Windows2003-3790/inetsrv/query/xpr/fa.cxx
2020-09-30 16:53:55 +02:00

1767 lines
52 KiB
C++

//+-------------------------------------------------------------------------
//
// Microsoft Windows
// Copyright (C) Microsoft Corporation, 1991 - 2001.
//
// File: FA.cxx
//
// Contents: Non-deterministic finite automata
//
// Classes: CNFA
//
// History: 01-20-92 KyleP Created
//
//--------------------------------------------------------------------------
#include <pch.cxx>
#pragma hdrstop
#pragma optimize( "", off )
#include <fa.hxx>
#include <strategy.hxx>
#include <codepage.hxx>
#include "stateset.hxx"
//+-------------------------------------------------------------------------
//
// Member: CFA::CFA, public
//
// Synopsis: Copy constructor
//
// History: 13-Jul-95 KyleP Created
//
//--------------------------------------------------------------------------
CFA::CFA( CFA const & src )
: _cTotal( src._cTotal ),
_ppState( 0 )
{
_ppState = new CFAState * [ _cTotal ];
unsigned i = 0;
TRY
{
for ( ; i < _cTotal; i++ )
{
if ( 0 == src._ppState[i] )
_ppState[i] = 0;
else
_ppState[i] = new CFAState( *src._ppState[i] );
}
}
CATCH( CException, e )
{
for ( ;i > 0; i-- )
delete _ppState[i-1];
delete _ppState;
RETHROW();
}
END_CATCH
}
//+-------------------------------------------------------------------------
//
// Member: CFA::~CFA, protected
//
// Synopsis: Frees automata.
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
CFA::~CFA()
{
if( _ppState )
{
for ( unsigned i = 0; i < _cTotal; i++ )
{
delete _ppState[i];
}
delete _ppState;
}
}
//+-------------------------------------------------------------------------
//
// Member: CFA::Add, protected
//
// Synopsis: Adds new state to automata.
//
// Arguments: [pState] -- New state. State number is member data.
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
void CFA::Add( CFAState * pState )
{
if ( pState->StateNumber() > _cTotal )
{
for( unsigned newTotal = (_cTotal) ? _cTotal * 2 : 1;
pState->StateNumber() > newTotal;
newTotal *= 2 );
CFAState ** oldState = _ppState;
_ppState = new CFAState * [ newTotal ];
memcpy( _ppState, oldState,
_cTotal * sizeof( CFAState * ) );
memset( _ppState + _cTotal,
0,
(newTotal - _cTotal) * sizeof( CFAState * ) );
_cTotal = newTotal;
}
_ppState[pState->StateNumber() - 1] = pState;
}
//+-------------------------------------------------------------------------
//
// Member: CFA::Get, protected
//
// Arguments: [iState] -- State to fetch.
//
// Returns: State [iState].
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
CFAState * CFA::Get( unsigned iState )
{
vqAssert( iState <= _cTotal );
{
# if (CIDBG == 1)
if ( _ppState[ iState - 1 ]->StateNumber() != iState )
vqDebugOut(( DEB_ERROR, "CFA::Get() -- Error\n" ));
# endif // (CIDBG == 1)
return( _ppState[ iState - 1 ] );
}
}
//+-------------------------------------------------------------------------
//
// Member: CNFA::CNFA, public
//
// Synopsis: Converts regular expression string to NFA.
//
// Arguments: [pwcs] -- Regular expression.
// [fCaseSens] -- TRUE if case sensitive search.
//
// History: 20-Jan-92 Kyleap Created
//
//--------------------------------------------------------------------------
CNFA::CNFA( WCHAR const * pwcs, BOOLEAN fCaseSens )
: _iNextState( 1 ),
_iStart( 0 ),
_chars( fCaseSens )
{
unsigned iEnd;
//
// _aState initially contains room for 2 * #chars in regex. According
// to the Dragon Book pg. 121 this is guaranteed to be sufficient space.
// Of course the dragon book doesn't completely take DOS or CMS into
// account. For DOS, we need to treat beginning (and end) of line as
// 'characters' in the string. For CMS, I agreed to support the
// {m,n} construct, which clearly violates this rule.
//
if ( 0 == pwcs )
{
vqDebugOut(( DEB_ERROR, "ERROR: regex string value of 0 " ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
unsigned cState = wcslen( pwcs ) * 2 + 2*2; // 2*2 for beginning & end of line
_aState.Init( cState );
for ( unsigned i = 1 ; i <= _aState.Count(); i++ )
Get(i)->Init(i);
FindCharClasses( pwcs );
Parse( pwcs, &_iStart, &iEnd );
Get( iEnd )->MakeFinal();
}
//+-------------------------------------------------------------------------
//
// Member: CNFA::CNFA, public
//
// Synopsis: Copy constructor
//
// Arguments: [src] -- Source
//
// History: 13-Jul-95 Kylep Created
//
//--------------------------------------------------------------------------
CNFA::CNFA( CNFA const & src )
: _iNextState( src.NumStates() ),
_iStart( src._iStart ),
_chars( src._chars ),
_aState( src._aState.Count() )
{
for ( unsigned i = 0; i < _aState.Count(); i++ )
_aState[i] = src._aState[i];
}
//+-------------------------------------------------------------------------
//
// Member: CNFA::~CNFA, public
//
// Synopsis: Free state table.
//
// History: 13-Oct-92 KyleP Created
//
//--------------------------------------------------------------------------
CNFA::~CNFA()
{
}
//+-------------------------------------------------------------------------
//
// Member: CNFA::EpsClosure, public
//
// Synopsis: Computes the epsilon closure for state [StateNum]
//
// Effects: States in the epsilon closure of state [StateNum]
// are added to the state set [ssOut].
