2020-09-30 16:53:55 +02:00

2662 lines
72 KiB
C++

//----------------------------------------------------------------------------
//
// Abstraction of target-specific information.
//
// Copyright (C) Microsoft Corporation, 1999-2002.
//
//----------------------------------------------------------------------------
#include "ntsdp.hpp"
ULONG g_NumberTargets;
TargetInfo* g_TargetHead;
//----------------------------------------------------------------------------
//
// TargetInfo.
//
//----------------------------------------------------------------------------
TargetInfo::TargetInfo(ULONG Class, ULONG Qual, BOOL DynamicEvents)
{
m_Class = Class;
m_ClassQualifier = Qual;
m_DynamicEvents = DynamicEvents;
m_UserId = FindNextUserId(LAYER_TARGET);
m_Next = NULL;
m_NumEvents = 1;
m_EventIndex = 0;
m_NextEventIndex = 0;
m_FirstWait = TRUE;
m_EventPossible = FALSE;
m_BreakInMessage = FALSE;
FlushSelectorCache();
m_PhysicalCache.SetTarget(this);
PCHAR CacheEnv = getenv("_NT_DEBUG_CACHE_SIZE");
if (CacheEnv != NULL)
{
m_PhysicalCache.m_MaxSize = atol(CacheEnv);
m_PhysicalCache.m_UserSize = m_PhysicalCache.m_MaxSize;
}
ResetSystemInfo();
}
TargetInfo::~TargetInfo(void)
{
DeleteSystemInfo();
Unlink();
g_UserIdFragmented[LAYER_TARGET]++;
if (g_Target == this)
{
g_Target = NULL;
}
if (g_EventTarget == this)
{
g_EventTarget = NULL;
DiscardLastEvent();
}
}
void
TargetInfo::Link(void)
{
TargetInfo* Cur;
TargetInfo* Prev;
Prev = NULL;
for (Cur = g_TargetHead; Cur; Cur = Cur->m_Next)
{
if (Cur->m_UserId > this->m_UserId)
{
break;
}
Prev = Cur;
}
m_Next = Cur;
if (!Prev)
{
g_TargetHead = this;
}
else
{
Prev->m_Next = this;
}
g_NumberTargets++;
NotifyChangeEngineState(DEBUG_CES_SYSTEMS, m_UserId, TRUE);
}
void
TargetInfo::Unlink(void)
{
TargetInfo* Cur;
TargetInfo* Prev;
Prev = NULL;
for (Cur = g_TargetHead; Cur; Cur = Cur->m_Next)
{
if (Cur == this)
{
break;
}
Prev = Cur;
}
if (!Cur)
{
return;
}
if (!Prev)
{
g_TargetHead = this->m_Next;
}
else
{
Prev->m_Next = this->m_Next;
}
g_NumberTargets--;
NotifyChangeEngineState(DEBUG_CES_SYSTEMS, DEBUG_ANY_ID, TRUE);
}
HRESULT
TargetInfo::Initialize(void)
{
return S_OK;
}
void
TargetInfo::DebuggeeReset(ULONG Reason, BOOL FromEvent)
{
if (Reason == DEBUG_SESSION_REBOOT)
{
dprintf("Shutdown occurred...unloading all symbol tables.\n");
}
else if (Reason == DEBUG_SESSION_HIBERNATE)
{
dprintf("Hibernate occurred\n");
}
if (FromEvent && g_EventTarget == this)
{
g_EngStatus &= ~ENG_STATUS_SUSPENDED;
}
DeleteSystemInfo();
ResetSystemInfo();
// If we were waiting for a shutdown event
// reset the command state to indicate that
// we successfully received the shutdown.
if (FromEvent && SPECIAL_EXECUTION(g_CmdState))
{
g_CmdState = 'i';
}
DiscardedTargets(Reason);
}
HRESULT
TargetInfo::SwitchToTarget(TargetInfo* From)
{
SetPromptThread(m_CurrentProcess->m_CurrentThread,
SPT_DEFAULT_OCI_FLAGS);
return S_OK;
}
ModuleInfo*
TargetInfo::GetModuleInfo(BOOL UserMode)
{
if (UserMode)
{
switch(m_PlatformId)
{
case VER_PLATFORM_WIN32_NT:
return &g_NtTargetUserModuleIterator;
case VER_PLATFORM_WIN32_WINDOWS:
case VER_PLATFORM_WIN32_CE:
return &g_ToolHelpModuleIterator;
default:
ErrOut("System module info not available\n");
return NULL;
}
}
else
{
if (m_PlatformId != VER_PLATFORM_WIN32_NT)
{
ErrOut("System module info only available on "
"Windows NT/2000/XP\n");
return NULL;
}
DBG_ASSERT(IS_KERNEL_TARGET(this));
return &g_NtKernelModuleIterator;
}
}
UnloadedModuleInfo*
TargetInfo::GetUnloadedModuleInfo(void)
{
if (m_PlatformId != VER_PLATFORM_WIN32_NT)
{
ErrOut("System unloaded module info only available on "
"Windows NT/2000/XP\n");
return NULL;
}
if (IS_KERNEL_TARGET(this))
{
return &g_NtKernelUnloadedModuleIterator;
}
else
{
return &g_NtUserUnloadedModuleIterator;
}
}
HRESULT
TargetInfo::GetImageVersionInformation(ProcessInfo* Process,
PCSTR ImagePath,
ULONG64 ImageBase,
PCSTR Item,
PVOID Buffer, ULONG BufferSize,
PULONG VerInfoSize)
{
HRESULT Status;
IMAGE_NT_HEADERS64 NtHdr;
//
// This default implementation attempts to read the image's
// raw version information in memory.
//
if ((Status = ReadImageNtHeaders(Process, ImageBase, &NtHdr)) != S_OK)
{
return Status;
}
if (NtHdr.OptionalHeader.NumberOfRvaAndSizes <=
IMAGE_DIRECTORY_ENTRY_RESOURCE)
{
// No resource information so no version information.
return E_NOINTERFACE;
}
return ReadImageVersionInfo(Process, ImageBase, Item,
Buffer, BufferSize, VerInfoSize,
&NtHdr.OptionalHeader.
DataDirectory[IMAGE_DIRECTORY_ENTRY_RESOURCE]);
}
HRESULT
TargetInfo::Reload(ThreadInfo* Thread,
PCSTR Args, PCSTR* ArgsRet)
{
HRESULT Status;
CHAR AnsiString[MAX_IMAGE_PATH];
LPSTR SpecificModule = NULL;
BOOL SpecificWild = TRUE;
ULONG64 Address = 0;
ULONG ImageSize = 0;
PCHAR Scan;
ULONG ModCount;
BOOL IgnoreSignature = FALSE;
ULONG ReloadSymOptions;
BOOL UnloadOnly = FALSE;
BOOL ReallyVerbose = FALSE;
BOOL LoadUserSymbols = TRUE;
BOOL UserModeList = IS_USER_TARGET(this);
BOOL ForceSymbolLoad = FALSE;
BOOL PrintImageListOnly = FALSE;
BOOL AddrLoad = FALSE;
BOOL UseDebuggerModuleList;
BOOL SkipPathChecks = FALSE;
ModuleInfo* ModIter;
BOOL Wow64ModLoaded = FALSE;
HRESULT RetStatus = S_OK;
MODULE_INFO_ENTRY ModEntry = {0};
ProcessInfo* Process;
ImageInfo* ImageAdded;
if ((!IS_USER_TARGET(this) && !IS_KERNEL_TARGET(this)) ||
!Thread)
{
ErrOut("Reload failure, partially initialized target\n");
return E_UNEXPECTED;
}
Process = Thread->m_Process;
// Historically, live user-mode reload has always
// just used the internal module list so preserve that.
UseDebuggerModuleList = IS_USER_TARGET(this) && !IS_DUMP_TARGET(this);
for (;;)
{
while (*Args && *Args <= ' ')
{
Args++;
}
if (*Args != '/' && *Args != '-')
{
break;
}
Args++;
while (*Args > ' ' && *Args != ';')
{
switch(*Args++)
{
case 'a':
// for internal use only: loads whatever is found at the
// passed address
AddrLoad = TRUE;
break;
case 'd':
UseDebuggerModuleList = TRUE;
break;
case 'f':
ForceSymbolLoad = TRUE;
break;
case 'i':
IgnoreSignature = TRUE;
// We always force symbol loading in this
// case as we can't delay ignoring the signature.
ForceSymbolLoad = TRUE;
break;
case 'l':
PrintImageListOnly = TRUE;
break;
case 'n':
LoadUserSymbols = FALSE;
break;
case 'P':
// Internal-only switch.
