2020-09-30 16:53:55 +02:00

1324 lines
32 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1991-1999 Microsoft Corporation
Module Name:
ntsetup.c
Abstract:
This module is the tail-end of the osloader program. It performs all
x86-specific allocations and setups for ntoskrnl. osloader.c calls
this module immediately before branching into the loaded kernel image.
Author:
John Vert (jvert) 20-Jun-1991
Environment:
Revision History:
--*/
#include "bootx86.h"
#if defined(_X86AMD64_)
#include "..\amd64\amd64prv.h"
#endif
#ifdef ARCI386
#include "stdio.h"
#include "string.h"
#include "stdlib.h"
CHAR OutputBuffer[256];
char BreakInKey;
ULONG Count;
#endif
extern PHARDWARE_PTE HalPT;
extern PHARDWARE_PTE PDE;
extern ULONG_PTR BlHeapFree;
extern ULONG PcrBasePage;
extern ULONG TssBasePage;
#define PDI_SHIFT_X86PAE 21
//
// PaeEnabled is set to TRUE when we actually transition to PAE mode.
//
BOOLEAN PaeEnabled = FALSE;
//
// PDPT is a pointer to the Page Directory Pointer Table, used to support
// PAE mode.
//
PHARDWARE_PTE_X86PAE PDPT = NULL;
//
// We need a block of memory to split the free heap that we can allocate before
// we begin cleanup
//
PMEMORY_ALLOCATION_DESCRIPTOR SplitDescriptor;
//
// So we know where to unmap to
//
extern ULONG HighestPde;
//
// Private function prototypes
//
VOID
NSFixProcessorContext(
IN ULONG PCR,
IN ULONG TSS
);
VOID
NSDumpMemoryDescriptors(
IN PLIST_ENTRY ListHead
);
VOID
NSUnmapFreeDescriptors(
IN PLIST_ENTRY ListHead
);
VOID
NSDumpMemory(
PVOID Start,
ULONG Length
);
VOID
NSFixMappings(
IN PLIST_ENTRY ListHead
);
ARC_STATUS
BlpAllocatePAETables(
VOID
);
PHARDWARE_PTE_X86PAE
BlpFindPAEPageDirectoryEntry(
IN ULONG Va
);
PHARDWARE_PTE_X86PAE
BlpFindPAEPageTableEntry(
IN ULONG Va
);
VOID
BlpInitializePAETables(
VOID
);
VOID
BlpEnablePAE(
IN ULONG PaePhysicalAddress
);
ARC_STATUS
BlSetupForNt(
IN PLOADER_PARAMETER_BLOCK BlLoaderBlock
)
/*++
Routine Description:
Called by osloader to handle any processor-dependent allocations or
setups.
Arguments:
BlLoaderBlock - Pointer to the parameters which will be passed to
ntoskrnl
EntryPoint - Supplies the entry point for ntoskrnl.exe
Return Value:
ESUCCESS - All setup succesfully completed.
--*/
{
ARC_STATUS Status = ESUCCESS;
static ULONG PCR;
static ULONG TSS;
ULONG i;
HARDWARE_PTE_X86 nullpte;
//
// First clean up the display, meaning that any messages displayed after
// this point cannot be DBCS. Unfortunately there are a couple of messages
// that can be displayed in certain error paths from this point out but
// fortunately they are extremely rare.
//
// Note that TextGrTerminate goes into real mode to do some of its work
// so we really really have to call it here (see comment at bottom of
// this routine about real mode).
//
TextGrTerminate();
BlLoaderBlock->u.I386.CommonDataArea = NULL;
BlLoaderBlock->u.I386.MachineType = MachineType;
PCR = PcrBasePage;
if (PCR == 0 || PCR >= _16MB) {
BlPrint("Couldn't allocate PCR descriptor in NtProcessStartup,BlSetupForNt is failing\n");
return(ENOMEM);
}
//
// Mapped hardcoded virtual pointer to the boot processors PCR
// The virtual pointer comes from the HAL reserved area
//
// First zero out any PTEs that may have already been mapped for
// a SCSI card.