//
// Arguments: [StateNum] -- Initial state.
// [ssOut] -- Output state set.
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
void CNFA::EpsClosure( unsigned StateNum, CStateSet & ssOut )
{
CStateSet ssTraversed;
ssOut.Add( StateNum );
BOOLEAN changed = TRUE;
while ( changed )
{
changed = FALSE;
for ( unsigned i = ssOut.Count(); i > 0; i-- )
{
if ( !ssTraversed.IsMember( ssOut.State( i ) ) )
{
ssTraversed.Add( ssOut.State( i ) );
Get( ssOut.State( i ) )->Move( ssOut, symEpsilon );
changed = TRUE;
}
}
}
}
//+-------------------------------------------------------------------------
//
// Member: CNFA::EpsClosure, public
//
// Synopsis: Computes the epsilon closure for state set [ssIn]
//
// Effects: States in the epsilon closure of [ssIn]
// are added to the state set [ssOut].
//
// Arguments: [ssIn] -- Initial state set.
// [ssOut] -- Output state set.
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
void CNFA::EpsClosure( CStateSet & ssIn, CStateSet & ssOut )
{
for ( unsigned i = ssIn.Count(); i > 0; i-- )
{
EpsClosure( ssIn.State( i ), ssOut );
}
}
//+-------------------------------------------------------------------------
//
// Member: CDFA::IsFinal, public
//
// Arguments: [ss] -- State set
//
// Returns: TRUE if some state in [ss] is final.
//
// History: 20-Jan-92 Kyleap Created
//
//--------------------------------------------------------------------------
BOOLEAN CNFA::IsFinal( CStateSet & ss )
{
BOOLEAN fFinal = FALSE;
for ( unsigned i = ss.Count(); i > 0 && !fFinal; i-- )
{
fFinal = (BYTE)(Get( ss.State( i ) )->IsFinal());
}
return( fFinal );
}
//+-------------------------------------------------------------------------
//
// Member: CNFA::Move, public
//
// Effects: Performs a non-deterministic move from every state
// in [ssIn] on [symbol]. The new state set is in
// [ssOut].
//
// Arguments: [ssIn] -- Initial state set.
// [ssOut] -- Final state set.
// [symbol] -- Transition symbol.
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
void CNFA::Move( CStateSet & ssIn, CStateSet & ssOut, unsigned symbol )
{
for ( unsigned i = ssIn.Count(); i > 0; i-- )
{
Get( ssIn.State( i ) )->Move( ssOut, symbol );
}
}
//+-------------------------------------------------------------------------
//
// Member: CNFA::FindCharClasses, private
//
// Effects: Partitions the UniCode character space (2^16 characters)
// into equivalence classes such that all characters in
// a given class will have identical transitions in the NFA.
//
// Arguments: [wcs] -- Original regular expression string.
//
// History: 20-Jan-92 KyleP Created
//
// Notes: If case sensitivity is turned off, two ranges will be
// added for characters with upper/lower case. Even though
// both ranges react identically the mapping algorithm can
// only deal with contiguous ranges of characters.
//
//--------------------------------------------------------------------------
void CNFA::FindCharClasses( WCHAR const * wcs )
{
//
// Scan the regex looking for characters with (potentially)
// different transitions.
//
while ( *wcs )
{
switch ( *wcs )
{
case wcAnySingle:
case wcAnyMultiple:
case wcDOSDot:
break;
case wcEscape:
{
wcs++;
switch ( *wcs )
{
case 0:
vqDebugOut(( DEB_WARN, "Invalid regex (%wc at end of string\n", wcEscape ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
break;
case wcAnySingle:
case wcRepeatZero:
case wcRepeatOne:
case wcOr:
case wcBeginParen:
case wcEndParen:
break;
case wcBeginRepeat:
for ( wcs++; *wcs; wcs++ )
{
if ( *wcs == wcEscape && *(wcs+1) == wcEndRepeat )
{
wcs++;
break;
}
}
break;
case wcBeginRange:
wcs++;
//
// Check the special cases of ^ and ]
//
if ( *wcs == wcInvertRange )
wcs++;
if ( *wcs == wcEndRange )
{
_chars.AddRange( *wcs, *wcs );
wcs++;
}
for ( ; *wcs && *wcs != wcEndRange; wcs++ )
{
if ( *(wcs + 1) == wcRangeSep )
{
_chars.AddRange( *wcs, *(wcs+2) );
}
else
{
_chars.AddRange( *wcs, *wcs );
}
}
if ( *wcs != wcEndRange )
{
vqDebugOut(( DEB_WARN, "Invalid regex. Missing %wc\n", wcEndRange ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
break;
default:
_chars.AddRange( *wcs, *wcs );
break;
}
break;
}
default:
_chars.AddRange( *wcs, *wcs );
break;
}
wcs++;
}
_chars.Prepare();
}
WCHAR * CNFA::_wcsNull = (WCHAR*)"";
//+-------------------------------------------------------------------------
//
// Member: CNFA::Parse, private
//
// Synopsis: Creates a NFA from [wcs]
//
// Effects: Parses [wcs] until end of string or character wcHalt is
// encountered. On exit, [iStart] and [iEnd] contain the
// starting and ending states of the NFA, respectively.
// [pwcsEnd] points to the last character of [wcs] that was
// parsed.
//
// Arguments: [wcs] -- Regular expression.
// [iStart] -- Starting state of NFA.
// [iEnd] -- Ending state of NFA
// [pwcsEnd] -- Last character of [wcs] that was parsed.
