2020-09-30 16:53:55 +02:00

3189 lines
76 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
mipae.h
Abstract:
This module contains the private data structures and procedure
prototypes for the hardware dependent portion of the
memory management system.
This module is specifically tailored for the PAE x86,
Author:
Landy Wang (landyw) 30-Nov-1998
Revision History:
--*/
#if defined(_X86PAE_)
/*++
Virtual Memory Layout on the PAE x86 is:
+------------------------------------+
00000000 | |
| |
| |
| User Mode Addresses |
| |
| All pages within this range |
| are potentially accessible while |
| the CPU is in USER mode. |
| |
| |
+------------------------------------+
7ffff000 | 64k No Access Area |
+------------------------------------+
80000000 | |
| NTLDR loads the kernel, HAL and |
| boot drivers here. The kernel |
| then relocates the drivers to the |
| system PTE area. |
| |
| Kernel mode access only. |
| |
| When possible, the PFN database & |
| initial non paged pool is built |
| here using large page mappings. |
| |
+------------------------------------+
| |
| Additional system PTEs, system |
| cache or special pooling |
| |
+------------------------------------+
| |
| System mapped views. |
| |
+------------------------------------+
| |
| Session space. |
| |
+------------------------------------+
C0000000 | Page Table Pages mapped through |
| this 8mb region |
| Kernel mode access only. |
| |
+------------------------------------+
C0800000 | HyperSpace - working set lists |
| and per process memory management |
| structures mapped in this 4mb |
| region. |
| Kernel mode access only. |
+------------------------------------+
| System Cache Structures |
| reside in this 4mb region |
| Kernel mode access only. |
+------------------------------------+
~C1000000 | System cache resides in this area |
| Note the exact address is computed |
| dynamically depending on whether |
| the system was booted with /3GB or |
| other various options. |
| Kernel mode access only. |
| |
| |
+------------------------------------+
E1000000 | Start of paged system area |
| Kernel mode access only. |
| |
+------------------------------------+
| |
| System PTE area - for mapping |
| kernel thread stacks and MDLs |
| that require system VAs. |
| Kernel mode access only. |
| |
+------------------------------------+
| |
| NonPaged System area |
| Kernel mode access only. |
| |
+------------------------------------+
FFBE0000 | Crash Dump Driver area |
| Kernel mode access only. |
+------------------------------------+
FFC00000 | Last 4mb reserved for HAL usage |
+------------------------------------+
--*/
#define _MI_PAGING_LEVELS 2
#define _MI_MORE_THAN_4GB_ 1
//
// Define empty list markers.
//
#define MM_EMPTY_LIST ((ULONG)0xFFFFFFFF) //
#define MM_EMPTY_PTE_LIST ((ULONG)0xFFFFFFFF) // N.B. tied to MMPTE definition
#define MI_PTE_BASE_FOR_LOWEST_KERNEL_ADDRESS (MiGetPteAddress (0x00000000))
#define MM_SESSION_SPACE_DEFAULT (0xA0000000)
#define MM_SESSION_SPACE_DEFAULT_END (0xC0000000)
extern ULONG_PTR MmBootImageSize;
//
// PAGE_SIZE for PAE x86 is 4k, virtual page is 20 bits with a PAGE_SHIFT
// byte offset.
//
#define MM_VIRTUAL_PAGE_FILLER 0
#define MM_VIRTUAL_PAGE_SIZE 20
//
// Address space layout definitions.
//
#define MM_KSEG0_BASE ((ULONG)0x80000000)
#define MM_KSEG2_BASE ((ULONG)0xA0000000)
#define MM_PAGES_IN_KSEG0 ((MM_KSEG2_BASE - MM_KSEG0_BASE) >> PAGE_SHIFT)
#define CODE_START MM_KSEG0_BASE
#define CODE_END MM_KSEG2_BASE
#define MM_SYSTEM_SPACE_START ((ULONG_PTR)MmSystemCacheWorkingSetList)
#define MM_SYSTEM_SPACE_END (0xFFFFFFFF)
#define HYPER_SPACE ((PVOID)0xC0800000)
#define HYPER_SPACE2 ((PVOID)0xC0A00000)
extern PVOID MmHyperSpaceEnd;
#define MM_SYSTEM_VIEW_START (0xA0000000)
#define MM_SYSTEM_VIEW_SIZE (16*1024*1024)
#define MM_USER_ADDRESS_RANGE_LIMIT 0xFFFFFFFF // user address range limit
#define MM_MAXIMUM_ZERO_BITS 21 // maximum number of zero bits
//
// Define the start and maximum size for the system cache.