//
RtlZeroMemory(HalPT, PAGE_SIZE);
_asm {
mov eax, cr3
mov cr3, eax
}
HalPT[(KI_USER_SHARED_DATA - 0xFFC00000) >> PAGE_SHIFT].PageFrameNumber = PCR + 1;
HalPT[(KI_USER_SHARED_DATA - 0xFFC00000) >> PAGE_SHIFT].Valid = 1;
HalPT[(KI_USER_SHARED_DATA - 0xFFC00000) >> PAGE_SHIFT].Write = 1;
RtlZeroMemory((PVOID)KI_USER_SHARED_DATA, PAGE_SIZE);
HalPT[(KIP0PCRADDRESS - 0xFFC00000) >> PAGE_SHIFT].PageFrameNumber = PCR;
HalPT[(KIP0PCRADDRESS - 0xFFC00000) >> PAGE_SHIFT].Valid = 1;
HalPT[(KIP0PCRADDRESS - 0xFFC00000) >> PAGE_SHIFT].Write = 1;
PCR = KIP0PCRADDRESS;
if (BlUsePae != FALSE) {
//
// Allocate the new PAE mapping structures
//
Status = BlpAllocatePAETables();
if (Status != ESUCCESS) {
goto SetupFailed;
}
} else {
//
// If we are booting into 32-bit non-PAE mode then truncate any memory
// above 4G. The parameter to BlTruncateDescriptors() is expressed
// in pages, and is the highest page that will be included after
// the truncation.
//
if (BlAmd64UseLongMode == FALSE) {
BlTruncateDescriptors( 1024 * 1024 - 1 );
}
}
//
// use our pre-allocated space for Tss.
//
TSS = TssBasePage;
if (TSS == 0 || TSS >= _16MB) {
BlPrint("Couldn't allocate valid TSS descriptor in NtProcessStartup, BlSetupForNt is failing\n");
return(ENOMEM);
}
TSS = (KSEG0_BASE | (TSS << PAGE_SHIFT)) + BlVirtualBias;
#ifdef LOADER_DEBUG
NSDumpMemoryDescriptors(&(BlLoaderBlock->MemoryDescriptorListHead));
#endif
//
// Clean up the page directory and table entries.
//
RtlZeroMemory (&nullpte,sizeof (HARDWARE_PTE_X86));
if (BlVirtualBias) {
if (!BlOldKernel) {
//
// Blow away the 48MB from the old to the new alternate
//
i= OLD_ALTERNATE >> PDI_SHIFT;
while (i < (ALTERNATE_BASE >> PDI_SHIFT)) {
PDE[i++]= nullpte;
}
}
} else {
//
// Remove both sets of 3GB mappings
//
i=(OLD_ALTERNATE) >> PDI_SHIFT;
for (i; i < (ALTERNATE_BASE+BASE_LOADER_IMAGE) >> PDI_SHIFT; i++) {
PDE[i]= nullpte;
}
}
//
// Allocate this before we unmap free descriptors, so we can grow the heap
//
SplitDescriptor = (PMEMORY_ALLOCATION_DESCRIPTOR)BlAllocateHeap(
sizeof(MEMORY_ALLOCATION_DESCRIPTOR));
//
// If transitioning to AMD64 long mode, perform some initial mapping
// and structure transitioning here.
//
#if defined(_X86AMD64_)
if (BlAmd64UseLongMode != FALSE) {
Status = BlAmd64PrepForTransferToKernelPhase1(BlLoaderBlock);
if (Status != ESUCCESS) {
goto SetupFailed;
}
}
#endif
//
// Do this before PAE mode.
//
NSUnmapFreeDescriptors(&(BlLoaderBlock->MemoryDescriptorListHead));
_asm {
mov eax, cr3
mov cr3, eax
}
if (BlUsePae != FALSE) {
// Copy the four byte page table mapping to the new eight byte
// mapping and transition to PAE mode.
//
BlpInitializePAETables();
BlpEnablePAE( (ULONG)PDPT );
//
// We are now in PAE mode. The debugger looks at PaeEnabled in order
// to correctly interpret page table entries, update that now.
//
PaeEnabled = TRUE;
}
//
// N. B. DO NOT GO BACK INTO REAL MODE AFTER REMAPPING THE GDT AND
// IDT TO HIGH MEMORY!! If you do, they will get re-mapped
// back into low-memory, then UN-mapped by MmInit, and you
// will be completely tubed!