// [wcHalt] -- Stop parsing if this character encountered.
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
void CNFA::Parse( WCHAR const * wcs,
unsigned * iStart,
unsigned * iEnd,
WCHAR const * * pwcsEnd,
WCHAR wcHalt )
{
unsigned iCurrent;
unsigned iNext;
unsigned iLocalStart; // Used for */+/? repositioning
BOOLEAN fRepeat = FALSE; // Used for +
BOOLEAN fTopLevel = (*iStart == 0); // TRUE if at top level;
*iEnd = 0;
//
// Get a starting state. *iStart == 0 implies this is the 'top-level'
// parse of the regular expression (e.g. we're not parsing a
// parenthesized subexpression.
//
if ( fTopLevel )
{
iCurrent = _iNextState;
*iStart = _iNextState++;
iLocalStart = 0;
//
// non-EGREP (DOS) regex match entire string.
//
if ( *wcs != wcAnyMultiple )
{
iNext = _iNextState;
Get( iCurrent )->AddTransition( symBeginLine, _iNextState );
_iNextState++;
iCurrent = iNext;
}
else
{
//
// Add a 'special' transition on the very first state to
// eat up characters until we actually jump into the
// regular expresion.
//
Get( iCurrent )->AddTransition( symAny, Get( iCurrent )->StateNumber() );
}
}
else
{
iCurrent = *iStart;
iLocalStart = *iStart;
}
unsigned iOrStart = Get( iCurrent )->StateNumber();
//
// Original start of string.
//
WCHAR const * wcsBeginning = wcs;
//
// wcsLocalStart tracks the piece of string to be repeated for wcZeroOrOne, etc.
//
WCHAR const * wcsLocalStart = wcs;
//
// Parse the regular expression until there is no more or a
// termination character is hit.
//
for ( ; *wcs && *wcs != wcHalt; wcs++ )
{
switch ( *wcs )
{
case wcAnySingle:
iNext = _iNextState;
Get( iCurrent )->AddTransition( symAny, _iNextState );
iLocalStart = Get( iCurrent )->StateNumber();
wcsLocalStart = wcs;
_iNextState++;
iCurrent = iNext;
break;
case wcAnyMultiple:
//
// Any single
//
iNext = _iNextState;
Get( iCurrent )->AddTransition( symAny, _iNextState );
iLocalStart = Get( iCurrent )->StateNumber();
wcsLocalStart = wcs;
_iNextState++;
iCurrent = iNext;
//
// Repeat zero or more
//
Get( iLocalStart )->AddTransition( symEpsilon,
Get( iCurrent )->StateNumber() );
Get( iCurrent )->AddTransition( symEpsilon, iLocalStart );
break;
case wcEscape:
{
wcs++;
switch ( *wcs )
{
case wcBeginParen:
{
unsigned iLocalEnd;
iLocalStart = Get( iCurrent )->StateNumber();
wcsLocalStart = wcs - 1;
wcs++; // Eat '('.
Parse( wcs, &iLocalStart, &iLocalEnd, &wcs, wcEndParen );
wcs--; // Provide character for loop to eat.
iCurrent = iLocalEnd;
break;
}
case wcEndParen:
//
// Taken care of at outer level. Just backup so we hit the end.
//
wcs--;
break;
case wcBeginRepeat:
{
if ( wcHalt == wcBeginRepeat )
{
//
// Taken care of at outer level. Just backup so we hit the end.
//
wcs--;
}
else
{
//
// Setup: Bounds of repeated regex
//
WCHAR const * wcsStartRepeat = wcsLocalStart;
WCHAR const * wcsEndRepeat = wcs + 1;
//
// Setup: Repeat parameters.
//
unsigned cRepeat1, cRepeat2;
wcs++;
ParseRepeat( wcs, cRepeat1, cRepeat2 );
unsigned iLocalEnd;
//
// The minimum set has no epsilon transitions.
//
if ( cRepeat1 > 1 )
{
iLocalStart = Get( iCurrent )->StateNumber();
iLocalEnd = iLocalStart;
for ( unsigned i = 1; i < cRepeat1; i++ )
{
WCHAR const * wcsEnd;
iLocalStart = iLocalEnd;
iLocalEnd = 0; // Must be zero!
Parse( wcsLocalStart, &iLocalStart, &iLocalEnd, &wcsEnd, wcBeginRepeat );
if ( wcsEnd != wcsEndRepeat )
{
vqDebugOut(( DEB_ERROR, "Invalid regex: Nested repeats?\n" ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
}
}
else
iLocalEnd = Get( iCurrent )->StateNumber();
if ( cRepeat1 == cRepeat2 )
{
vqDebugOut(( DEB_REGEX, "REPEAT: Exactly %u times\n", cRepeat1 ));
}
else if ( cRepeat2 == 0 )
{
vqDebugOut(( DEB_REGEX, "REPEAT: At least %u times\n", cRepeat1 ));
Get( iLocalEnd )->AddTransition( symEpsilon, iLocalStart );
}
else if ( cRepeat2 > cRepeat1 )
{
for ( unsigned i = cRepeat1; i < cRepeat2; i++ )
{
WCHAR const * wcsEnd;
iLocalStart = iLocalEnd;
iLocalEnd = 0; // Must be zero!
Parse( wcsLocalStart, &iLocalStart, &iLocalEnd, &wcsEnd, wcBeginRepeat );
Get( iLocalStart )->AddTransition( symEpsilon, iLocalEnd );
if ( wcsEnd != wcsEndRepeat )
{
vqDebugOut(( DEB_ERROR, "Invalid regex: Nested repeats?\n" ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
}
}
else
{
vqDebugOut(( DEB_ERROR, "Invalid regex: End repeat count %d < start %d\n",
cRepeat2, cRepeat1 ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
iCurrent = iLocalEnd;
iLocalStart = 0;
wcsLocalStart = _wcsNull;
}
break;
}
case wcOr:
if ( *iEnd == 0 )
{
//
// First part of OR clause.