SkipPathChecks = TRUE;
break;
case 's':
UseDebuggerModuleList = FALSE;
break;
case 'u':
if (!_strnicmp(Args, "ser", 3) &&
(Args[3] == ' ' || Args[3] == '\t' || !Args[3]))
{
UserModeList = TRUE;
if (!m_SystemRangeStart)
{
ErrOut("Unknown system range start, "
"check kernel symbols\n");
*ArgsRet = Args;
return E_INVALIDARG;
}
Args += 3;
}
else
{
UnloadOnly = TRUE;
}
break;
case 'v':
ReallyVerbose = TRUE;
break;
case 'w':
SpecificWild = FALSE;
break;
default:
dprintf("Reload: Unknown option '%c'\n", Args[-1]);
case '?':
dprintf("Usage: .reload [flags] [module [= Address "
"[, Size] ]]\n");
dprintf(" Flags: /d Use the debugger's module list\n");
dprintf(" Default for live user-mode "
"sessions\n");
dprintf(" /f Force immediate symbol load "
"instead of deferred\n");
dprintf(" /i Force symbol load by ignoring "
"mismatches in the pdb signature\n"
" (implies /f)\n");
dprintf(" /l Just list the modules. "
"Kernel output same as !drivers\n");
dprintf(" /n Do not load from user-mode list "
"in kernel sessions\n");
dprintf(" /s Use the system's module list\n");
dprintf(" Default for dump and kernel sessions\n");
dprintf(" /u Unload modules, no reload\n");
dprintf(" /user Load only user-mode modules "
"in kernel sessions\n");
dprintf(" /v Verbose\n");
dprintf(" /w No wildcard matching on "
"module name\n");
dprintf("\nUse \".hh .reload\" or open debugger.chm in "
"the debuggers directory to get\n"
"detailed documentation on this command.\n\n");
*ArgsRet = Args;
return E_INVALIDARG;
}
}
}
PSTR RawString;
ULONG RawStringLen;
RawString = BufferStringValue((PSTR*)&Args,
STRV_SPACE_IS_SEPARATOR |
STRV_ALLOW_EMPTY_STRING |
STRV_NO_MODIFICATION,
&RawStringLen, NULL);
*ArgsRet = Args;
if (!RawString || !RawStringLen)
{
AddrLoad = FALSE;
}
else
{
if (RawStringLen >= DIMA(AnsiString))
{
return E_INVALIDARG;
}
memcpy(AnsiString, RawString, RawStringLen * sizeof(*RawString));
AnsiString[RawStringLen] = 0;
//
// Support .reload <image.ext>=<base>,<size>.
//
if (Scan = strchr(AnsiString, '='))
{
*Scan++ = 0;
Address = EvalStringNumAndCatch(Scan);
if (!Address)
{
ErrOut("Invalid address %s\n", Scan);
return E_INVALIDARG;
}
if (!m_Machine->m_Ptr64)
{
Address = EXTEND64(Address);
}
if (Scan = strchr(Scan, ','))
{
Scan++;
ImageSize = (ULONG)EvalStringNumAndCatch(Scan);
if (!ImageSize)
{
ErrOut("Invalid ImageSize %s\n", Scan);
return E_INVALIDARG;
}
}
}
if (UnloadOnly)
{
BOOL Deleted;
Deleted = Process->
DeleteImageByName(AnsiString, INAME_MODULE);
if (!Deleted)
{
// The user might have given an image name
// instead of a module name so try that.
Deleted = Process->DeleteImageByName
(PathTail(AnsiString), INAME_IMAGE_PATH_TAIL);
}
if (Deleted)
{
dprintf("Unloaded %s\n", AnsiString);
return S_OK;
}
else
{
dprintf("Unable to find module '%s'\n", AnsiString);
return E_NOINTERFACE;
}
}
SpecificModule = _strdup(AnsiString);
if (!SpecificModule)
{
return E_OUTOFMEMORY;
}
if (IS_KERNEL_TARGET(this) &&
_stricmp(AnsiString, KERNEL_MODULE_NAME) == 0)
{
ForceSymbolLoad = TRUE;
}
else
{
if (AddrLoad)
{
free(SpecificModule);
SpecificModule = NULL;
}
}
}
if (!PrintImageListOnly && !SkipPathChecks)
{
if (g_SymbolSearchPath == NULL ||
*g_SymbolSearchPath == NULL)
{
dprintf("*********************************************************************\n");
dprintf("* Symbols can not be loaded because symbol path is not initialized. *\n");
dprintf("* *\n");
dprintf("* The Symbol Path can be set by: *\n");
dprintf("* using the _NT_SYMBOL_PATH environment variable. *\n");
dprintf("* using the -y <symbol_path> argument when starting the debugger. *\n");
dprintf("* using .sympath and .sympath+ *\n");
dprintf("*********************************************************************\n");
RetStatus = E_INVALIDARG;
goto FreeSpecMod;
}
if (IS_DUMP_WITH_MAPPED_IMAGES(this) &&
(g_ExecutableImageSearchPath == NULL ||
*g_ExecutableImageSearchPath == NULL))
{
dprintf("*********************************************************************\n");
dprintf("* Analyzing Minidumps requires access to the actual executable *\n");
dprintf("* images for the crashed system *\n");
dprintf("* *\n");
dprintf("* The Executable Image Path can be set by: *\n");
dprintf("* using the _NT_EXECUTABLE_IMAGE_PATH environment variable. *\n");
dprintf("* using the -i <image_path> argument when starting the debugger. *\n");
dprintf("* using .exepath and .exepath+ *\n");
dprintf("*********************************************************************\n");
RetStatus = E_INVALIDARG;
goto FreeSpecMod;
}
}
//
// If both the module name and the address are specified, then just load
// the module right now, as this is only used when normal symbol loading
// would have failed in the first place.
//
if (SpecificModule && Address)
{
if (IgnoreSignature)
{
ReloadSymOptions = SymGetOptions();
SymSetOptions(ReloadSymOptions | SYMOPT_LOAD_ANYTHING);
}
ModEntry.NamePtr = SpecificModule,
ModEntry.Base = Address;
ModEntry.Size = ImageSize;
ModEntry.CheckSum = -1;
if ((RetStatus = Process->
AddImage(&ModEntry, TRUE, &ImageAdded)) != S_OK)
{
ErrOut("Unable to add module at %s\n", FormatAddr64(Address));
}
if (IgnoreSignature)
{
SymSetOptions(ReloadSymOptions);
}
goto FreeSpecMod;
}
//
// Don't unload and reset things if we are looking for a specific module
// or if we're going to use the existing module list.
//
if (SpecificModule == NULL)
{
if (!PrintImageListOnly &&
(!UseDebuggerModuleList || UnloadOnly))
{
if (IS_KERNEL_TARGET(this) && UserModeList)
{
// This is a .reload /user, so only delete
// the user-mode modules.
Process->DeleteImagesBelowOffset(m_SystemRangeStart);
}
else
{
Process->DeleteImages();
}
}
if (UnloadOnly)
{
dprintf("Unloaded all modules\n");
return S_OK;
}
if (!IS_USER_TARGET(this) && !UseDebuggerModuleList)
{
if (IS_LIVE_KERNEL_TARGET(this))
{
// This is just a refresh and hopefully won't fail.
((LiveKernelTargetInfo*)this)->InitFromKdVersion();
}
QueryKernelInfo(Thread, TRUE);
}
//
// Print out the correct statement based on the type of output we
// want to provide
//
if (PrintImageListOnly)
{
if (UseDebuggerModuleList)
{
dprintf("Debugger Module List Summary\n");
}
else
{
dprintf("System %s Summary\n",
IS_USER_TARGET(this) ? "Image" : "Driver and Image");
}
dprintf("Base ");
if (m_Machine->m_Ptr64)
{
dprintf(" ");
}
#if 0
if (Flags & 1)
{
dprintf("Code Size Data Size Resident "
"Standby Driver Name\n");
}
else if (Flags & 2)
{
dprintf("Code Data Locked Resident Standby "
"Loader Entry Driver Name\n");
}
else
{
#endif
if (UseDebuggerModuleList)
{
dprintf("Image Size "
"Image Name Creation Time\n");
}
else
{
dprintf("Code Size Data Size "
"Image Name Creation Time\n");
}
}
else if (UseDebuggerModuleList)
{
dprintf("Reloading current modules\n");
}
else if (!IS_USER_TARGET(this))
{
dprintf("Loading %s Symbols\n",
UserModeList ? "User" : "Kernel");
}
}
//
// Get the beginning of the module list.
//
if (UseDebuggerModuleList)
{
ModIter = &g_DebuggerModuleIterator;
}
else
{
ModIter = GetModuleInfo(UserModeList);
}
if (ModIter == NULL)
{
// Error messages already printed.
RetStatus = E_UNEXPECTED;
goto FreeSpecMod;
}
if ((Status = ModIter->Initialize(Thread)) != S_OK)
{
// Error messages already printed.