//
NSFixProcessorContext(PCR, TSS);
NSFixMappings(&(BlLoaderBlock->MemoryDescriptorListHead));
//
// For every case, except the /3GB case, the number of pages spanned
// is simply the highest number page allocated, plus 1 (to make the
// math work out)
//
BlLoaderBlock->Extension->LoaderPagesSpanned=BlHighestPage+1;
//
// For the /3GB case, we do the additional check that the PagesSpanned
// must be at least 0x1000. The reasons for that are unclear to me
//
if (BlVirtualBias) {
ULONG PagesSpanned = 0;
//
// Calculate the number of pages spanned by the loader image
//
PagesSpanned = (BASE_LOADER_IMAGE >> PAGE_SHIFT);
//
// Is that a larger number than the highest allocated pages?
//
if (PagesSpanned > (BlHighestPage + 1)) {
//
// Yes, so use that for the number of pages spanned
//
BlLoaderBlock->Extension->LoaderPagesSpanned = PagesSpanned;
}
if (!BlOldKernel) {
BlVirtualBias += ((BlLowestPage) << PAGE_SHIFT);
}
}
BlLoaderBlock->u.I386.VirtualBias = BlVirtualBias;
//
// If transitioning to AMD64 long mode, perform the second phase of
// the transition process now that the mapping tables have been cleaned
// up.
//
#if defined(_X86AMD64_)
if (BlAmd64UseLongMode != FALSE) {
BlAmd64PrepForTransferToKernelPhase2(BlLoaderBlock);
}
#endif
SetupFailed:
return Status;
}
VOID
NSFixProcessorContext(
IN ULONG PCR,
IN ULONG TSS
)
/*++
Routine Description:
This relocates the GDT, IDT, PCR, and TSS to high virtual memory space.
Arguments:
PCR - Pointer to the PCR's location (in high virtual memory)
TSS - Pointer to kernel's TSS (in high virtual memory)
Return Value:
None.
--*/
{
#pragma pack(2)
static struct {
USHORT Limit;
ULONG Base;
} GdtDef,IdtDef;
#pragma pack(4)
PKGDTENTRY pGdt;
ULONG Bias = 0;
if (BlVirtualBias != 0 ) {
Bias = BlVirtualBias;
}
//
// Kernel expects the PCR to be zero-filled on startup
//
RtlZeroMemory((PVOID)PCR, PAGE_SIZE);
_asm {
sgdt GdtDef;
sidt IdtDef;
}
GdtDef.Base = (KSEG0_BASE | GdtDef.Base) + Bias;
IdtDef.Base = (KSEG0_BASE | IdtDef.Base) + Bias;
pGdt = (PKGDTENTRY)GdtDef.Base;
//
// Initialize selector that points to PCR
//
pGdt[6].BaseLow = (USHORT)(PCR & 0xffff);
pGdt[6].HighWord.Bytes.BaseMid = (UCHAR)((PCR >> 16) & 0xff);
pGdt[6].HighWord.Bytes.BaseHi = (UCHAR)((PCR >> 24) & 0xff);
//
// Initialize selector that points to TSS
//
pGdt[5].BaseLow = (USHORT)(TSS & 0xffff);
pGdt[5].HighWord.Bytes.BaseMid = (UCHAR)((TSS >> 16) & 0xff);
pGdt[5].HighWord.Bytes.BaseHi = (UCHAR)((TSS >> 24) & 0xff);
_asm {
lgdt GdtDef;
lidt IdtDef;
}
}
VOID
NSUnmapFreeDescriptors(
IN PLIST_ENTRY ListHead
)
/*++
Routine Description:
Unmaps memory which is marked as free, so it memory management will know
to reclaim it.
Arguments:
ListHead - pointer to the start of the MemoryDescriptorList
Return Value:
None.
--*/
{
PMEMORY_ALLOCATION_DESCRIPTOR CurrentDescriptor;
PLIST_ENTRY CurrentLink;
ULONG EndPage;
ULONG FrameNumber;
PHARDWARE_PTE PageTable;
ULONG StartPage;
ULONG i,Limit;
HARDWARE_PTE_X86 nullpte;
Limit = 0x1000000 >> PAGE_SHIFT;
if (BlOldKernel) {
BlpRemapReserve();
} else {
if (Limit < BlHighestPage) {
Limit = BlHighestPage;
}
}
CurrentLink = ListHead->Flink;
while (CurrentLink != ListHead) {
CurrentDescriptor = (PMEMORY_ALLOCATION_DESCRIPTOR)CurrentLink;
#if 0
#define UNINIT_FILL 0x12345678
//
// Fill unused memory with a bogus pattern to catch problems where kernel code
// expects uninitalized memory to be zero.