//
if ( fTopLevel )
{
iNext = _iNextState;
Get( iCurrent )->AddTransition( symEndLine, _iNextState );
_iNextState++;
iCurrent = iNext;
}
*iEnd = Get( iCurrent )->StateNumber();
}
else
{
//
// Subsequent OR clause. Epsilon link to end
//
Get( iCurrent )->AddTransition( symEpsilon, *iEnd );
}
iCurrent = iOrStart;
wcsLocalStart = _wcsNull;
iLocalStart = 0;
break;
case wcBeginRange:
{
BOOLEAN fReverse = FALSE;
vqDebugOut(( DEB_REGEX, "RANGE\n" ));
wcsLocalStart = wcs-1;
iNext = _iNextState;
wcs++; // Eat '['. ']' eaten by loop.
//
// Check the special cases of ^ and ]
//
if ( *wcs == wcInvertRange )
{
wcs++;
fReverse = TRUE;
//
// Add all transitions, they will be removed later.
//
for ( unsigned uiNext = _chars.TranslateRange( 1,
wcLastValidChar );
uiNext != 0;
uiNext = _chars.TranslateRange( 0, wcLastValidChar ) )
{
Get( iCurrent )->AddTransition( uiNext,
_iNextState );
}
}
if ( *wcs == wcEndRange )
{
if ( fReverse )
{
Get( iCurrent )->RemoveTransition( _chars.Translate( *wcs++ ),
_iNextState );
}
else
{
Get( iCurrent )->AddTransition( _chars.Translate( *wcs++ ),
_iNextState );
}
}
for ( ; *wcs && *wcs != wcEndRange; wcs++ )
{
if ( *(wcs + 1) == wcRangeSep )
{
vqDebugOut(( DEB_REGEX,
"Range %u to %u\n", *wcs, *(wcs+2) ));
for ( unsigned uiNext = _chars.TranslateRange( *wcs,
*(wcs+2) );
uiNext != 0;
uiNext = _chars.TranslateRange( 0, *(wcs+2) ) )
{
if ( fReverse )
{
Get( iCurrent )->RemoveTransition( uiNext,
_iNextState );
}
else
{
Get( iCurrent )->AddTransition( uiNext,
_iNextState );
}
}
wcs += 2;
}
else
{
vqDebugOut(( DEB_REGEX, "Singleton = %u\n", *wcs ));
if ( fReverse )
{
Get( iCurrent )->RemoveTransition(
_chars.Translate( *wcs ),
_iNextState );
}
else
{
Get( iCurrent )->AddTransition(
_chars.Translate( *wcs ),
_iNextState );
}
}
}
if ( *wcs != wcEndRange )
{
vqDebugOut(( DEB_WARN, "Invalid regex. Missing %wc\n", wcEndRange ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
iLocalStart = Get( iCurrent )->StateNumber();
_iNextState++;
iCurrent = iNext;
break;
}
case wcRepeatOne:
if ( iLocalStart == 0 )
{
vqDebugOut(( DEB_ERROR, "Invalid regex. Nothing to repeat\n" ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
Get( iCurrent )->AddTransition( symEpsilon, iLocalStart );
iNext = _iNextState;
Get( iCurrent )->AddTransition( symEpsilon, _iNextState );
wcsLocalStart = wcs - 1;
_iNextState++;
iCurrent = iNext;
break;
case wcRepeatZero:
if ( iLocalStart == 0 )
{
vqDebugOut(( DEB_ERROR, "Invalid regex. Nothing to repeat.\n" ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
Get( iLocalStart )->AddTransition( symEpsilon,
Get( iCurrent )->StateNumber() );
Get( iCurrent )->AddTransition( symEpsilon, iLocalStart );
iNext = _iNextState;
Get( iCurrent )->AddTransition( symEpsilon, _iNextState );
wcsLocalStart = wcs - 1;
_iNextState++;
iCurrent = iNext;
break;
case wcRepeatZeroOrOne:
{
if ( iLocalStart == 0 )
{
vqDebugOut(( DEB_ERROR, "Invalid regex. Nothing to repeat.\n" ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
Get( iLocalStart )->AddTransition( symEpsilon,
Get( iCurrent )->StateNumber() );
break;
}
default:
iNext = _iNextState;
Get( iCurrent )->AddTransition( _chars.Translate( *wcs ),
_iNextState );
iLocalStart = Get( iCurrent )->StateNumber();
wcsLocalStart = wcs - 1;
_iNextState++;
iCurrent = iNext;
break;
}
break; // switch for wcEscape
}
default:
iNext = _iNextState;
Get( iCurrent )->AddTransition( _chars.Translate( *wcs ),
_iNextState );
//
// In non-EGREP (DOS) syntax dot '.' is funny. It will match
// a dot, but if you're at the end of string it will also match
// end. So *.txt will look for strings with zero or more
// characters followed by '.txt' but *. will find any names
// without an extension and with no trailing dot.
//
if ( *wcs == wcDOSDot )
{
Get( iCurrent )->AddTransition( symEndLine, _iNextState );
}
iLocalStart = Get( iCurrent )->StateNumber();
wcsLocalStart = wcs;
_iNextState++;
iCurrent = iNext;
break;
}
}
//
// non-EGREP (DOS) regex match entire string.
