsg->zNear = zNear ;
pMsg->zFar = zFar ;
return;
GLCLIENT_END
}
void APIENTRY
glcltLoadIdentity ( void )
{
GLCLIENT_BEGIN( LoadIdentity, LOADIDENTITY )
return;
GLCLIENT_END
}
void APIENTRY
glcltLoadMatrixf ( IN const GLfloat m[16] )
{
GLCLIENT_BEGIN( LoadMatrixf, LOADMATRIXF )
pMsg->m[ 0] = m[ 0];
pMsg->m[ 1] = m[ 1];
pMsg->m[ 2] = m[ 2];
pMsg->m[ 3] = m[ 3];
pMsg->m[ 4] = m[ 4];
pMsg->m[ 5] = m[ 5];
pMsg->m[ 6] = m[ 6];
pMsg->m[ 7] = m[ 7];
pMsg->m[ 8] = m[ 8];
pMsg->m[ 9] = m[ 9];
pMsg->m[10] = m[10];
pMsg->m[11] = m[11];
pMsg->m[12] = m[12];
pMsg->m[13] = m[13];
pMsg->m[14] = m[14];
pMsg->m[15] = m[15];
return;
GLCLIENT_END
}
void APIENTRY
glcltLoadMatrixd ( IN const GLdouble m[16] )
{
// Call LoadMatrixf instead
GLCLIENT_BEGIN( LoadMatrixf, LOADMATRIXF )
pMsg->m[ 0] = (GLfloat) m[ 0];
pMsg->m[ 1] = (GLfloat) m[ 1];
pMsg->m[ 2] = (GLfloat) m[ 2];
pMsg->m[ 3] = (GLfloat) m[ 3];
pMsg->m[ 4] = (GLfloat) m[ 4];
pMsg->m[ 5] = (GLfloat) m[ 5];
pMsg->m[ 6] = (GLfloat) m[ 6];
pMsg->m[ 7] = (GLfloat) m[ 7];
pMsg->m[ 8] = (GLfloat) m[ 8];
pMsg->m[ 9] = (GLfloat) m[ 9];
pMsg->m[10] = (GLfloat) m[10];
pMsg->m[11] = (GLfloat) m[11];
pMsg->m[12] = (GLfloat) m[12];
pMsg->m[13] = (GLfloat) m[13];
pMsg->m[14] = (GLfloat) m[14];
pMsg->m[15] = (GLfloat) m[15];
return;
GLCLIENT_END
}
void APIENTRY
glcltMatrixMode ( IN GLenum mode )
{
GLCLIENT_BEGIN( MatrixMode, MATRIXMODE )
pMsg->mode = mode ;
return;
GLCLIENT_END
}
void APIENTRY
glcltMultMatrixf ( IN const GLfloat m[16] )
{
GLCLIENT_BEGIN( MultMatrixf, MULTMATRIXF )
pMsg->m[ 0] = m[ 0];
pMsg->m[ 1] = m[ 1];
pMsg->m[ 2] = m[ 2];
pMsg->m[ 3] = m[ 3];
pMsg->m[ 4] = m[ 4];
pMsg->m[ 5] = m[ 5];
pMsg->m[ 6] = m[ 6];
pMsg->m[ 7] = m[ 7];
pMsg->m[ 8] = m[ 8];
pMsg->m[ 9] = m[ 9];
pMsg->m[10] = m[10];
pMsg->m[11] = m[11];
pMsg->m[12] = m[12];
pMsg->m[13] = m[13];
pMsg->m[14] = m[14];
pMsg->m[15] = m[15];
return;
GLCLIENT_END
}
void APIENTRY
glcltMultMatrixd ( IN const GLdouble m[16] )
{
// Call MultMatrixf instead
GLCLIENT_BEGIN( MultMatrixf, MULTMATRIXF )
pMsg->m[ 0] = (GLfloat) m[ 0];
pMsg->m[ 1] = (GLfloat) m[ 1];
pMsg->m[ 2] = (GLfloat) m[ 2];
pMsg->m[ 3] = (GLfloat) m[ 3];
pMsg->m[ 4] = (GLfloat) m[ 4];
pMsg->m[ 5] = (GLfloat) m[ 5];
pMsg->m[ 6] = (GLfloat) m[ 6];
pMsg->m[ 7] = (GLfloat) m[ 7];
pMsg->m[ 8] = (GLfloat) m[ 8];
pMsg->m[ 9] = (GLfloat) m[ 9];
pMsg->m[10] = (GLfloat) m[10];
pMsg->m[11] = (GLfloat) m[11];
pMsg->m[12] = (GLfloat) m[12];
pMsg->m[13] = (GLfloat) m[13];
pMsg->m[14] = (GLfloat) m[14];
pMsg->m[15] = (GLfloat) m[15];
return;
GLCLIENT_END
}
void APIENTRY
glcltOrtho ( IN GLdouble left, IN GLdouble right, IN GLdouble bottom, IN GLdouble top, IN GLdouble zNear, IN GLdouble zFar )
{
GLCLIENT_BEGIN( Ortho, ORTHO )
pMsg->left = left ;
pMsg->right = right ;
pMsg->bottom = bottom ;
pMsg->top = top ;
pMsg->zNear = zNear ;
pMsg->zFar = zFar ;
return;
GLCLIENT_END
}
void APIENTRY
glcltPopMatrix ( void )
{
GLCLIENT_BEGIN( PopMatrix, POPMATRIX )
return;
GLCLIENT_END
}
void APIENTRY
glcltPushMatrix ( void )
{
GLCLIENT_BEGIN( PushMatrix, PUSHMATRIX )
return;
GLCLIENT_END
}
void APIENTRY
glcltRotated ( IN GLdouble angle, IN GLdouble x, IN GLdouble y, IN GLdouble z )
{
// Call Rotatef instead
glcltRotatef((GLfloat) angle, (GLfloat) x, (GLfloat) y, (GLfloat) z);
}
void APIENTRY
glcltRotatef ( IN GLfloat angle, IN GLfloat x, IN GLfloat y, IN GLfloat z )
{
GLCLIENT_BEGIN( Rotatef, ROTATEF )
pMsg->angle = angle ;
pMsg->x = x ;
pMsg->y = y ;
pMsg->z = z ;
return;
GLCLIENT_END
}
void APIENTRY
glcltScaled ( IN GLdouble x, IN GLdouble y, IN GLdouble z )
{
// Call Scalef instead
glcltScalef((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
void APIENTRY
glcltScalef ( IN GLfloat x, IN GLfloat y, IN GLfloat z )
{
GLCLIENT_BEGIN( Scalef, SCALEF )
pMsg->x = x ;
pMsg->y = y ;
pMsg->z = z ;
return;
GLCLIENT_END
}
void APIENTRY
glcltTranslated ( IN GLdouble x, IN GLdouble y, IN GLdouble z )
{
// Call Translatef instead
glcltTranslatef((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
void APIENTRY
glcltTranslatef ( IN GLfloat x, IN GLfloat y, IN GLfloat z )
{
GLCLIENT_BEGIN( Translatef, TRANSLATEF )
pMsg->x = x ;
pMsg->y = y ;
pMsg->z = z ;
return;
GLCLIENT_END
}
void APIENTRY
glcltViewport ( IN GLint x, IN GLint y, IN GLsizei width, IN GLsizei height )
{
GLCLIENT_BEGIN( Viewport, VIEWPORT )
pMsg->x = x ;
pMsg->y = y ;
pMsg->width = width ;
pMsg->height = height ;
return;
GLCLIENT_END
}