//
if ((CurrentDescriptor->MemoryType == LoaderFree) ||
(CurrentDescriptor->MemoryType == LoaderReserve)) {
if (CurrentDescriptor->BasePage + CurrentDescriptor->PageCount < Limit) {
//
// This descriptor should already be mapped, just fill it
//
RtlFillMemoryUlong((PVOID)((CurrentDescriptor->BasePage << PAGE_SHIFT) | KSEG0_BASE),
CurrentDescriptor->PageCount << PAGE_SHIFT,
UNINIT_FILL);
} else {
//
// This descriptor is not mapped. Use the first HAL page table to map and fill each page
//
for (StartPage = CurrentDescriptor->BasePage;
StartPage < CurrentDescriptor->BasePage + CurrentDescriptor->PageCount;
StartPage++) {
HalPT[0].PageFrameNumber = StartPage;
HalPT[0].Valid = 1;
HalPT[0].Write = 1;
_asm {
mov eax, cr3
mov cr3, eax
}
RtlFillMemory((PVOID)0xFFC00000,PAGE_SIZE,UNINIT_FILL);
}
HalPT[0].PageFrameNumber = 0;
HalPT[0].Valid = 0;
HalPT[0].Write = 0;
_asm {
mov eax, cr3
mov cr3, eax
}
}
}
#endif
if ( (CurrentDescriptor->MemoryType == LoaderFree) ||
(((CurrentDescriptor->MemoryType == LoaderFirmwareTemporary) ||
(CurrentDescriptor->MemoryType == LoaderReserve)) &&
(CurrentDescriptor->BasePage < Limit)) ||
(CurrentDescriptor->MemoryType == LoaderLoadedProgram) ||
(CurrentDescriptor->MemoryType == LoaderOsloaderStack)) {
StartPage = CurrentDescriptor->BasePage | (KSEG0_BASE >> PAGE_SHIFT);
EndPage = CurrentDescriptor->BasePage + CurrentDescriptor->PageCount;
if (EndPage > Limit) {
EndPage = Limit;
}
EndPage |= (KSEG0_BASE >> PAGE_SHIFT);
while(StartPage < EndPage) {
if (PDE[StartPage >> 10].Valid != 0) {
FrameNumber = PDE[StartPage >> 10].PageFrameNumber;
PageTable= (PHARDWARE_PTE)(KSEG0_BASE | (FrameNumber << PAGE_SHIFT));
((PULONG)(PageTable))[StartPage & 0x3ff] = 0;
}
StartPage++;
}
}
CurrentLink = CurrentLink->Flink;
}
if (BlOldKernel) {
return;
}
//
// Unmap the PDEs too if running on a new mm
//
RtlZeroMemory (&nullpte,sizeof (HARDWARE_PTE_X86));
for (i=(BlHighestPage >> 10)+1;i <= HighestPde;i++){
PDE[i]=nullpte;
PDE[i+(KSEG0_BASE >> PDI_SHIFT)]=nullpte;
if (BlVirtualBias) {
PDE[i + ((KSEG0_BASE+BlVirtualBias) >> PDI_SHIFT)] = nullpte;
}
}
#if 0
{
ULONG stoppde;
if (BlVirtualBias) {
//
//BlHighest page here is the address of the LOWEST page used, so put the
//subtraction in the loader block and use the value for the base of the bias
//
i = ((BlVirtualBias|KSEG0_BASE)>> PDI_SHIFT)+1;
stoppde = (((BlVirtualBias|KSEG0_BASE) -
(BASE_LOADER_IMAGE-(BlLowestPage << PAGE_SHIFT)) ) >> PDI_SHIFT)-1;
while (i < stoppde){
PDE[i++]=nullpte;
}
}
}
#endif
}
/*++
Routine Description:
Fixup the mappings to be consistent.
We need to have one at address 0 (For the valid PDE entries)
One at KSEG0 for standard loads
One at either ALTERNATE_BASE or OLD_ALTERNATE for /3gb systems on a
post 5.0 or 5.0 and prior respectively
Arguments:
None
Return Value:
None.