//
if ( wcHalt == 0 &&
( ( wcsBeginning+1 <= wcs && *(wcs-1) != wcAnyMultiple ) ||
( wcsBeginning+2 <= wcs && *(wcs-2) == wcEscape ) ) )
{
iNext = _iNextState;
Get( iCurrent )->AddTransition( symEndLine, _iNextState );
iLocalStart = 0;
wcsLocalStart = _wcsNull;
_iNextState++;
iCurrent = iNext;
}
//
// If we haven't had an OR clause yet, then set iEnd
//
if ( *iEnd == 0 )
{
//
// First part of OR clause.
//
*iEnd = Get( iCurrent )->StateNumber();
}
else
{
//
// Subsequent OR clause. Epsilon link to end
//
Get( iCurrent )->AddTransition( symEpsilon, *iEnd );
}
if ( pwcsEnd )
{
*pwcsEnd = wcs + 1; // Eat halt character.
}
if( *wcs != wcHalt )
{
vqDebugOut(( DEB_WARN, "Invalid regex. Missing %wc\n", wcHalt ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
}
void CNFA::ParseRepeat( WCHAR const * & wcs, unsigned & cRepeat1, unsigned & cRepeat2 )
{
cRepeat1 = 0;
cRepeat2 = 0;
for ( ; *wcs && isdigit(*wcs); wcs++ )
{
cRepeat1 *= 10;
cRepeat1 += *wcs - '0';
}
if ( cRepeat1 == 0 || cRepeat1 > 255 )
{
vqDebugOut(( DEB_ERROR, "Invalid regex: Repeat count %d out of bounds.\n", cRepeat1 ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
if ( *wcs == ',' )
{
wcs++;
if ( *wcs == wcEscape && *(wcs+1) == wcEndRepeat )
{
wcs++;
}
else
{
for ( ; *wcs && isdigit(*wcs); wcs++ )
{
cRepeat2 *= 10;
cRepeat2 += *wcs - '0';
}
if ( cRepeat2 == 0 || cRepeat2 > 255 )
{
vqDebugOut(( DEB_ERROR, "Invalid regex: Repeat count %d too big.\n", cRepeat2 ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
if ( *wcs != wcEscape || *(wcs+1) != wcEndRepeat )
{
vqDebugOut(( DEB_ERROR, "Invalid regex: No end to repeat specification.\n" ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
else
{
wcs++;
}
}
}
else if ( *wcs == wcEscape && *(wcs+1) == wcEndRepeat )
{
wcs++;
cRepeat2 = cRepeat1;
}
else
{
vqDebugOut(( DEB_ERROR, "Invalid regex: No end to repeat specification.\n" ));
THROW( CException( QUERY_E_INVALIDRESTRICTION ) );
}
}
//+-------------------------------------------------------------------------
//
// Member: CDFA::CDFA, public
//
// Synopsis: Constructs a DFA from a NFA.
//
// Arguments: [pwcs] -- Regular expression (passed to NFA)
// [timeLimit] -- Execution time limit
// [fCaseSens] -- TRUE if case-sensitive search
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
CDFA::CDFA( WCHAR const * pwcs, CTimeLimit & timeLimit, BOOLEAN fCaseSens )
: _nfa( pwcs, fCaseSens ),
_xs( _nfa.NumStates() ),
_cState( _nfa.NumStates() ),
_timeLimit( timeLimit )
{
CommonCtor();
}
//+-------------------------------------------------------------------------
//
// Member: CDFA::CDFA, public
//
// Synopsis: Copy constructor
//
// Arguments: [pwcs] -- Regular expression (passed to NFA)
// [fCaseSens] -- TRUE if case-sensitive search
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
CDFA::CDFA( CDFA const & src )
: _nfa( src._nfa ),
_xs( src._nfa.NumStates() ),
_cState( src._nfa.NumStates() ),
_timeLimit( (CTimeLimit &) src._timeLimit )
{
CommonCtor();
}
//+-------------------------------------------------------------------------
//
// Member: CDFA::CommonCtor, private
//
// Synopsis: Code common to both constructors.
//
// History: 13-Jul-95 KyleP Snarfed from constructor
//
//--------------------------------------------------------------------------
void CDFA::CommonCtor()
{
//
// Add initial state.
//
CStateSet ss;
_nfa.EpsClosure( _nfa.StartState(), ss );
_stateStart = _xs.XlatToOne( ss );
//
// Intialize translation table.
//
int cEntries = (_cState + 1) * ( _nfa.Translate().NumClasses() + 1 );
_xStateTrans.Init( cEntries );
_xStateFinal.Init( _cState + 1 );
Win4Assert( stateUncomputed == 0xFFFFFFFF );
memset( _xStateTrans.GetPointer(), 0xFF, cEntries * sizeof( unsigned ) );
RtlZeroMemory( _xStateFinal.GetPointer(), (_cState + 1) * sizeof( BOOLEAN ) );
for ( int i = _cState; i >= 0; i-- )
{
AddTransition( i, 0, stateUndefined );
}
Add( _stateStart, _nfa.IsFinal( ss ) );
# if (CIDBG == 1)
vqDebugOut(( DEB_REGEX, "Character translation:\n" ));
_nfa.Translate().Display();
vqDebugOut(( DEB_REGEX, "NFA:\n" ));
_nfa.Display();
vqDebugOut(( DEB_REGEX, "DFA state %u = NFA states ", _stateStart ));
ss.Display();
vqDebugOut(( DEB_REGEX | DEB_NOCOMPNAME, "\n" ));
vqDebugOut(( DEB_REGEX, "DFA start state = %u\n", _stateStart ));
# endif // (CIDBG == 1)
}
//+-------------------------------------------------------------------------
//
// Member: CDFA::~CDFA, public
//
// Synopsis: Clean up DFA. Free state tables.