// Fold unprepared-to-reload S_FALSE into S_OK.
RetStatus = SUCCEEDED(Status) ? S_OK : Status;
goto FreeSpecMod;
}
if (IgnoreSignature)
{
ReloadSymOptions = SymGetOptions();
SymSetOptions(ReloadSymOptions | SYMOPT_LOAD_ANYTHING);
}
// Suppress notifications until everything is done.
g_EngNotify++;
LoadLoop:
for (ModCount=0; ; ModCount++)
{
// Flush regularly so the user knows something is
// happening during the reload.
FlushCallbacks();
if (CheckUserInterrupt())
{
break;
}
if (ModCount > 1000)
{
ErrOut("ModuleList is corrupt - walked over 1000 module entries\n");
break;
}
if (ModEntry.DebugHeader)
{
free(ModEntry.DebugHeader);
}
ZeroMemory(&ModEntry, sizeof(ModEntry));
if ((Status = ModIter->GetEntry(&ModEntry)) != S_OK)
{
// Error message already printed in error case.
// Works for end-of-list case also.
break;
}
//
// Check size of images
//
if (!ModEntry.Size)
{
VerbOut("Image at %s had size 0\n",
FormatAddr64(ModEntry.Base));
//
// Override this since we know all images are at least 1 page long
//
ModEntry.Size = m_Machine->m_PageSize;
}
//
// Warn if not all the information was gathered
//
if (!ModEntry.ImageInfoValid)
{
VerbOut("Unable to read image header at %s\n",
FormatAddr64(ModEntry.Base));
}
//
// Are we looking for a module at a specific address ?
//
if (AddrLoad)
{
if (Address < ModEntry.Base ||
Address >= ModEntry.Base + ModEntry.Size)
{
continue;
}
}
if (ModEntry.UnicodeNamePtr)
{
ModEntry.NamePtr =
ConvertAndValidateImagePathW((PWSTR)ModEntry.NamePtr,
ModEntry.NameLength /
sizeof(WCHAR),
ModEntry.Base,
AnsiString,
DIMA(AnsiString));
ModEntry.UnicodeNamePtr = 0;
}
else
{
ModEntry.NamePtr =
ValidateImagePath((PSTR)ModEntry.NamePtr,
ModEntry.NameLength,
ModEntry.Base,
AnsiString,
DIMA(AnsiString));
}
//
// If we are loading a specific module:
//
// If the Module is NT, we take the first module in the list as it is
// guaranteed to be the kernel. Reset the Base address if it was
// not set.
//
// Otherwise, actually compare the strings and continue if they don't
// match
//
if (SpecificModule)
{
if (!UserModeList &&
_stricmp( SpecificModule, KERNEL_MODULE_NAME ) == 0)
{
if (!m_KdVersion.KernBase)
{
m_KdVersion.KernBase = ModEntry.Base;
}
if (!m_KdDebuggerData.KernBase)
{
m_KdDebuggerData.KernBase = ModEntry.Base;
}
}
else
{
if (!MatchPathTails(SpecificModule, ModEntry.NamePtr,
SpecificWild))
{
continue;
}
}
}
PCSTR NamePtrTail = PathTail(ModEntry.NamePtr);
if (PrintImageListOnly)
{
PCHAR Time;
//
// The timestamp in minidumps was corrupt until NT5 RC3
// The timestamp could also be invalid because it was paged out
// in which case it's value is UNKNOWN_TIMESTAMP.
if (IS_KERNEL_TRIAGE_DUMP(this) &&
(m_ActualSystemVersion > NT_SVER_START &&
m_ActualSystemVersion <= NT_SVER_W2K_RC3))
{
Time = "";
}
Time = TimeToStr(ModEntry.TimeDateStamp);
if (UseDebuggerModuleList)
{
dprintf("%s %6lx (%4ld k) %12s %s\n",
FormatAddr64(ModEntry.Base), ModEntry.Size,
KBYTES(ModEntry.Size), NamePtrTail,
Time);
}
else
{
dprintf("%s %6lx (%4ld k) %5lx (%3ld k) %12s %s\n",
FormatAddr64(ModEntry.Base),
ModEntry.SizeOfCode, KBYTES(ModEntry.SizeOfCode),
ModEntry.SizeOfData, KBYTES(ModEntry.SizeOfData),
NamePtrTail, Time);
}
}
else
{
//
// Don't bother reloading the kernel if we are not specifically
// asked since we know those symbols were reloaded by the
// QueryKernelInfo call.
//
if (!SpecificModule && !UserModeList &&
m_KdDebuggerData.KernBase == ModEntry.Base)
{
continue;
}
if (ReallyVerbose)
{
dprintf("AddImage: %s\n DllBase = %s\n Size = %08x\n "
"Checksum = %08x\n TimeDateStamp = %08x\n",
ModEntry.NamePtr, FormatAddr64(ModEntry.Base),
ModEntry.Size, ModEntry.CheckSum,
ModEntry.TimeDateStamp);
}
else
{
if (!SpecificModule)
{
dprintf(".");
}
}
if (Address)
{
ModEntry.Base = Address;
}
if ((RetStatus = Process->
AddImage(&ModEntry, ForceSymbolLoad, &ImageAdded)) != S_OK)
{
ErrOut("Unable to add module at %s\n",
FormatAddr64(ModEntry.Base));
}
}
if (SpecificModule)
{
free( SpecificModule );
goto Notify;
}
if (AddrLoad)
{
goto Notify;
}
}
if (UseDebuggerModuleList || IS_KERNEL_TARGET(this) || UserModeList)
{
// print newline after all the '.'
dprintf("\n");
}
if (!UseDebuggerModuleList && !UserModeList && SpecificModule == NULL)
{
// If we just reloaded the kernel modules
// go through the unloaded module list.
if (!PrintImageListOnly)
{
dprintf("Loading unloaded module list\n");
}
ListUnloadedModules(PrintImageListOnly ?
LUM_OUTPUT : LUM_OUTPUT_TERSE, NULL);
}
//
// If we got to the end of the kernel symbols, try to load the
// user mode symbols for the current process.
//
if (!UseDebuggerModuleList &&
(UserModeList == FALSE) &&
(LoadUserSymbols == TRUE) &&
SUCCEEDED(Status))
{
if (!AddrLoad && !SpecificModule)
{
dprintf("Loading User Symbols\n");
}
UserModeList = TRUE;
ModIter = GetModuleInfo(UserModeList);
if (ModIter != NULL && ModIter->Initialize(Thread) == S_OK)
{
goto LoadLoop;
}
}
if (!SpecificModule && !Wow64ModLoaded)
{
ModIter = &g_NtWow64UserModuleIterator;
Wow64ModLoaded = TRUE;
if (ModIter->Initialize(Thread) == S_OK)
{
dprintf("Loading Wow64 Symbols\n");
goto LoadLoop;
}
}
// In the multiple load situation we always return OK
// since an error wouldn't tell you much about what
// actually occurred.
// Specific loads that haven't already been handled are checked
// right after this.
RetStatus = S_OK;
//
// If we still have not managed to load a named file, just pass the name
// and the address and hope for the best.
//
if (SpecificModule && !PrintImageListOnly)
{
WarnOut("\nModule \"%s\" was not found in the module list.\n",
SpecificModule);
WarnOut("Debugger will attempt to load \"%s\" at given base %s.\n\n",
SpecificModule, FormatAddr64(Address));
WarnOut("Please provide the full image name, including the "
"extension (i.e. kernel32.dll)\nfor more reliable results. "
"Base address and size overrides can be given as\n"
".reload <image.ext>=<base>,<size>.\n");
ZeroMemory(&ModEntry, sizeof(ModEntry));
ModEntry.NamePtr = SpecificModule,
ModEntry.Base = Address;
ModEntry.Size = ImageSize;
if ((RetStatus = Process->
AddImage(&ModEntry, TRUE, &ImageAdded)) != S_OK)
{
ErrOut("Unable to add module at %s\n", FormatAddr64(Address));
}
free(SpecificModule);
}
Notify:
// If we've gotten this far we've done one or more reloads
// and postponed notifications. Do them now that all the work
// has been done.
g_EngNotify--;
if (SUCCEEDED(RetStatus))
{
NotifyChangeSymbolState(DEBUG_CSS_LOADS | DEBUG_CSS_UNLOADS, 0,
Process);
}
if (IgnoreSignature)
{
SymSetOptions(ReloadSymOptions);
}
if (ModEntry.DebugHeader)
{
free(ModEntry.DebugHeader);
}
return RetStatus;
FreeSpecMod:
free(SpecificModule);
return RetStatus;
}
ULONG64
TargetInfo::GetCurrentTimeDateN(void)
{
// No information.
return 0;
}
ULONG64
TargetInfo::GetCurrentSystemUpTimeN(void)
{
// No information.