--*/
VOID
NSFixMappings(
IN PLIST_ENTRY ListHead
)
{
PHARDWARE_PTE_X86PAE PdePae;
PMEMORY_ALLOCATION_DESCRIPTOR CurrentDescriptor;
PLIST_ENTRY CurrentLink;
ULONG StartPage,Bias=0,FreePage,FreeCount;
//
// Finally, go through and mark all large OsloaderHeap blocks
// as firmware temporary, so that MM reclaims them in phase 0
// (for /3gb) EXCEPT the LoaderBlock.
//
CurrentLink = ListHead->Flink;
if (BlVirtualBias) {
Bias = BlVirtualBias >> PAGE_SHIFT;
}
FreePage = (BlHeapFree & ~KSEG0_BASE) >> PAGE_SHIFT;
while (CurrentLink != ListHead) {
CurrentDescriptor = (PMEMORY_ALLOCATION_DESCRIPTOR)CurrentLink;
StartPage = CurrentDescriptor->BasePage | (KSEG0_BASE >> PAGE_SHIFT) ;
StartPage += Bias;
//
// BlHeapFree is not Biased, it relies on the 2GB mapping.
//
if ( CurrentDescriptor->MemoryType == LoaderOsloaderHeap) {
if ((CurrentDescriptor->BasePage <= FreePage) &&
((CurrentDescriptor->BasePage + CurrentDescriptor->PageCount) > FreePage + 1)) {
FreeCount = CurrentDescriptor->PageCount;
CurrentDescriptor->PageCount = FreePage-CurrentDescriptor->BasePage+1;
SplitDescriptor->MemoryType= LoaderFirmwareTemporary;
SplitDescriptor->BasePage = FreePage+1;
SplitDescriptor->PageCount = FreeCount-CurrentDescriptor->PageCount;
BlInsertDescriptor(SplitDescriptor);
}
if (PaeEnabled) {
PdePae = BlpFindPAEPageDirectoryEntry( StartPage << PAGE_SHIFT);
if (PdePae->Valid == 0) {
CurrentDescriptor->MemoryType = LoaderFirmwareTemporary;
}
}else {
if (PDE[StartPage >> 10].Valid == 0 ) {
CurrentDescriptor->MemoryType = LoaderFirmwareTemporary;
}
}
}
if ( (CurrentDescriptor->MemoryType == LoaderReserve)) {
CurrentDescriptor->MemoryType = LoaderFree;
}
CurrentLink = CurrentLink->Flink;
}
_asm {
mov eax, cr3
mov cr3, eax
}
}
//
// Temp. for debugging
//
VOID
NSDumpMemory(
PVOID Start,
ULONG Length
)
{
ULONG cnt;
BlPrint(" %lx:\n",(ULONG)Start);
for (cnt=0; cnt<Length; cnt++) {
BlPrint("%x ",*((PUSHORT)(Start)+cnt));
if (((cnt+1)%16)==0) {
BlPrint("\n");
}
}
}
VOID
NSDumpMemoryDescriptors(
IN PLIST_ENTRY ListHead
)
/*++
Routine Description:
Dumps a memory descriptor list to the screen. Used for debugging only.
Arguments:
ListHead - Pointer to the head of the memory descriptor list
Return Value:
None.
--*/
{
PLIST_ENTRY CurrentLink;
PMEMORY_ALLOCATION_DESCRIPTOR CurrentDescriptor;
CurrentLink = ListHead->Flink;
while (CurrentLink != ListHead) {
CurrentDescriptor = (PMEMORY_ALLOCATION_DESCRIPTOR)CurrentLink;
BlPrint("Fl = %lx Bl = %lx ",
(ULONG)CurrentDescriptor->ListEntry.Flink,
(ULONG)CurrentDescriptor->ListEntry.Blink
);
BlPrint("Type %x Base %lx Pages %lx\n",
(USHORT)(CurrentDescriptor->MemoryType),
CurrentDescriptor->BasePage,
CurrentDescriptor->PageCount
);
CurrentLink = CurrentLink->Flink;
}
while (!GET_KEY()) { // DEBUG ONLY!