// Maximum size is normally 512MB, but can be up to 512MB + 448MB = 960MB for
// large system cache machines.
//
#define MM_SYSTEM_CACHE_WORKING_SET (0xC0E00000)
#define MM_SYSTEM_CACHE_START (0xC1200000)
#define MM_SYSTEM_CACHE_WORKING_SET_3GB_DELTA (0x400000)
#define MM_SYSTEM_CACHE_END (0xE1000000)
//
//
// Various resources like additional system PTEs or system cache views, etc,
// can be allocated out of this virtual address range.
//
extern ULONG MiExtraResourceStart;
extern ULONG MiExtraResourceEnd;
extern ULONG_PTR MiUseMaximumSystemSpace;
extern ULONG_PTR MiUseMaximumSystemSpaceEnd;
extern ULONG MiNumberOfExtraSystemPdes;
extern ULONG MiMaximumSystemExtraSystemPdes;
extern ULONG MiMaximumSystemCacheSizeExtra;
extern PVOID MiSystemCacheStartExtra;
extern PVOID MiSystemCacheEndExtra;
#define MM_SYSTEM_CACHE_END_EXTRA (0xC0000000)
#define MM_PAGED_POOL_START (MmPagedPoolStart)
#define MM_DEFAULT_PAGED_POOL_START (0xE1000000)
#define MM_LOWEST_NONPAGED_SYSTEM_START ((PVOID)(0xEB000000))
#define MmProtopte_Base ((ULONG)MmPagedPoolStart)
#define MM_NONPAGED_POOL_END ((PVOID)(0xFFBE0000))
#define MM_CRASH_DUMP_VA ((PVOID)(0xFFBE0000))
#define MM_DEBUG_VA ((PVOID)0xFFBFF000)
#define NON_PAGED_SYSTEM_END ((ULONG)0xFFFFFFF0) //quadword aligned.
extern BOOLEAN MiWriteCombiningPtes;
LOGICAL
MiRecoverExtraPtes (
VOID
);
//
// Define absolute minimum and maximum count for system PTEs.
//
#define MM_MINIMUM_SYSTEM_PTES 7000
#define MM_MAXIMUM_SYSTEM_PTES 50000
#define MM_DEFAULT_SYSTEM_PTES 11000
//
// Pool limits
//
//
// The maximum amount of nonpaged pool that can be initially created.
//
#define MM_MAX_INITIAL_NONPAGED_POOL ((ULONG)(128*1024*1024))
//
// The total amount of nonpaged pool (initial pool + expansion).
//
#define MM_MAX_ADDITIONAL_NONPAGED_POOL ((ULONG)(128*1024*1024))
//
// The maximum amount of paged pool that can be created.
//
#define MM_MAX_PAGED_POOL ((ULONG)MM_NONPAGED_POOL_END - (ULONG)MM_PAGED_POOL_START)
#define MM_MAX_TOTAL_POOL (((ULONG)MM_NONPAGED_POOL_END) - ((ULONG)(MM_PAGED_POOL_START)))
//
// Structure layout definitions.
//
#define MM_PROTO_PTE_ALIGNMENT ((ULONG)PAGE_SIZE)
#define PAGE_DIRECTORY_MASK ((ULONG)0x001FFFFF)
#define MM_VA_MAPPED_BY_PDE (0x200000)
#define MM_MINIMUM_VA_FOR_LARGE_PAGE MM_VA_MAPPED_BY_PDE
#define LOWEST_IO_ADDRESS 0xa0000
#define PTE_SHIFT 3
//
// The number of bits in a physical address.
//
#define PHYSICAL_ADDRESS_BITS 36
#define MM_MAXIMUM_NUMBER_OF_COLORS (1)
//
// x86 does not require support for colored pages.
//
#define MM_NUMBER_OF_COLORS (1)
//
// Mask for obtaining color from a physical page number.