//
// History: 20-Jun-92 KyleP Created
//
//--------------------------------------------------------------------------
CDFA::~CDFA()
{
}
//+-------------------------------------------------------------------------
//
// Member: CDFA::Recognize, public
//
// Arguments: [wcs] -- Input string.
//
// Returns: TRUE if [wcs] is matched by the regular expression.
//
// History: 20-Jan-92 KyleP Created
//
//--------------------------------------------------------------------------
BOOLEAN CDFA::Recognize( WCHAR const * wcs )
{
# if CIDBG == 1
ValidateStateTransitions();
# endif // CIDBG == 1
unsigned CurrentState = _stateStart;
unsigned LastState = CurrentState;
BOOLEAN fFinal = IsFinal( CurrentState );
WCHAR wcCurrent = symBeginLine;
while ( !fFinal )
{
unsigned NextState;
{
CReadAccess lock( _rwa );
//
// Casting is to guarantee this method doesn't modify anything (e.g. read lock ok).
//
#if CIDBG == 1
NextState = ((CDFA const *)this)->Move( CurrentState, wcCurrent );
#else
NextState = Move( CurrentState, wcCurrent );
#endif
}
vqDebugOut(( DEB_REGEX,
"DFA move[ %u, %u ] = %u\n",
CurrentState, wcCurrent, NextState ));
if ( stateUncomputed == NextState )
{
CWriteAccess lock( _rwa );
//
// Did someone else get here first?
//
NextState = Move( CurrentState, wcCurrent );
if ( stateUncomputed != NextState )
continue;
//
// Build the new state
//
CStateSet ssCurrent;
CStateSet ssNew;
CStateSet ssClosed;
_xs.XlatToMany( CurrentState, ssCurrent );
# if (CIDBG == 1)
vqDebugOut(( DEB_REGEX,
"DFA state %u = NFA states ", CurrentState ));
ssCurrent.Display();
if ( _nfa.IsFinal( ssCurrent ) )
{
vqDebugOut(( DEB_REGEX | DEB_NOCOMPNAME, " FINAL" ));
}
vqDebugOut(( DEB_REGEX | DEB_NOCOMPNAME, "\n" ));
# endif // (CIDBG == 1)
_nfa.Move( ssCurrent, ssNew, wcCurrent );
if ( ssNew.Count() == 0 )
{
NextState = stateUndefined;
AddTransition( CurrentState, wcCurrent, NextState );
vqDebugOut(( DEB_REGEX, "Undefined transition from %u on %u\n",
CurrentState,
wcCurrent ));
}
else
{
_nfa.EpsClosure( ssNew, ssClosed );
# if (CIDBG == 1)
vqDebugOut(( DEB_REGEX, "NFA move FROM " ));
ssCurrent.Display();
vqDebugOut(( DEB_REGEX | DEB_NOCOMPNAME,
" ON %d TO ", wcCurrent ));
ssClosed.Display();
vqDebugOut(( DEB_REGEX | DEB_NOCOMPNAME, "\n" ));
# endif // (CIDBG == 1)
NextState = _xs.XlatToOne( ssClosed );
if ( !IsComputed( NextState ) )
{
Add( NextState, _nfa.IsFinal( ssClosed ) );
}
# if (CIDBG == 1)
vqDebugOut(( DEB_REGEX,
"DFA state %u = NFA states ", NextState ));
ssClosed.Display();
vqDebugOut(( DEB_REGEX | DEB_NOCOMPNAME, "\n" ));
# endif // (CIDBG == 1)
AddTransition( CurrentState, wcCurrent, NextState );
vqDebugOut(( DEB_REGEX,
"Adding transition from %u on %u to %u\n",
CurrentState,
wcCurrent,
NextState ));
}
if ( _timeLimit.CheckExecutionTime() )
{
vqDebugOut(( DEB_WARN,
"CDFA::Recognize: aborting because execution time limit has been exceeded\n" ));
THROW( CException( QUERY_E_TIMEDOUT ) );
}
}
if ( NextState == stateUndefined )
{
return( FALSE );
}
//
// The following are to find a specific condition detected on
// JHavens' machine.
//
Win4Assert( LastState <= _cState );
Win4Assert( CurrentState <= _cState );
Win4Assert( NextState <= _cState );
LastState = CurrentState;
CurrentState = NextState;
fFinal = IsFinal( CurrentState );
//
// If we ran out of string then just keep going, appending
// end-of-string symbols. Unfortunately the string is conceptually
// a set of characters followed by an arbitrary number of
// end-of-string symbols. In non-EGREP the end-of-string symbol
// may actually cause multiple state transitions before reaching
// a final state. In non-EGREP (DOS) mode we stop only when we
// are no longer 'making progress' (moving to new states) on
// end-of-string. I haven't completely convinced myself this
// algorithm is guaranteed to terminate.
//
if ( wcCurrent == symEndLine )
{
if ( LastState == CurrentState )
break;
}
else
{
wcCurrent = *wcs++;
//
// After we've exhausted the string, append the special
// end-of-line character.
//
if ( wcCurrent == 0 )
{
wcCurrent = symEndLine;
}
else
{
vqDebugOut(( DEB_REGEX, "\"%c\" --> ", wcCurrent ));
//
// Casting is to guarantee this method doesn't modify anything (e.g. read lock ok).