}
}
ULONG
BlpCountPAEPagesToMapX86Page(
PHARDWARE_PTE_X86 PageTable
)
/*++
Routine Description:
Called to prepare the conversion of 4-byte PTEs to 8-byte PAE PTEs, this
routine returns the number of 8-byte page tables that will be required
to map the contents of this 4-byte page table.
Because an 8-byte page table has half the number of entries as a 4-byte
page table, the answer will be 0, 1 or 2.
Arguments:
PageTable - Pointer to a 4-byte page table.
Return Value:
The number of 8-byte page tables required to map the contents of this
4-byte page table.
--*/
{
PHARDWARE_PTE_X86 pageTableEntry;
ULONG chunkIndex;
ULONG pageTableIndex;
ULONG newPageTableCount;
//
// PAE page tables contain fewer PTEs than regular page tables do.
//
// Examine the page table in chunks, where each chunk contains the PTEs
// that represent an entire PAE page table.
//
newPageTableCount = 0;
for (chunkIndex = 0;
chunkIndex < PTE_PER_PAGE_X86;
chunkIndex += PTE_PER_PAGE_X86PAE) {
for (pageTableIndex = 0;
pageTableIndex < PTE_PER_PAGE_X86PAE;
pageTableIndex++) {
pageTableEntry = &PageTable[ chunkIndex + pageTableIndex ];
if (pageTableEntry->Valid) {
//
// One or more PTEs are valid in this chunk, record
// the fact that a new page table will be needed to map
// them and skip to the next chunk.
//
newPageTableCount++;
break;
}
}
}
return newPageTableCount;
}
VOID
BlpCopyX86PteToPAEPte(
IN PHARDWARE_PTE_X86 OldPte,
OUT PHARDWARE_PTE_X86PAE NewPte
)
/*++
Routine Description:
Copies the contents of a 4-byte PTE to an 8-byte PTE, with the exception
of the PageFrameNumber field.
Arguments:
OldPte - Pointer to the source 4-byte PTE.
NewPte - Pointer to the destination 8-byte PTE.
Return Value:
None.
--*/
{
NewPte->Valid = OldPte->Valid;
NewPte->Write = OldPte->Write;
NewPte->Owner = OldPte->Owner;
NewPte->WriteThrough = OldPte->WriteThrough;
NewPte->CacheDisable = OldPte->CacheDisable;
NewPte->Accessed = OldPte->Accessed;
NewPte->Dirty = OldPte->Dirty;
NewPte->LargePage = OldPte->LargePage;
NewPte->Global = OldPte->Global;
}
PHARDWARE_PTE_X86PAE
BlpFindPAEPageDirectoryEntry(
IN ULONG Va
)
/*++
Routine Description:
Given a virtual address, locates and returns a pointer to the appropriate
8-byte Page Directory Entry.
Arguments:
Va - Virtual Address for which a PDE pointer is desired.
Return Value:
Pointer to the page directory entry for the supplied Va.
--*/
{
PHARDWARE_PTE_X86PAE directoryPointerTableEntry;
PHARDWARE_PTE_X86PAE pageDirectoryEntry;
PHARDWARE_PTE_X86PAE pageDirectory;
ULONG pageDirectoryIndex;
ULONG directoryPointerTableIndex;
//
// Get a pointer to the directory pointer table entry
//
directoryPointerTableIndex = PP_INDEX_PAE( Va );
directoryPointerTableEntry = &PDPT[ directoryPointerTableIndex ];
//
// Get a pointer to the page directory entry
//
pageDirectory = PAGE_FRAME_FROM_PTE( directoryPointerTableEntry );
pageDirectoryIndex = PD_INDEX_PAE( Va );
pageDirectoryEntry = &pageDirectory[ pageDirectoryIndex ];
return pageDirectoryEntry;
}
PHARDWARE_PTE_X86PAE
BlpFindPAEPageTableEntry(
IN ULONG Va
)
/*++
Routine Description:
Given a virtual address, locates and returns a pointer to the appropriate
8-byte Page Table Entry.
Arguments:
Va - Virtual Address for which a PTE pointer is desired.
Return Value:
Pointer to the page directory entry for the supplied Va.
