182 lines
4.8 KiB
C
182 lines
4.8 KiB
C
/******************************Module*Header*******************************\
|
|
* Module Name: math.c
|
|
*
|
|
* Misc. useful math utility functions.
|
|
*
|
|
* Copyright (c) 1994 Microsoft Corporation
|
|
*
|
|
\**************************************************************************/
|
|
|
|
#include <windows.h>
|
|
#include <GL\gl.h>
|
|
#include <math.h>
|
|
#include "mtk.h"
|
|
|
|
#define ZERO_EPS 0.00000001
|
|
|
|
POINT3D ss_ptZero = {0.0f, 0.0f, 0.0f};
|
|
|
|
|
|
void ss_xformPoint(POINT3D *ptOut, POINT3D *ptIn, MATRIX *mat)
|
|
{
|
|
double x, y, z;
|
|
|
|
x = (ptIn->x * mat->M[0][0]) + (ptIn->y * mat->M[0][1]) +
|
|
(ptIn->z * mat->M[0][2]) + mat->M[0][3];
|
|
|
|
y = (ptIn->x * mat->M[1][0]) + (ptIn->y * mat->M[1][1]) +
|
|
(ptIn->z * mat->M[1][2]) + mat->M[1][3];
|
|
|
|
z = (ptIn->x * mat->M[2][0]) + (ptIn->y * mat->M[2][1]) +
|
|
(ptIn->z * mat->M[2][2]) + mat->M[2][3];
|
|
|
|
ptOut->x = (float) x;
|
|
ptOut->y = (float) y;
|
|
ptOut->z = (float) z;
|
|
}
|
|
|
|
void ss_xformNorm(POINT3D *ptOut, POINT3D *ptIn, MATRIX *mat)
|
|
{
|
|
double x, y, z;
|
|
double len;
|
|
|
|
x = (ptIn->x * mat->M[0][0]) + (ptIn->y * mat->M[0][1]) +
|
|
(ptIn->z * mat->M[0][2]);
|
|
|
|
y = (ptIn->x * mat->M[1][0]) + (ptIn->y * mat->M[1][1]) +
|
|
(ptIn->z * mat->M[1][2]);
|
|
|
|
z = (ptIn->x * mat->M[2][0]) + (ptIn->y * mat->M[2][1]) +
|
|
(ptIn->z * mat->M[2][2]);
|
|
|
|
len = (x * x) + (y * y) + (z * z);
|
|
if (len >= ZERO_EPS)
|
|
len = 1.0 / sqrt(len);
|
|
else
|
|
len = 1.0;
|
|
|
|
ptOut->x = (float) (x * len);
|
|
ptOut->y = (float) (y * len);
|
|
ptOut->z = (float) (z * len);
|
|
return;
|
|
}
|
|
|
|
void ss_matrixIdent(MATRIX *mat)
|
|
{
|
|
mat->M[0][0] = 1.0f; mat->M[0][1] = 0.0f;
|
|
mat->M[0][2] = 0.0f; mat->M[0][3] = 0.0f;
|
|
|
|
mat->M[1][0] = 0.0f; mat->M[1][1] = 1.0f;
|
|
mat->M[1][2] = 0.0f; mat->M[1][3] = 0.0f;
|
|
|
|
mat->M[2][0] = 0.0f; mat->M[2][1] = 0.0f;
|
|
mat->M[2][2] = 1.0f; mat->M[2][3] = 0.0f;
|
|
|
|
mat->M[3][0] = 0.0f; mat->M[3][1] = 0.0f;
|
|
mat->M[3][2] = 0.0f; mat->M[3][3] = 1.0f;
|
|
}
|
|
|
|
void ss_matrixRotate(MATRIX *m, double xTheta, double yTheta, double zTheta)
|
|
{
|
|
float xScale, yScale, zScale;
|
|
float sinX, cosX;
|
|
float sinY, cosY;
|
|
float sinZ, cosZ;
|
|
|
|
xScale = m->M[0][0];
|
|
yScale = m->M[1][1];
|
|
zScale = m->M[2][2];
|
|
sinX = (float) sin(xTheta);
|
|
cosX = (float) cos(xTheta);
|
|