//
#if CIDBG == 1
wcCurrent = (WCHAR) ((CNFA const *)&_nfa)->Translate().Translate( wcCurrent );
#else
wcCurrent = (WCHAR) _nfa.Translate().Translate( wcCurrent );
#endif
vqDebugOut(( DEB_REGEX | DEB_NOCOMPNAME, "%u\n", wcCurrent ));
}
}
}
# if CIDBG == 1
ValidateStateTransitions();
# endif // CIDBG == 1
return( fFinal );
}
//+-------------------------------------------------------------------------
//
// Member: CDFA::Add, private
//
// Synopsis: Adds a new state the the DFA.
//
// Arguments: [state] -- State number
// [fFinal] -- TRUE if state is a final state.
//
// History: 20-Jan-92 KyleP Created
//
// Notes: All transitions for the new state are initially uncomputed.
//
//--------------------------------------------------------------------------
void CDFA::Add( unsigned state, BOOLEAN fFinal )
{
if ( state > _cState )
{
vqDebugOut(( DEB_ITRACE, "Growing DFA state array.\n" ));
//
// Since the number of states required will probably grow at
// a slow rate, increase the size of the array in a linear
// fashion.
unsigned const DeltaState = 10;
XPtrST<unsigned> xOldStateTrans( _xStateTrans.Acquire() );
XPtrST<BOOLEAN> xOldStateFinal( _xStateFinal.Acquire() );
unsigned oldcState = _cState;
unsigned oldcEntries = (_cState + 1) *
( _nfa.Translate().NumClasses() + 1 );
_cState += DeltaState;
unsigned cEntries = (_cState + 1) * ( _nfa.Translate().NumClasses() + 1 );
_xStateTrans.Init( cEntries );
_xStateFinal.Init( _cState + 1 );
//
// Initilize new state tables...
//
memcpy( _xStateTrans.GetPointer(),
xOldStateTrans.GetPointer(),
oldcEntries * sizeof( unsigned ) );
memcpy( _xStateFinal.GetPointer(),
xOldStateFinal.GetPointer(),
oldcState * sizeof( BOOLEAN ) );
Win4Assert( stateUncomputed == 0xFFFFFFFF );
memset( _xStateTrans.GetPointer() + oldcEntries, 0xFF, (cEntries - oldcEntries)*sizeof(unsigned ) );
RtlZeroMemory( _xStateFinal.GetPointer() + oldcState, (_cState + 1 - oldcState)*sizeof(BOOLEAN) );
for ( unsigned i = _cState - DeltaState + 1; i <= _cState; i++ )
{
AddTransition( i, 0, stateUndefined );
}
}
//
// All states are set to stateUncomputed above, except the 'undefined' flag-state.
//
# if CIDBG == 1
for ( int i = _nfa.Translate().NumClasses(); i > 0; i-- )
Win4Assert( Move( state, i ) == stateUncomputed );
# endif
AddTransition( state, 0, stateUncomputed );
_xStateFinal[state] = fFinal;
}
//+---------------------------------------------------------------------------
//
// Member: CRegXpr::CRegXpr, public
//
// Synopsis: Create an expression used to match <prop> with a regex.
//
// Arguments: [prel] -- Property restriction.
// [timeLimit] -- Execution time limit
//
// History: 15-Apr-92 KyleP Created.
//
//----------------------------------------------------------------------------
CRegXpr::CRegXpr( CInternalPropertyRestriction * prst, CTimeLimit& timeLimit )
: CXpr( CXpr::NTRegex ),
_pxpval( prst->Pid() ),
_xrstContentHelper( prst->AcquireContentHelper() ),
//
// Feature decision: Make all regular expressions case insensitive.
//
_dfa( prst->Value(), timeLimit, FALSE ),
_ulCodePage( LocaleToCodepage( GetSystemDefaultLCID() ))
{
//
// Existence of _prstContentHelper implies a fixed starting prefix.
//
if ( !_xrstContentHelper.IsNull() )
{
//
// Find fixed prefix, and add it as a view value
//
unsigned i = wcscspn( prst->Value().GetLPWSTR(),
awcSpecialRegex );
if ( i > 0 )
{
WCHAR wcs[50];
if ( i > sizeof(wcs)/sizeof(WCHAR) - 2 )
i = sizeof(wcs)/sizeof(WCHAR) - 2;
//
// If "foo" is the prefix, we want all values from "foo" to "fop",
// but I'm going to be lazy. If the trailing letter of the prefix is
// 0xFFFF then I just won't set bounds.
//
if ( prst->Value().GetLPWSTR()[i-1] != 0xFFFF )
{
memcpy( wcs, prst->Value().GetLPWSTR(), i*sizeof(WCHAR) );
wcs[i] = 0;
_varPrefix.SetLPWSTR( wcs );
}
}
}
}
//+---------------------------------------------------------------------------
//
// Member: CRegXpr::CRegXpr, public
//
// Synopsis: Copy constructor
//
// Arguments: [src] -- Source expression
//
// History: 13-Jul-95 KyleP Created.
//
//----------------------------------------------------------------------------
CRegXpr::CRegXpr( CRegXpr const & src )
: CXpr( CXpr::NTRegex ),
_pxpval( src._pxpval ),
_varPrefix( src._varPrefix ),
_dfa( src._dfa ),
_ulCodePage( src._ulCodePage )
{
if ( !src._xrstContentHelper.IsNull() )
_xrstContentHelper.Set( src._xrstContentHelper->Clone() );
}
//+---------------------------------------------------------------------------
//
// Member: CRegXpr::Clone, public
//
// Returns: A copy of this node.
//
// Derivation: From base class CXpr, Always override in subclasses.
//
// History: 11-Dec-91 KyleP Created.