--*/
{
PHARDWARE_PTE_X86PAE pageDirectoryEntry;
PHARDWARE_PTE_X86PAE pageTableEntry;
PHARDWARE_PTE_X86PAE pageTable;
ULONG pageTableIndex;
//
// Get a pointer to the page directory entry
//
pageDirectoryEntry = BlpFindPAEPageDirectoryEntry( Va );
ASSERT( pageDirectoryEntry->Valid != 0 );
//
// Get a pointer to the page table entry
//
pageTable = PAGE_FRAME_FROM_PTE( pageDirectoryEntry );
pageTableIndex = PT_INDEX_PAE( Va );
pageTableEntry = &pageTable[ pageTableIndex ];
return pageTableEntry;
}
VOID
BlpMapAddress(
IN ULONG Va,
IN PHARDWARE_PTE_X86 OldPageDirectoryEntry,
IN PHARDWARE_PTE_X86 OldPageTableEntry,
IN OUT PULONG NextFreePage
)
/*++
Routine Description:
Worker function used during the conversion of a two-level, 4-byte mapping
structure to the three-level, 8-byte mapping structure required for PAE
mode.
Maps VA to the physical address referenced by OldPageTableEntry, allocating
a new page table if necessary.
Arguments:
Va - Virtual Address for this mapping.
OldPageDirectoryEntry - Pointer to the existing, 4-byte PDE.
OldPageTableEntry - Pointer to the existing, 4-byte PTE.
NextFreePage - Pointer to the physical page number of the next free
page in our private page pool.
Return Value:
None.
--*/
{
PHARDWARE_PTE_X86PAE pageDirectoryEntry;
PHARDWARE_PTE_X86PAE pageTableEntry;
ULONG pageFrameNumber;
ULONG pageTableVa;
//
// Ignore recursive mappings that exist in the old page table
// structure, we set those up as we go.
//
if ((Va >= PTE_BASE) && (Va < (PDE_BASE_X86 + PAGE_SIZE))) {
return;
}
//
// Get a pointer to the page directory entry
//
pageDirectoryEntry = BlpFindPAEPageDirectoryEntry( Va );
//
// If the page table for this PTE isn't present yet, allocate one and
// copy over the old page directory attributes.
//
if (pageDirectoryEntry->Valid == 0) {
pageFrameNumber = *NextFreePage;
*NextFreePage += 1;
BlpCopyX86PteToPAEPte( OldPageDirectoryEntry, pageDirectoryEntry );
pageDirectoryEntry->PageFrameNumber = pageFrameNumber;
//
// Check the recursive mapping for this page table
//
pageTableVa = PTE_BASE +
(Va / PAGE_SIZE) * sizeof(HARDWARE_PTE_X86PAE);
pageTableEntry = BlpFindPAEPageTableEntry( pageTableVa );
if (pageTableEntry->Valid == 0) {
DbgBreakPoint();
}
if (pageTableEntry->PageFrameNumber != pageFrameNumber) {
DbgBreakPoint();
}
}
//
// Get a pointer to the page table entry
//
pageTableEntry = BlpFindPAEPageTableEntry( Va );
if (pageTableEntry->Valid != 0) {
DbgBreakPoint();
}
//
// Propogate the PTE page and attributes.
//
BlpCopyX86PteToPAEPte( OldPageTableEntry, pageTableEntry );
pageTableEntry->PageFrameNumber = OldPageTableEntry->PageFrameNumber;
}
VOID
BlpInitializePAETables(
VOID
)
/*++
Routine Description:
Allocates a new, three-level, 8-byte PTE mapping structure and duplicates
in it the mapping described by the existing 4-byte PTE mapping structure.
Arguments:
None.
Return Value:
None.
--*/
{
ULONG pageDirectoryIndex;
ULONG va;
PHARDWARE_PTE_X86 pageDirectoryEntry;
PHARDWARE_PTE_X86 pageTableEntry;
PHARDWARE_PTE_X86 pageTable;
PHARDWARE_PTE_X86PAE paeDirectoryEntry;
ULONG directoryPointerIndex;
ULONG nextFreePage;
ULONG i;
ULONG pageTableIndex;
ULONGLONG pageFrameNumber;
nextFreePage = ((ULONG)PDPT) >> PAGE_SHIFT;
//
// Initialize the page directory pointer table to reference the four
// page directories.
//
nextFreePage++;
for (i = 0; i < 4; i++) {
PDPT[i].PageFrameNumber = nextFreePage;
PDPT[i].Valid = 1;
nextFreePage++;
}
//
// Set up the recursive mapping: first the PDE.