return 0;
}
ULONG64
TargetInfo::GetProcessUpTimeN(ProcessInfo* Process)
{
// No information.
return 0;
}
HRESULT
TargetInfo::GetProcessTimes(ProcessInfo* Process,
PULONG64 Create,
PULONG64 Exit,
PULONG64 Kernel,
PULONG64 User)
{
// No information.
return E_NOTIMPL;
}
HRESULT
TargetInfo::GetThreadTimes(ThreadInfo* Thread,
PULONG64 Create,
PULONG64 Exit,
PULONG64 Kernel,
PULONG64 User)
{
// No information.
return E_NOTIMPL;
}
HRESULT
TargetInfo::GetProductInfo(PULONG ProductType, PULONG SuiteMask)
{
if (m_PlatformId == VER_PLATFORM_WIN32_NT)
{
return ReadSharedUserProductInfo(ProductType, SuiteMask);
}
else
{
return E_NOTIMPL;
}
}
HRESULT
TargetInfo::GetEventIndexDescription(IN ULONG Index,
IN ULONG Which,
IN OPTIONAL PSTR Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG DescSize)
{
switch(Which)
{
case DEBUG_EINDEX_NAME:
return FillStringBuffer("Default", 0,
Buffer, BufferSize, DescSize);
default:
return E_INVALIDARG;
}
}
HRESULT
TargetInfo::WaitInitialize(ULONG Flags,
ULONG Timeout,
WAIT_INIT_TYPE Type,
PULONG DesiredTimeout)
{
// Placeholder.
return S_OK;
}
HRESULT
TargetInfo::ReleaseLastEvent(ULONG ContinueStatus)
{
// Placeholder.
return S_OK;
}
HRESULT
TargetInfo::ClearBreakIn(void)
{
// Placeholder.
return S_OK;
}
//----------------------------------------------------------------------------
//
// LiveKernelTargetInfo miscellaneous methods.
//
// Data space methods and system objects methods are elsewhere.
//
//----------------------------------------------------------------------------
LiveKernelTargetInfo::LiveKernelTargetInfo(ULONG Qual, BOOL DynamicEvents)
: TargetInfo(DEBUG_CLASS_KERNEL, Qual, DynamicEvents)
{
m_ConnectOptions = NULL;
}
HRESULT
LiveKernelTargetInfo::ReadBugCheckData(PULONG Code, ULONG64 Args[4])
{
ULONG64 BugCheckData;
ULONG64 Data[5];
HRESULT Status;
ULONG Read;
if (!(BugCheckData = m_KdDebuggerData.KiBugcheckData))
{
if (!GetOffsetFromSym(m_ProcessHead,
"nt!KiBugCheckData", &BugCheckData, NULL) ||
!BugCheckData)
{
ErrOut("Unable to resolve nt!KiBugCheckData\n");
return E_NOINTERFACE;
}
}
if (m_Machine->m_Ptr64)
{
Status = ReadVirtual(m_ProcessHead, BugCheckData, Data,
sizeof(Data), &Read);
}
else
{
ULONG i;
ULONG Data32[5];
Status = ReadVirtual(m_ProcessHead, BugCheckData, Data32,
sizeof(Data32), &Read);
Read *= 2;
for (i = 0; i < DIMA(Data); i++)
{
Data[i] = EXTEND64(Data32[i]);
}
}
if (Status != S_OK || Read != sizeof(Data))
{
ErrOut("Unable to read KiBugCheckData\n");
return Status == S_OK ? E_FAIL : Status;
}
*Code = (ULONG)Data[0];
memcpy(Args, Data + 1, sizeof(Data) - sizeof(ULONG64));
return S_OK;
}
ULONG64
LiveKernelTargetInfo::GetCurrentTimeDateN(void)
{
ULONG64 TimeDate;
if (m_ActualSystemVersion > NT_SVER_START &&
m_ActualSystemVersion < NT_SVER_END &&
ReadSharedUserTimeDateN(&TimeDate) == S_OK)
{
return TimeDate;
}
else
{
return 0;
}
}
ULONG64
LiveKernelTargetInfo::GetCurrentSystemUpTimeN(void)
{
ULONG64 UpTime;
if (m_ActualSystemVersion > NT_SVER_START &&
m_ActualSystemVersion < NT_SVER_END &&
ReadSharedUserUpTimeN(&UpTime) == S_OK)
{
return UpTime;
}
else
{
return 0;
}
}
//----------------------------------------------------------------------------
//
// ConnLiveKernelTargetInfo miscellaneous methods.
//
// Data space methods and system objects methods are elsewhere.
//
//----------------------------------------------------------------------------
ConnLiveKernelTargetInfo::ConnLiveKernelTargetInfo(void)
: LiveKernelTargetInfo(DEBUG_KERNEL_CONNECTION, TRUE)
{
m_Transport = NULL;
ResetConnection();
}
ConnLiveKernelTargetInfo::~ConnLiveKernelTargetInfo(void)
{
RELEASE(m_Transport);
}
#define BUS_TYPE "_NT_DEBUG_BUS"
#define DBG_BUS1394_NAME "1394"
HRESULT
ConnLiveKernelTargetInfo::Initialize(void)
{
HRESULT Status;
DbgKdTransport* Trans = NULL;
ULONG Index;
// Try and find the transport by name.
Index = ParameterStringParser::
GetParser(m_ConnectOptions, DBGKD_TRANSPORT_COUNT,
g_DbgKdTransportNames);
if (Index < DBGKD_TRANSPORT_COUNT)
{
switch(Index)
{
case DBGKD_TRANSPORT_COM:
Trans = new DbgKdComTransport(this);
break;
case DBGKD_TRANSPORT_1394:
Trans = new DbgKd1394Transport(this);
break;
}
if (!Trans)
{
return E_OUTOFMEMORY;
}
}
if (Trans == NULL)
{
PCHAR BusType;
// Couldn't identify the transport from options so check
// the environment. Default to com port.
if (BusType = getenv(BUS_TYPE))
{
if (strstr(BusType, DBG_BUS1394_NAME))
{
Trans = new DbgKd1394Transport(this);
if (!Trans)
{
return E_OUTOFMEMORY;
}
}
}
if (!Trans)
{
Trans = new DbgKdComTransport(this);
if (!Trans)
{
return E_OUTOFMEMORY;
}
}
}
// Clear parameter state.
Trans->ResetParameters();
if (!Trans->ParseParameters(m_ConnectOptions))
{
Status = E_INVALIDARG;
}
else
{
Status = Trans->Initialize();
if (Status != S_OK)
{
ErrOut("Kernel debugger failed initialization, %s\n \"%s\"\n",
FormatStatusCode(Status), FormatStatus(Status));
}
}
if (Status == S_OK)
{
m_Transport = Trans;
// The initial target must always be considered the
// current partition so that it can successfully
// attempt the first wait.
m_CurrentPartition = TRUE;
Status = LiveKernelTargetInfo::Initialize();
}
else
{
delete Trans;
}
return Status;
}
HRESULT
ConnLiveKernelTargetInfo::GetDescription(PSTR Buffer, ULONG BufferLen,
PULONG DescLen)
{
HRESULT Status;
if (m_Transport)
{
char Buf[MAX_PATH];
m_Transport->GetParameters(Buf, sizeof(Buf));
Status = AppendToStringBuffer(S_OK, "Remote KD: ", TRUE,
&Buffer, &BufferLen, DescLen);
return AppendToStringBuffer(Status, Buf, FALSE,
&Buffer, &BufferLen, DescLen);
}
else
{
return FillStringBuffer("", 1,
Buffer, BufferLen, DescLen);
}
}
void
ConnLiveKernelTargetInfo::DebuggeeReset(ULONG Reason, BOOL FromEvent)
{
if (m_Transport != NULL)
{
m_Transport->Restart();
}
//
// If alternate partitions were created get rid of them.