//
//----------------------------------------------------------------------------
CXpr * CRegXpr::Clone()
{
return new CRegXpr( *this );
}
void CRegXpr::SelectIndexing( CIndexStrategy & strategy )
{
if ( _pxpval.Pid() == pidPath ||
_pxpval.Pid() == pidDirectory ||
_pxpval.Pid() == pidVirtualPath )
{
strategy.SetUnknownBounds( _pxpval.Pid() );
return;
}
if ( _varPrefix.Type() == VT_LPWSTR )
{
strategy.SetLowerBound( _pxpval.Pid(), _varPrefix );
WCHAR * wcs = (WCHAR *)_varPrefix.GetLPWSTR();
unsigned cc = wcslen( wcs );
Win4Assert( wcs[cc-1] != 0xFFFF );
wcs[cc-1] = wcs[cc-1] + 1;
strategy.SetUpperBound( _pxpval.Pid(), _varPrefix, TRUE );
}
if ( !_xrstContentHelper.IsNull() )
{
strategy.SetContentHelper( _xrstContentHelper.GetPointer() );
_xrstContentHelper.Acquire();
}
}
//+---------------------------------------------------------------------------
//
// Member: CRegXpr::IsMatch, public
//
// Arguments: [obj] -- The objects table. [obj] is already positioned
// to the record to test.
//
// Returns: TRUE if the current record satisfies the regex.
//
// History: 15-Apr-92 KyleP Created.
//
//----------------------------------------------------------------------------
BOOL CRegXpr::IsMatch( CRetriever & obj )
{
// Make this big enough for most paths
const cbGuess = ( MAX_PATH * sizeof WCHAR ) + sizeof PROPVARIANT;
XGrowable<BYTE,cbGuess> xBuffer;
PROPVARIANT * ppv = (PROPVARIANT *) xBuffer.Get();
ULONG cb = xBuffer.SizeOf();
GetValueResult rc = _pxpval.GetValue( obj, ppv, &cb );
//
// If the object is too big for the stack then allocate heap (sigh).
//
if ( rc == GVRNotEnoughSpace )
{
xBuffer.SetSize( cb );
ppv = (PROPVARIANT *) xBuffer.Get();
rc = _pxpval.GetValue( obj, ppv, &cb );
}
if ( rc != GVRSuccess )
return FALSE;
// MAX_PATH here is just a heuristic
XGrowable<WCHAR, MAX_PATH> xConvert;
//
// Cast LPSTR to LPWSTR
//
if ( ppv->vt == VT_LPSTR )
{
cb = strlen( ppv->pszVal );
ULONG cwcOut = cb + cb / 4 + 1;
xConvert.SetSize( cwcOut );
ULONG cwcActual = 0;
do
{
cwcActual = MultiByteToWideChar( _ulCodePage,
0,
ppv->pszVal,
cb + 1,
xConvert.Get(),
cwcOut );
if ( cwcActual == 0 )
{
if ( GetLastError() == ERROR_INSUFFICIENT_BUFFER )
{
cwcOut *= 2;
xConvert.SetSize( cwcOut );
}
else
THROW( CException() );
}
} while ( 0 == cwcActual );
ppv->vt = VT_LPWSTR;
ppv->pwszVal = xConvert.Get();
}
else if ( ppv->vt == VT_LPWSTR || ppv->vt == VT_BSTR )
{
//
// Normalize to precomposed Unicode
//
ULONG cwcIn;
WCHAR *pwcIn;
if ( ppv->vt == VT_LPWSTR )
{
pwcIn = ppv->pwszVal;
cwcIn = wcslen(pwcIn) + 1;
}
else // ppv->vt == VT_BSTR
{
pwcIn = ppv->bstrVal;
cwcIn = SysStringLen( pwcIn ) + 1;
}
xConvert.SetSize( cwcIn );
ULONG cwcFolded = FoldStringW( MAP_PRECOMPOSED,
pwcIn,
cwcIn,
xConvert.Get(),
cwcIn );
if ( cwcFolded == 0 )
{
Win4Assert( GetLastError() != ERROR_INSUFFICIENT_BUFFER );
THROW( CException() );
}
ppv->vt = VT_LPWSTR;
ppv->pwszVal = xConvert.Get();
}
//
// But any other types are illegal
//
if ( ppv->vt != VT_LPWSTR )
{
vqDebugOut(( DEB_ITRACE,
"CRegXpr::IsMatch -- Type mismatch. Got 0x%x\n",
ppv->vt ));
return FALSE;
}
return _dfa.Recognize( ppv->pwszVal );
}
#if (CIDBG == 1)
//
// Debug methods
//
void CNFA::Display()
{
vqDebugOut(( DEB_REGEX, "NFA contains %d states.\n", _iNextState-1 ));
for ( unsigned i = 1; i < _iNextState; i++ )
{
Get(i)->Display();
vqDebugOut(( DEB_REGEX | DEB_NOCOMPNAME, "\n" ));
}
}
void CDFA::ValidateStateTransitions()
{
//
// Valid states are numbers < _cState, plus a few special states.
//
for ( int i = _cState * (_nfa.Translate().NumClasses() + 1);
i >= 0;
i-- )
{
if ( _xStateTrans[i] > _cState &&
_xStateTrans[i] != stateUncomputed &&
_xStateTrans[i] != stateUninitialized &&
_xStateTrans[i] != stateUndefined )
{
vqDebugOut(( DEB_ERROR, "Bogus state 0x%x in DFA. pDFA = 0x%x\n",
_xStateTrans[i], this ));
Win4Assert( !"Bogus state in DFA" );
}
}
}
#endif // (CIDBG == 1)