//
#define MM_COLOR_MASK (0)
//
// Boundary for aligned pages of like color upon.
//
#define MM_COLOR_ALIGNMENT (0)
//
// Mask for isolating color from virtual address.
//
#define MM_COLOR_MASK_VIRTUAL (0)
//
// Define 256k worth of secondary colors.
//
#define MM_SECONDARY_COLORS_DEFAULT (64)
#define MM_SECONDARY_COLORS_MIN (2)
#define MM_SECONDARY_COLORS_MAX (1024)
//
// Maximum number of paging files.
//
#define MAX_PAGE_FILES 16
//
// Hyper space definitions.
//
#define FIRST_MAPPING_PTE ((ULONG)0xC0801000)
#define NUMBER_OF_MAPPING_PTES 126
#define LAST_MAPPING_PTE \
((ULONG)((ULONG)FIRST_MAPPING_PTE + (NUMBER_OF_MAPPING_PTES * PAGE_SIZE)))
#define COMPRESSION_MAPPING_PTE ((PMMPTE)((ULONG)LAST_MAPPING_PTE + PAGE_SIZE))
#define IMAGE_MAPPING_PTE ((PMMPTE)((ULONG)COMPRESSION_MAPPING_PTE + PAGE_SIZE))
#define NUMBER_OF_ZEROING_PTES 256
//
// This bitmap consumes 4K when booted /2GB and 6K when booted /3GB, thus
// the working set list start is variable.
//
#define VAD_BITMAP_SPACE ((PVOID)((ULONG)IMAGE_MAPPING_PTE + PAGE_SIZE))
#define WORKING_SET_LIST MmWorkingSetList
#define MM_MAXIMUM_WORKING_SET MiMaximumWorkingSet
#define MmWsle ((PMMWSLE)((PUCHAR)WORKING_SET_LIST + sizeof(MMWSL)))
extern ULONG MiMaximumWorkingSet;
#define MM_WORKING_SET_END ((ULONG)0xC0BFF000)
//
// Define masks for fields within the PTE.
///
#define MM_PTE_VALID_MASK 0x1
#if defined(NT_UP)
#define MM_PTE_WRITE_MASK 0x2
#else
#define MM_PTE_WRITE_MASK 0x800
#endif
#define MM_PTE_OWNER_MASK 0x4
#define MM_PTE_WRITE_THROUGH_MASK 0x8
#define MM_PTE_CACHE_DISABLE_MASK 0x10
#define MM_PTE_ACCESS_MASK 0x20
#if defined(NT_UP)
#define MM_PTE_DIRTY_MASK 0x40
#else
#define MM_PTE_DIRTY_MASK 0x42
#endif
#define MM_PTE_LARGE_PAGE_MASK 0x80
#define MM_PTE_GLOBAL_MASK 0x100
#define MM_PTE_COPY_ON_WRITE_MASK 0x200
#define MM_PTE_PROTOTYPE_MASK 0x400
#define MM_PTE_TRANSITION_MASK 0x800
//
// Bit fields to or into PTE to make a PTE valid based on the
// protection field of the invalid PTE.
//
#define MM_PTE_NOACCESS 0x0 // not expressable on x86
#define MM_PTE_READONLY 0x0
#define MM_PTE_READWRITE MM_PTE_WRITE_MASK
#define MM_PTE_WRITECOPY 0x200 // read-only copy on write bit set.
#define MM_PTE_EXECUTE 0x0 // read-only on x86
#define MM_PTE_EXECUTE_READ 0x0
#define MM_PTE_EXECUTE_READWRITE MM_PTE_WRITE_MASK
#define MM_PTE_EXECUTE_WRITECOPY 0x200 // read-only copy on write bit set.
#define MM_PTE_NOCACHE 0x010
#define MM_PTE_GUARD 0x0 // not expressable on x86
#define MM_PTE_CACHE 0x0
#define MM_PROTECT_FIELD_SHIFT 5
//
// Bits available for the software working set index within the hardware PTE.
//
#define MI_MAXIMUM_PTE_WORKING_SET_INDEX 0
//
// Zero PTE
//
#define MM_ZERO_PTE 0
//
// Zero Kernel PTE
//
#define MM_ZERO_KERNEL_PTE 0
//
// A demand zero PTE with a protection of PAGE_READWRITE.