//
TargetInfo* Target = FindTargetBySystemId(DBGKD_PARTITION_ALTERNATE);
if (Target == this)
{
Target = FindTargetBySystemId(DBGKD_PARTITION_DEFAULT);
}
delete Target;
ResetConnection();
m_CurrentPartition = TRUE;
LiveKernelTargetInfo::DebuggeeReset(Reason, FromEvent);
}
HRESULT
ConnLiveKernelTargetInfo::SwitchProcessors(ULONG Processor)
{
m_SwitchProcessor = Processor + 1;
g_CmdState = 's';
// Return S_FALSE to indicate that the switch is pending.
return S_FALSE;
}
HRESULT
ConnLiveKernelTargetInfo::SwitchToTarget(TargetInfo* From)
{
if (!IS_CONN_KERNEL_TARGET(From))
{
return E_NOTIMPL;
}
((ConnLiveKernelTargetInfo*)From)->m_SwitchTarget = this;
g_CmdState = 's';
// Return S_FALSE to indicate that the switch is pending.
return S_FALSE;
}
HRESULT
ConnLiveKernelTargetInfo::GetTargetKdVersion(PDBGKD_GET_VERSION64 Version)
{
DBGKD_MANIPULATE_STATE64 m;
PDBGKD_MANIPULATE_STATE64 Reply;
PDBGKD_GET_VERSION64 a = &m.u.GetVersion64;
ULONG rc;
m.ApiNumber = DbgKdGetVersionApi;
m.ReturnStatus = STATUS_PENDING;
a->ProtocolVersion = 1; // request context records on state changes
do
{
m_Transport->WritePacket(&m, sizeof(m),
PACKET_TYPE_KD_STATE_MANIPULATE,
NULL, 0);
rc = m_Transport->
WaitForPacket(PACKET_TYPE_KD_STATE_MANIPULATE, &Reply);
} while (rc != DBGKD_WAIT_PACKET);
*Version = Reply->u.GetVersion64;
KdOut("DbgKdGetVersion returns %08lx\n", Reply->ReturnStatus);
return CONV_NT_STATUS(Reply->ReturnStatus);
}
HRESULT
ConnLiveKernelTargetInfo::RequestBreakIn(void)
{
// Tell the waiting thread to break in.
m_Transport->m_BreakIn = TRUE;
return S_OK;
}
HRESULT
ConnLiveKernelTargetInfo::ClearBreakIn(void)
{
m_Transport->m_BreakIn = FALSE;
return S_OK;
}
HRESULT
ConnLiveKernelTargetInfo::Reboot(void)
{
DBGKD_MANIPULATE_STATE64 m;
//
// Format state manipulate message
//
m.ApiNumber = DbgKdRebootApi;
m.ReturnStatus = STATUS_PENDING;
//
// Send the message.
//
m_Transport->WritePacket(&m, sizeof(m),
PACKET_TYPE_KD_STATE_MANIPULATE,
NULL, 0);
InvalidateMemoryCaches(FALSE);
DebuggeeReset(DEBUG_SESSION_REBOOT, TRUE);
KdOut("DbgKdReboot returns 0x00000000\n");
return S_OK;
}
HRESULT
ConnLiveKernelTargetInfo::Crash(ULONG Code)
{
DBGKD_MANIPULATE_STATE64 m;
//
// Format state manipulate message
//
m.ApiNumber = DbgKdCauseBugCheckApi;
m.ReturnStatus = STATUS_PENDING;
*(PULONG)&m.u = Code;
m_Transport->WritePacket(&m, sizeof(m),
PACKET_TYPE_KD_STATE_MANIPULATE,
NULL, 0);
DiscardLastEvent();
KdOut("DbgKdCrash returns 0x00000000\n");
return S_OK;
}
void
ConnLiveKernelTargetInfo::ResetConnection(void)
{
m_CurrentPartition = FALSE;
m_SwitchTarget = NULL;
m_KdpSearchPageHits = 0;
m_KdpSearchPageHitOffsets = 0;
m_KdpSearchPageHitIndex = 0;
m_KdpSearchCheckPoint = 0;
m_KdpSearchInProgress = 0;
m_KdpSearchStartPageFrame = 0;
m_KdpSearchEndPageFrame = 0;
m_KdpSearchAddressRangeStart = 0;
m_KdpSearchAddressRangeEnd = 0;
m_KdpSearchPfnValue = 0;
}
//----------------------------------------------------------------------------
//
// LocalLiveKernelTargetInfo miscellaneous methods.
//
// Data space methods and system objects methods are elsewhere.
//
//----------------------------------------------------------------------------
HRESULT
LocalLiveKernelTargetInfo::Initialize(void)
{
DBGKD_GET_VERSION64 Version;
// Do a quick check to see if this kernel even
// supports the necessary debug services.
if (!NT_SUCCESS(g_NtDllCalls.
NtSystemDebugControl(SysDbgQueryVersion, NULL, 0,
&Version, sizeof(Version), NULL)))
{
ErrOut("The system does not support local kernel debugging.\n");
ErrOut("Local kernel debugging requires Windows XP, Administrative\n"
"privileges, and is not supported by WOW64.\n");
return E_NOTIMPL;
}
return LiveKernelTargetInfo::Initialize();
}
HRESULT
LocalLiveKernelTargetInfo::GetDescription(PSTR Buffer, ULONG BufferLen,
PULONG DescLen)
{
return FillStringBuffer("Local KD", 0,
Buffer, BufferLen, DescLen);
}
HRESULT
LocalLiveKernelTargetInfo::GetTargetKdVersion(PDBGKD_GET_VERSION64 Version)
{
NTSTATUS Status = g_NtDllCalls.
NtSystemDebugControl(SysDbgQueryVersion, NULL, 0,
Version, sizeof(*Version), NULL);
return CONV_NT_STATUS(Status);
}
//----------------------------------------------------------------------------
//
// ExdiLiveKernelTargetInfo miscellaneous methods.
//
// Data space methods and system objects methods are elsewhere.
//
//----------------------------------------------------------------------------
ExdiNotifyRunChange::ExdiNotifyRunChange(void)
{
m_Event = NULL;
}
ExdiNotifyRunChange::~ExdiNotifyRunChange(void)
{
Uninitialize();
}
HRESULT
ExdiNotifyRunChange::Initialize(void)
{
m_Event = CreateEvent(NULL, FALSE, FALSE, NULL);
if (m_Event == NULL)
{
return WIN32_LAST_STATUS();
}
return S_OK;
}
void
ExdiNotifyRunChange::Uninitialize(void)
{
if (m_Event != NULL)
{
CloseHandle(m_Event);
m_Event = NULL;
}
}
STDMETHODIMP
ExdiNotifyRunChange::QueryInterface(
THIS_
IN REFIID InterfaceId,
OUT PVOID* Interface
)
{
if (DbgIsEqualIID(IID_IUnknown, InterfaceId) ||
DbgIsEqualIID(__uuidof(IeXdiClientNotifyRunChg), InterfaceId))
{
*Interface = this;
return S_OK;
}
*Interface = NULL;
return E_NOINTERFACE;
}
STDMETHODIMP_(ULONG)
ExdiNotifyRunChange::AddRef(
THIS
)
{
return 1;
}
STDMETHODIMP_(ULONG)
ExdiNotifyRunChange::Release(
THIS
)
{
return 0;
}
STDMETHODIMP
ExdiNotifyRunChange::NotifyRunStateChange(RUN_STATUS_TYPE ersCurrent,
HALT_REASON_TYPE ehrCurrent,
ADDRESS_TYPE CurrentExecAddress,
DWORD dwExceptionCode)
{
if (ersCurrent == rsRunning)
{
// We're waiting for things to stop so ignore this.
return S_OK;
}
m_HaltReason = ehrCurrent;
m_ExecAddress = CurrentExecAddress;
m_ExceptionCode = dwExceptionCode;
SetEvent(m_Event);
return S_OK;
}
class ExdiParams : public ParameterStringParser
{
public:
virtual ULONG GetNumberParameters(void)
{
// No need to get.