sinY = (float) sin(yTheta);
|
|
cosY = (float) cos(yTheta);
|
|
sinZ = (float) sin(zTheta);
|
|
cosZ = (float) cos(zTheta);
|
|
|
|
m->M[0][0] = (float) ((cosZ * cosY) * xScale);
|
|
m->M[0][1] = (float) ((cosZ * -sinY * -sinX + sinZ * cosX) * yScale);
|
|
m->M[0][2] = (float) ((cosZ * -sinY * cosX + sinZ * sinX) * zScale);
|
|
|
|
m->M[1][0] = (float) (-sinZ * cosY * xScale);
|
|
m->M[1][1] = (float) ((-sinZ * -sinY * -sinX + cosZ * cosX) * yScale);
|
|
m->M[1][2] = (float) ((-sinZ * -sinY * cosX + cosZ * sinX) * zScale);
|
|
|
|
m->M[2][0] = (float) (sinY * xScale);
|
|
m->M[2][1] = (float) (cosY * -sinX * yScale);
|
|
m->M[2][2] = (float) (cosY * cosX * zScale);
|
|
}
|
|
|
|
void ss_matrixTranslate(MATRIX *m, double xTrans, double yTrans,
|
|
double zTrans)
|
|
{
|
|
m->M[0][3] = (float) xTrans;
|
|
m->M[1][3] = (float) yTrans;
|
|
m->M[2][3] = (float) zTrans;
|
|
}
|
|
|
|
|
|
void ss_matrixMult( MATRIX *m1, MATRIX *m2, MATRIX *m3 )
|
|
{
|
|
int i, j;
|
|
|
|
for( j = 0; j < 4; j ++ ) {
|
|
for( i = 0; i < 4; i ++ ) {
|
|
m1->M[j][i] = m2->M[j][0] * m3->M[0][i] +
|
|
m2->M[j][1] * m3->M[1][i] +
|
|
m2->M[j][2] * m3->M[2][i] +
|
|
m2->M[j][3] * m3->M[3][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void ss_calcNorm(POINT3D *norm, POINT3D *p1, POINT3D *p2, POINT3D *p3)
|
|
{
|
|
float crossX, crossY, crossZ;
|
|
float abX, abY, abZ;
|
|
float acX, acY, acZ;
|
|
float sqrLength;
|
|
float invLength;
|
|
|
|
abX = p2->x - p1->x; // calculate p2 - p1
|
|
abY = p2->y - p1->y;
|
|
abZ = p2->z - p1->z;
|
|
|
|
acX = p3->x - p1->x; // calculate p3 - p1
|
|
acY = p3->y - p1->y;
|
|
acZ = p3->z - p1->z;
|
|
|
|
crossX = (abY * acZ) - (abZ * acY); // get cross product
|
|
crossY = (abZ * acX) - (abX * acZ); // (p2 - p1) X (p3 - p1)
|
|
crossZ = (abX * acY) - (abY * acX);
|
|
|
|
sqrLength = (crossX * crossX) + (crossY * crossY) +
|
|
(crossZ * crossZ);
|
|
|
|
if (sqrLength > ZERO_EPS)
|
|
invLength = (float) (1.0 / sqrt(sqrLength));
|
|
else
|
|
invLength = 1.0f;
|
|
|
|
norm->x = crossX * invLength;
|
|
norm->y = crossY * invLength;
|
|
norm->z = crossZ * invLength;
|
|
}
|
|
|
|
void mtk_NormalizePoints(POINT3D *p, ULONG cPts)
|
|
{
|
|
float len;
|
|
ULONG i;
|
|
|
|
for (i = 0; i < cPts; i++, p++) {
|
|
len = (p->x * p->x) + (p->y * p->y) + (p->z * p->z);
|
|
if (len > ZERO_EPS)
|
|
len = (float) (1.0 / sqrt(len));
|
|
else
|
|
len = 1.0f;
|
|
|
|
p->x *= len;
|
|
p->y *= len;
|
|
p->z *= len;
|
|
}
|
|
}
|