//
directoryPointerIndex = PDE_BASE_X86PAE >> PPI_SHIFT_X86PAE;
pageFrameNumber = PDPT[ directoryPointerIndex ].PageFrameNumber;
paeDirectoryEntry = (PHARDWARE_PTE_X86PAE)(((ULONG)pageFrameNumber) << PAGE_SHIFT);
for (i = 0; i < 4; i++) {
paeDirectoryEntry->PageFrameNumber = PDPT[i].PageFrameNumber;
paeDirectoryEntry->Valid = 1;
paeDirectoryEntry->Write = 1;
paeDirectoryEntry++;
}
for (pageDirectoryIndex = 0;
pageDirectoryIndex < PTE_PER_PAGE_X86;
pageDirectoryIndex++) {
pageDirectoryEntry = &PDE[pageDirectoryIndex];
if (pageDirectoryEntry->Valid == 0) {
continue;
}
pageTable = PAGE_FRAME_FROM_PTE( pageDirectoryEntry );
for (pageTableIndex = 0;
pageTableIndex < PTE_PER_PAGE_X86;
pageTableIndex++) {
pageTableEntry = &pageTable[pageTableIndex];
if (pageTableEntry->Valid == 0) {
continue;
}
va = (pageDirectoryIndex << PDI_SHIFT_X86) +
(pageTableIndex << PTI_SHIFT);
//
// We have a physical address and a va, update the new mapping.
//
BlpMapAddress( va,
pageDirectoryEntry,
pageTableEntry,
&nextFreePage );
}
}
//
// Finally, set up the PDE for the second of two HAL common buffer page
// tables.
//
paeDirectoryEntry =
BlpFindPAEPageDirectoryEntry( 0xFFC00000 + (1 << PDI_SHIFT_X86PAE) );
paeDirectoryEntry->Valid = 1;
paeDirectoryEntry->Write = 1;
paeDirectoryEntry->PageFrameNumber = nextFreePage;
nextFreePage += 1;
}
ARC_STATUS
BlpAllocatePAETables(
VOID
)
/*++
Routine Description:
Calculates the number of pages required to contain an 8-byte mapping
structure to duplicate the existing 4-byte mapping structure.
Arguments:
None.
Return Value:
None.
--*/
{
ULONG pageDirectoryIndex;
PHARDWARE_PTE_X86 pageDirectoryEntry;
PHARDWARE_PTE_X86 pageTable;
PHARDWARE_PTE_X86PAE pageDirectoryPointerTable;
ULONG status;
ULONG pageBase;
ULONG newPageTableCount;
ULONG allocationSize;
//
// Find out how many page tables we are going to need by examining the
// existing page table entries.
//
newPageTableCount = 0;
for (pageDirectoryIndex = 0;
pageDirectoryIndex < PTE_PER_PAGE_X86;
pageDirectoryIndex++) {
pageDirectoryEntry = &PDE[pageDirectoryIndex];
if (pageDirectoryEntry->Valid != 0) {
pageTable = PAGE_FRAME_FROM_PTE( pageDirectoryEntry );
//
// For each valid page table, scan the PTEs in chunks, where
// a chunk represents the PTEs that will reside in a PAE page
// table.
//
newPageTableCount += BlpCountPAEPagesToMapX86Page( pageTable );
}
}
//
// Include a page for the second HAL page table. This won't get
// included automatically in the conversion count because it doesn't
// currently contain any valid page table entries.
//
newPageTableCount += 1;
//
// Include a page for each of four page directories and the page
// directory pointer table, then allocate the pages.
//
newPageTableCount += 5;
status = BlAllocateDescriptor( LoaderMemoryData,
0,
newPageTableCount,
&pageBase );
if (status != ESUCCESS) {
DbgPrint("BlAllocateDescriptor failed!\n");
return status;
}
allocationSize = newPageTableCount << PAGE_SHIFT;
pageDirectoryPointerTable =
(PHARDWARE_PTE_X86PAE)PAGE_TO_VIRTUAL( pageBase );
RtlZeroMemory( pageDirectoryPointerTable, allocationSize );
//
// Set the global PDPT, we're done.
//
PDPT = pageDirectoryPointerTable;
return status;
}