return 0;
}
virtual void GetParameter(ULONG Index,
PSTR Name, ULONG NameSize,
PSTR Value, ULONG ValueSize)
{
}
virtual void ResetParameters(void);
virtual BOOL SetParameter(PCSTR Name, PCSTR Value);
CLSID m_Clsid;
EXDI_KD_SUPPORT m_KdSupport;
BOOL m_ForceX86;
BOOL m_ExdiDataBreaks;
};
void
ExdiParams::ResetParameters(void)
{
ZeroMemory(&m_Clsid, sizeof(m_Clsid));
m_KdSupport = EXDI_KD_NONE;
m_ForceX86 = FALSE;
m_ExdiDataBreaks = FALSE;
}
BOOL
ScanExdiDriverList(PCSTR Name, LPCLSID Clsid)
{
char Pattern[MAX_PARAM_VALUE];
CopyString(Pattern, Name, DIMA(Pattern));
_strupr(Pattern);
HKEY ListKey;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
"Software\\Microsoft\\eXdi\\DriverList", 0,
KEY_ALL_ACCESS, &ListKey) != ERROR_SUCCESS)
{
return FALSE;
}
ULONG Index = 0;
BOOL Status = FALSE;
char ValName[MAX_PARAM_VALUE];
WCHAR WideValName[MAX_PARAM_VALUE];
ULONG NameLen, ValLen;
ULONG Type;
char Value[MAX_PARAM_VALUE];
for (;;)
{
NameLen = sizeof(ValName);
ValLen = sizeof(Value);
if (RegEnumValue(ListKey, Index, ValName, &NameLen, NULL,
&Type, (PBYTE)Value, &ValLen) != ERROR_SUCCESS)
{
break;
}
if (Type == REG_SZ &&
MatchPattern(Value, Pattern) &&
MultiByteToWideChar(CP_ACP, 0, ValName, -1, WideValName,
sizeof(WideValName) / sizeof(WCHAR)) > 0 &&
g_Ole32Calls.CLSIDFromString(WideValName, Clsid) == S_OK)
{
Status = TRUE;
break;
}
Index++;
}
RegCloseKey(ListKey);
return Status;
}
BOOL
ExdiParams::SetParameter(PCSTR Name, PCSTR Value)
{
if (!_strcmpi(Name, "CLSID"))
{
WCHAR WideValue[MAX_PARAM_VALUE];
if (MultiByteToWideChar(CP_ACP, 0, Value, -1, WideValue,
sizeof(WideValue) / sizeof(WCHAR)) == 0)
{
return FALSE;
}
return g_Ole32Calls.CLSIDFromString(WideValue, &m_Clsid) == S_OK;
}
else if (!_strcmpi(Name, "Desc"))
{
return ScanExdiDriverList(Value, &m_Clsid);
}
else if (!_strcmpi(Name, "DataBreaks"))
{
if (!Value)
{
return FALSE;
}
if (!_strcmpi(Value, "Exdi"))
{
m_ExdiDataBreaks = TRUE;
}
else if (!_strcmpi(Value, "Default"))
{
m_ExdiDataBreaks = FALSE;
}
else
{
return FALSE;
}
}
else if (!_strcmpi(Name, "ForceX86"))
{
m_ForceX86 = TRUE;
}
else if (!_strcmpi(Name, "Kd"))
{
if (!Value)
{
return FALSE;
}
if (!_strcmpi(Value, "Ioctl"))
{
m_KdSupport = EXDI_KD_IOCTL;
}
else if (!_strcmpi(Value, "GsPcr"))
{
m_KdSupport = EXDI_KD_GS_PCR;
}
else
{
return FALSE;
}
}
else
{
return FALSE;
}
return TRUE;
}
PCSTR g_ExdiGroupNames[] =
{
"exdi",
};
ExdiLiveKernelTargetInfo::ExdiLiveKernelTargetInfo(void)
: LiveKernelTargetInfo(DEBUG_KERNEL_EXDI_DRIVER, TRUE)
{
m_Server = NULL;
m_MarshalledServer = NULL;
m_Context = NULL;
m_ContextValid = FALSE;
m_IoctlMin = DBGENG_EXDI_IOC_BEFORE_FIRST;
m_IoctlMax = DBGENG_EXDI_IOC_BEFORE_FIRST;
m_BpHit.Type = DBGENG_EXDI_IOCTL_BREAKPOINT_NONE;
}
ExdiLiveKernelTargetInfo::~ExdiLiveKernelTargetInfo(void)
{
m_RunChange.Uninitialize();
RELEASE(m_Context);
RELEASE(m_MarshalledServer);
RELEASE(m_Server);
g_Ole32Calls.CoUninitialize();
}
HRESULT
ExdiLiveKernelTargetInfo::Initialize(void)
{
HRESULT Status;
// Load ole32.dll so we can call CoCreateInstance.
if ((Status = InitDynamicCalls(&g_Ole32CallsDesc)) != S_OK)
{
return Status;
}
ULONG Group;
Group = ParameterStringParser::
GetParser(m_ConnectOptions, DIMA(g_ExdiGroupNames), g_ExdiGroupNames);
if (Group == PARSER_INVALID)
{
return E_INVALIDARG;
}
ExdiParams Params;
Params.ResetParameters();
if (!Params.ParseParameters(m_ConnectOptions))
{
return E_INVALIDARG;
}
m_KdSupport = Params.m_KdSupport;
m_ExdiDataBreaks = Params.m_ExdiDataBreaks;
if (FAILED(Status = g_Ole32Calls.CoInitializeEx(NULL, COM_THREAD_MODEL)))
{
return Status;
}
if ((Status = g_Ole32Calls.CoCreateInstance(Params.m_Clsid, NULL,
CLSCTX_LOCAL_SERVER,
__uuidof(IeXdiServer),
(PVOID*)&m_Server)) != S_OK)
{
goto EH_CoInit;
}
if ((Status = g_Ole32Calls.CoMarshalInterThreadInterfaceInStream
(__uuidof(IeXdiServer), m_Server, &m_MarshalledServer)) != S_OK)
{
goto EH_Server;
}
if ((Status = m_Server->GetTargetInfo(&m_GlobalInfo)) != S_OK)
{
goto EH_MarshalledServer;
}
if (Params.m_ForceX86 ||
m_GlobalInfo.TargetProcessorFamily == PROCESSOR_FAMILY_X86)
{
if (!Params.m_ForceX86 &&
(Status = m_Server->
QueryInterface(__uuidof(IeXdiX86_64Context),
(PVOID*)&m_Context)) == S_OK)
{
m_ContextType = EXDI_CTX_AMD64;
m_ExpectedMachine = IMAGE_FILE_MACHINE_AMD64;
}
else if ((Status = m_Server->
QueryInterface(__uuidof(IeXdiX86ExContext),
(PVOID*)&m_Context)) == S_OK)
{
m_ContextType = EXDI_CTX_X86_EX;
m_ExpectedMachine = IMAGE_FILE_MACHINE_I386;
}
else if ((Status = m_Server->
QueryInterface(__uuidof(IeXdiX86Context),
(PVOID*)&m_Context)) == S_OK)
{
m_ContextType = EXDI_CTX_X86;
m_ExpectedMachine = IMAGE_FILE_MACHINE_I386;
}
else
{
goto EH_MarshalledServer;
}
}
else if (m_GlobalInfo.TargetProcessorFamily == PROCESSOR_FAMILY_IA64)
{
if ((Status = m_Server->
QueryInterface(__uuidof(IeXdiIA64Context),
(PVOID*)&m_Context)) == S_OK)
{
m_ContextType = EXDI_CTX_IA64;
m_ExpectedMachine = IMAGE_FILE_MACHINE_IA64;
}
}
else
{
Status = E_NOINTERFACE;
goto EH_MarshalledServer;
}
DWORD HwCode, SwCode;
if ((Status = m_Server->GetNbCodeBpAvail(&HwCode, &SwCode)) != S_OK)
{
goto EH_Context;
}
// We'd prefer to use software code breakpoints for our
// software code breakpoints so that hardware resources
// aren't consumed for a breakpoint we don't need to
// use hardware for. However, some servers, such as
// the x86-64 SimNow implementation, do not support
// software breakpoints.
// Also, if the number of hardware breakpoints is
// unbounded, go ahead and let the server choose.
// SimNow advertises -1 -1 for some reason and
// this is necessary to get things to work.
if (SwCode > 0 && HwCode != (DWORD)-1)
{
m_CodeBpType = cbptSW;
}
else
{
m_CodeBpType = cbptAlgo;
}
if ((Status = m_RunChange.Initialize()) != S_OK)
{
goto EH_Context;
}
if ((Status = LiveKernelTargetInfo::Initialize()) != S_OK)
{
goto EH_RunChange;
}
//
// Check and see if this EXDI implementation supports
// the extended Ioctl's we've defined.
//
DBGENG_EXDI_IOCTL_BASE_IN IoctlIn;
DBGENG_EXDI_IOCTL_IDENTIFY_OUT IoctlOut;
ULONG OutUsed;
IoctlIn.Code = DBGENG_EXDI_IOC_IDENTIFY;
if (m_Server->
Ioctl(sizeof(IoctlIn), (PBYTE)&IoctlIn,
sizeof(IoctlOut), &OutUsed, (PBYTE)&IoctlOut) == S_OK &&
IoctlOut.Signature == DBGENG_EXDI_IOCTL_IDENTIFY_SIGNATURE)
{
m_IoctlMin = IoctlOut.BeforeFirst;
m_IoctlMax = IoctlOut.AfterLast;
if (DBGENG_EXDI_IOC_GET_BREAKPOINT_HIT <= m_IoctlMin ||
DBGENG_EXDI_IOC_GET_BREAKPOINT_HIT >= m_IoctlMax)
{
// Can't use EXDI data breakpoints without this ioctl.
WarnOut("EXDI data breakpoints not supported\n");
m_ExdiDataBreaks = FALSE;
}
}
m_ContextValid = FALSE;
return S_OK;
EH_RunChange:
m_RunChange.Uninitialize();
EH_Context:
RELEASE(m_Context);
EH_MarshalledServer:
RELEASE(m_MarshalledServer);
EH_Server:
RELEASE(m_Server);
EH_CoInit:
g_Ole32Calls.CoUninitialize();
return Status;
}
HRESULT
ExdiLiveKernelTargetInfo::GetDescription(PSTR Buffer, ULONG BufferLen,
PULONG DescLen)
{
return FillStringBuffer("eXDI KD", 0,
Buffer, BufferLen, DescLen);
}
HRESULT
ExdiLiveKernelTargetInfo::SwitchProcessors(ULONG Processor)
{
HRESULT Status;
if (DBGENG_EXDI_IOC_SET_CURRENT_PROCESSOR <= m_IoctlMin ||
DBGENG_EXDI_IOC_SET_CURRENT_PROCESSOR >= m_IoctlMax)
{
// Switch Ioctl not supported.
return E_NOTIMPL;
}
DBGENG_EXDI_IOCTL_SET_CURRENT_PROCESSOR_IN IoctlIn;
ULONG OutUsed;
IoctlIn.Code = DBGENG_EXDI_IOC_SET_CURRENT_PROCESSOR;
IoctlIn.Processor = Processor;
if ((Status = m_Server->Ioctl(sizeof(IoctlIn), (PBYTE)&IoctlIn,
0, &OutUsed, (PBYTE)&IoctlIn)) != S_OK)
{
ErrOut("Unable to switch processors, %s\n",
FormatStatusCode(Status));
return Status;
}
SetCurrentProcessorThread(this, Processor, FALSE);
return S_OK;
}
#define EXDI_IOCTL_GET_KD_VERSION ((ULONG)'VDKG')
HRESULT
ExdiLiveKernelTargetInfo::GetTargetKdVersion(PDBGKD_GET_VERSION64 Version)
{
switch(m_KdSupport)
{
case EXDI_KD_IOCTL:
//
// User has indicated the target supports the
// KD version ioctl.
//
ULONG Command;
ULONG Retrieved;
HRESULT Status;
Command = EXDI_IOCTL_GET_KD_VERSION;
if ((Status = m_Server->Ioctl(sizeof(Command), (PBYTE)&Command,
sizeof(*Version), &Retrieved,
(PBYTE)Version)) != S_OK)
{
return Status;
}
if (Retrieved != sizeof(*Version))
{
return E_FAIL;
}
// This mode implies a recent kernel so we can
// assume 64-bit kd.
m_KdApi64 = TRUE;
break;
case EXDI_KD_GS_PCR:
//
// User has indicated that a version of NT
// is running and that the PCR can be accessed
// through GS. Look up the version block from
// the PCR.
//
if (m_ExpectedMachine == IMAGE_FILE_MACHINE_AMD64)
{
ULONG64 KdVer;
ULONG Done;
if ((Status = Amd64MachineInfo::
StaticGetExdiContext(m_Context, &m_ContextData,
m_ContextType)) != S_OK)
{
return Status;
}
if ((Status = m_Server->
ReadVirtualMemory(m_ContextData.Amd64Context.
DescriptorGs.SegBase +
AMD64_KPCR_KD_VERSION_BLOCK,
sizeof(KdVer), 8, (PBYTE)&KdVer,
&Done)) != S_OK)
{
return Status;
}
if (Done != sizeof(KdVer))
{
return HRESULT_FROM_WIN32(ERROR_READ_FAULT);
}
if ((Status = m_Server->
ReadVirtualMemory(KdVer, sizeof(*Version), 8, (PBYTE)Version,
&Done)) != S_OK)
{
return Status;
}
if (Done != sizeof(*Version))
{
return HRESULT_FROM_WIN32(ERROR_READ_FAULT);
}
// This mode implies a recent kernel so we can
// assume 64-bit kd.
m_KdApi64 = TRUE;
// Update the version block's Simulation field to
// indicate that this is a simulated execution.
Version->Simulation = DBGKD_SIMULATION_EXDI;
if ((Status = m_Server->
WriteVirtualMemory(KdVer, sizeof(*Version), 8, (PBYTE)Version,
&Done)) != S_OK)
{
return Status;
}
if (Done != sizeof(*Version))
{
return HRESULT_FROM_WIN32(ERROR_WRITE_FAULT);
}
}
else
{
return E_INVALIDARG;
}
break;
case EXDI_KD_NONE:
//
// Fake up a version structure.
//
Version->MajorVersion = DBGKD_MAJOR_EXDI << 8;
Version->ProtocolVersion = 0;
Version->Flags = DBGKD_VERS_FLAG_PTR64 | DBGKD_VERS_FLAG_NOMM;
Version->MachineType = (USHORT)m_ExpectedMachine;
Version->KernBase = 0;
Version->PsLoadedModuleList = 0;
Version->DebuggerDataList = 0;
break;
}
return S_OK;
}
HRESULT
ExdiLiveKernelTargetInfo::RequestBreakIn(void)
{
//
// m_Server was created by the session thread but
// RequestBreakIn can be called from any thread.
// The thread may not be initialized for multithreading
// and so we have to explicitly unmarshal the server
// interface into this thread to make sure that
// the method call will be successful regardless of
// the COM threading model for the current thread.
//
if (GetCurrentThreadId() == g_SessionThread)
{
return m_Server->Halt();
}
else
{
HRESULT Status;
IeXdiServer* Server;
LARGE_INTEGER Move;
ZeroMemory(&Move, sizeof(Move));
if ((Status = m_MarshalledServer->
Seek(Move, STREAM_SEEK_SET, NULL)) != S_OK ||
(Status = g_Ole32Calls.CoUnmarshalInterface
(m_MarshalledServer, __uuidof(IeXdiServer),
(void **)&Server)) != S_OK)
{
return Status;
}
Status = Server->Halt();
Server->Release();
return Status;
}
}
HRESULT
ExdiLiveKernelTargetInfo::Reboot(void)
{
HRESULT Status = m_Server->Reboot();
if (Status == S_OK)
{
DebuggeeReset(DEBUG_SESSION_REBOOT, TRUE);
}
return Status;
}
ULONG
ExdiLiveKernelTargetInfo::GetCurrentProcessor(void)
{
if (DBGENG_EXDI_IOC_GET_CURRENT_PROCESSOR <= m_IoctlMin ||
DBGENG_EXDI_IOC_GET_CURRENT_PROCESSOR >= m_IoctlMax)
{
// Ioctl unsupported so assume processor zero.
return 0;
}
DBGENG_EXDI_IOCTL_BASE_IN IoctlIn;
DBGENG_EXDI_IOCTL_GET_CURRENT_PROCESSOR_OUT IoctlOut;
ULONG OutUsed;
IoctlIn.Code = DBGENG_EXDI_IOC_GET_CURRENT_PROCESSOR;
if (m_Server->
Ioctl(sizeof(IoctlIn), (PBYTE)&IoctlIn,
sizeof(IoctlOut), &OutUsed, (PBYTE)&IoctlOut) == S_OK)
{
return IoctlOut.Processor;
}
// Failure, assume processor zero.
ErrOut("Unable to get current processor\n");
return 0;
}
//----------------------------------------------------------------------------
//
// UserTargetInfo miscellaneous methods.
//
// Data space methods and system objects methods are elsewhere.
//
//----------------------------------------------------------------------------
LiveUserTargetInfo::LiveUserTargetInfo(ULONG Qual)
: TargetInfo(DEBUG_CLASS_USER_WINDOWS, Qual, TRUE)
{
m_Services = NULL;
m_ServiceFlags = 0;
strcpy(m_ProcessServer, "<Local>");
m_Local = TRUE;
m_DataBpAddrValid = FALSE;
m_ProcessPending = NULL;
m_AllPendingFlags = 0;
}
LiveUserTargetInfo::~LiveUserTargetInfo(void)
{
// Force processes and threads to get cleaned up while
// the services are still available to close handles.
DeleteSystemInfo();
RELEASE(m_Services);
}
HRESULT
LiveUserTargetInfo::Initialize(void)
{
// Nothing to do right now.
return TargetInfo::Initialize();
}
HRESULT
LiveUserTargetInfo::GetDescription(PSTR Buffer, ULONG BufferLen,
PULONG DescLen)
{
HRESULT Status;
Status = AppendToStringBuffer(S_OK, "Live user mode", TRUE,
&Buffer, &BufferLen, DescLen);
Status = AppendToStringBuffer(Status, ": ", FALSE,
&Buffer, &BufferLen, DescLen);
Status = AppendToStringBuffer(Status, m_ProcessServer, FALSE,
&Buffer, &BufferLen, DescLen);
return Status;
}
HRESULT
LiveUserTargetInfo::GetImageVersionInformation(ProcessInfo* Process,
PCSTR ImagePath,
ULONG64 ImageBase,
PCSTR Item,
PVOID Buffer,
ULONG BufferSize,
PULONG VerInfoSize)
{
HRESULT Status;
PWSTR FileW;
if ((Status = AnsiToWide(ImagePath, &FileW)) != S_OK)
{
return Status;
}
Status = m_Services->
GetFileVersionInformationA(FileW, Item,
Buffer, BufferSize, VerInfoSize);
FreeWide(FileW);
return Status;
}
ULONG64
LiveUserTargetInfo::GetCurrentTimeDateN(void)
{
ULONG64 TimeDate;
if (m_Services->GetCurrentTimeDateN(&TimeDate) == S_OK)
{
return TimeDate;
}
else
{
return 0;
}
}
ULONG64
LiveUserTargetInfo::GetCurrentSystemUpTimeN(void)
{
ULONG64 UpTime;
if (m_Services->GetCurrentSystemUpTimeN(&UpTime) == S_OK)
{
return UpTime;
}
else
{
return 0;
}
}
ULONG64
LiveUserTargetInfo::GetProcessUpTimeN(ProcessInfo* Process)
{
ULONG64 UpTime;
if (Process &&
m_Services->GetProcessUpTimeN(Process->m_SysHandle, &UpTime) == S_OK)
{
return UpTime;
}
else
{
return 0;
}
}
HRESULT
LiveUserTargetInfo::GetProcessTimes(ProcessInfo* Process,
PULONG64 Create,
PULONG64 Exit,
PULONG64 Kernel,
PULONG64 User)
{
return m_Services->GetProcessTimes(Process->m_SysHandle,
Create, Exit, Kernel, User);
}
HRESULT
LiveUserTargetInfo::GetThreadTimes(ThreadInfo* Thread,
PULONG64 Create,
PULONG64 Exit,
PULONG64 Kernel,
PULONG64 User)
{
return m_Services->GetThreadTimes(Thread->m_Handle,
Create, Exit, Kernel, User);
}
HRESULT
LiveUserTargetInfo::RequestBreakIn(void)
{
ProcessInfo* Process = g_Process;
if (!Process)
{
// No current process, so find any process.
Process = m_ProcessHead;
if (!Process)
{
return E_UNEXPECTED;
}
}
return m_Services->
RequestBreakIn(Process->m_SysHandle);
}
//----------------------------------------------------------------------------
//
// Base TargetInfo methods that trivially fail.
//
//----------------------------------------------------------------------------
#define UNEXPECTED_VOID(Class, Method, Args) \
void \
Class::Method Args \
{ \
ErrOut("TargetInfo::" #Method " is not available in the current debug session\n"); \
}
#define UNEXPECTED_HR(Class, Method, Args) \
HRESULT \
Class::Method Args \
{ \
ErrOut("TargetInfo::" #Method " is not available in the current debug session\n"); \
return E_UNEXPECTED; \
}
#define UNEXPECTED_ULONG64(Class, Method, Val, Args) \
ULONG64 \
Class::Method Args \
{ \
ErrOut("TargetInfo::" #Method " is not available in the current debug session\n"); \
return Val; \
}
UNEXPECTED_HR(TargetInfo, ReadVirtual, (
IN ProcessInfo* Process,
IN ULONG64 Offset,
OUT PVOID Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG BytesRead
))
UNEXPECTED_HR(TargetInfo, WriteVirtual, (
IN ProcessInfo* Process,
IN ULONG64 Offset,
IN PVOID Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG BytesWritten
))
UNEXPECTED_HR(TargetInfo, ReadPhysical, (
IN ULONG64 Offset,
OUT PVOID Buffer,
IN ULONG BufferSize,
IN ULONG Flags,
OUT OPTIONAL PULONG BytesRead
))
UNEXPECTED_HR(TargetInfo, WritePhysical, (
IN ULONG64 Offset,
IN PVOID Buffer,
IN ULONG BufferSize,
IN ULONG Flags,
OUT OPTIONAL PULONG BytesWritten
))
UNEXPECTED_HR(TargetInfo, ReadControl, (
IN ULONG Processor,
IN ULONG64 Offset,
OUT PVOID Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG BytesRead
))
UNEXPECTED_HR(TargetInfo, WriteControl, (
IN ULONG Processor,
IN ULONG64 Offset,
IN PVOID Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG BytesWritten
))
UNEXPECTED_HR(TargetInfo, ReadIo, (
IN ULONG InterfaceType,
IN ULONG BusNumber,
IN ULONG AddressSpace,
IN ULONG64 Offset,
OUT PVOID Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG BytesRead
))
UNEXPECTED_HR(TargetInfo, WriteIo, (
IN ULONG InterfaceType,
IN ULONG BusNumber,
IN ULONG AddressSpace,
IN ULONG64 Offset,
IN PVOID Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG BytesWritten
))
UNEXPECTED_HR(TargetInfo, ReadMsr, (
IN ULONG Msr,
OUT PULONG64 Value
))
UNEXPECTED_HR(TargetInfo, WriteMsr, (
IN ULONG Msr,
IN ULONG64 Value
))
UNEXPECTED_HR(TargetInfo, ReadBusData, (
IN ULONG BusDataType,
IN ULONG BusNumber,
IN ULONG SlotNumber,
IN ULONG Offset,
OUT PVOID Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG BytesRead
))
UNEXPECTED_HR(TargetInfo, WriteBusData, (
IN ULONG BusDataType,
IN ULONG BusNumber,
IN ULONG SlotNumber,
IN ULONG Offset,
IN PVOID Buffer,
IN ULONG BufferSize,
OUT OPTIONAL PULONG BytesWritten
))
UNEXPECTED_HR(TargetInfo, CheckLowMemory, (
))
UNEXPECTED_HR(TargetInfo, GetTargetContext, (
ULONG64 Thread,
PVOID Context
))
UNEXPECTED_HR(TargetInfo, SetTargetContext, (
ULONG64 Thread,
PVOID Context
))
UNEXPECTED_HR(TargetInfo, GetThreadIdByProcessor, (
IN ULONG Processor,
OUT PULONG Id
))
UNEXPECTED_HR(TargetInfo, GetThreadInfoDataOffset, (
ThreadInfo* Thread,
ULONG64 ThreadHandle,
PULONG64 Offset))
UNEXPECTED_HR(TargetInfo, GetProcessInfoDataOffset, (
ThreadInfo* Thread,
ULONG Processor,
ULONG64 ThreadData,
PULONG64 Offset))
UNEXPECTED_HR(TargetInfo, GetThreadInfoTeb, (
ThreadInfo* Thread,
ULONG Processor,
ULONG64 ThreadData,
PULONG64 Offset))
UNEXPECTED_HR(TargetInfo, GetProcessInfoPeb, (
ThreadInfo* Thread,
ULONG Processor,
ULONG64 ThreadData,
PULONG64 Offset))
UNEXPECTED_HR(TargetInfo, GetSelDescriptor, (
ThreadInfo* Thread,
MachineInfo* Machine,
ULONG Selector,
PDESCRIPTOR64 Desc))
UNEXPECTED_HR(TargetInfo, SwitchProcessors, (
ULONG Processor))
UNEXPECTED_HR(TargetInfo, GetTargetKdVersion, (
PDBGKD_GET_VERSION64 Version))
UNEXPECTED_HR(TargetInfo, ReadBugCheckData, (
PULONG Code, ULONG64 Args[4]))
UNEXPECTED_HR(TargetInfo, GetExceptionContext, (
PCROSS_PLATFORM_CONTEXT Context))
UNEXPECTED_VOID(TargetInfo, InitializeWatchTrace, (
void))
UNEXPECTED_VOID(TargetInfo, ProcessWatchTraceEvent, (
PDBGKD_TRACE_DATA TraceData,
PADDR PcAddr,
PBOOL StepOver))
UNEXPECTED_HR(TargetInfo, WaitForEvent, (
ULONG Flags,
ULONG Timeout,
ULONG ElapsedTime,
PULONG EventStatus))
UNEXPECTED_HR(TargetInfo, RequestBreakIn, (void))
UNEXPECTED_HR(TargetInfo, Reboot, (void))
UNEXPECTED_HR(TargetInfo, Crash, (ULONG Code))
UNEXPECTED_HR(TargetInfo, InsertCodeBreakpoint, (
ProcessInfo* Process,
MachineInfo* Machine,
PADDR Addr,
ULONG InstrFlags,
PUCHAR StorageSpace))
UNEXPECTED_HR(TargetInfo, RemoveCodeBreakpoint, (
ProcessInfo* Process,
MachineInfo* Machine,
PADDR Addr,
ULONG InstrFlags,
PUCHAR StorageSpace))
UNEXPECTED_HR(TargetInfo, InsertTargetCountBreakpoint, (
PADDR Addr,
ULONG Flags))
UNEXPECTED_HR(TargetInfo, RemoveTargetCountBreakpoint, (
PADDR Addr))
UNEXPECTED_HR(TargetInfo, QueryTargetCountBreakpoint, (
PADDR Addr,
PULONG Flags,
PULONG Calls,
PULONG MinInstr,
PULONG MaxInstr,
PULONG TotInstr,
PULONG MaxCps))
UNEXPECTED_HR(TargetInfo, QueryMemoryRegion, (
ProcessInfo* Process,
PULONG64 Handle,
BOOL HandleIsOffset,
PMEMORY_BASIC_INFORMATION64 Info))