//
#define MM_DEMAND_ZERO_WRITE_PTE ((ULONGLONG)MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
//
// A demand zero PTE with a protection of PAGE_READWRITE for system space.
//
#define MM_KERNEL_DEMAND_ZERO_PTE ((ULONGLONG)MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
//
// A no access PTE for system space.
//
#define MM_KERNEL_NOACCESS_PTE ((ULONGLONG)MM_NOACCESS << MM_PROTECT_FIELD_SHIFT)
//
// Kernel stack alignment requirements.
//
#define MM_STACK_ALIGNMENT 0x0
#define MM_STACK_OFFSET 0x0
//
// System process definitions
//
#define PDE_PER_PAGE ((ULONG)512)
#define PTE_PER_PAGE ((ULONG)512)
#define PD_PER_SYSTEM ((ULONG)4)
//
// Number of page table pages for user addresses.
//
#define MM_USER_PAGE_TABLE_PAGES (1536)
VOID
MiPaeInitialize (
VOID
);
//++
//VOID
//MI_MAKE_VALID_PTE (
// OUT OUTPTE,
// IN FRAME,
// IN PMASK,
// IN PPTE
// );
//
// Routine Description:
//
// This macro makes a valid PTE from a page frame number, protection mask,
// and owner.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the transition PTE.
//
// FRAME - Supplies the page frame number for the PTE.
//
// PMASK - Supplies the protection to set in the transition PTE.
//
// PPTE - Supplies a pointer to the PTE which is being made valid.
// For prototype PTEs NULL should be specified.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_VALID_PTE(OUTPTE,FRAME,PMASK,PPTE) \
(OUTPTE).u.Long = (((ULONGLONG)FRAME << 12) | \
(MmProtectToPteMask[PMASK]) | \
MiDetermineUserGlobalPteMask ((PMMPTE)PPTE)); \
if (MmPaeMask != 0) { \
if (((PPTE) >= (PMMPTE)PDE_BASE) && ((PPTE) < (PMMPTE)PDE_TOP)) { \
(OUTPTE).u.Long &= ~MmPaeMask; \
} \
}
//++
//VOID
//MI_MAKE_VALID_PTE_TRANSITION (
// IN OUT OUTPTE
// IN PROTECT
// );
//
// Routine Description:
//
// This macro takes a valid pte and turns it into a transition PTE.
//
// Arguments
//
// OUTPTE - Supplies the current valid PTE. This PTE is then
// modified to become a transition PTE.
//
// PROTECT - Supplies the protection to set in the transition PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_VALID_PTE_TRANSITION(OUTPTE,PROTECT) \
(OUTPTE).u.Soft.Transition = 1; \
(OUTPTE).u.Soft.Valid = 0; \
(OUTPTE).u.Soft.Prototype = 0; \
(OUTPTE).u.Soft.Protection = PROTECT;
//++
//VOID
//MI_MAKE_TRANSITION_PTE (
// OUT OUTPTE,
// IN PAGE,
// IN PROTECT,
// IN PPTE
// );
//
// Routine Description:
//
// This macro takes a valid pte and turns it into a transition PTE.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the transition PTE.
//
// PAGE - Supplies the page frame number for the PTE.
//
// PROTECT - Supplies the protection to set in the transition PTE.
//
// PPTE - Supplies a pointer to the PTE, this is used to determine
// the owner of the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_TRANSITION_PTE(OUTPTE,PAGE,PROTECT,PPTE) \
(OUTPTE).u.Long = 0; \
(OUTPTE).u.Trans.PageFrameNumber = PAGE; \
(OUTPTE).u.Trans.Transition = 1; \
(OUTPTE).u.Trans.Protection = PROTECT; \
(OUTPTE).u.Trans.Owner = MI_DETERMINE_OWNER(PPTE);
//++
//VOID
//MI_MAKE_TRANSITION_PTE_VALID (
// OUT OUTPTE,
// IN PPTE
// );
//
// Routine Description:
//
// This macro takes a transition pte and makes it a valid PTE.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the valid PTE.
//
// PPTE - Supplies a pointer to the transition PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) \
ASSERT (((PPTE)->u.Hard.Valid == 0) && \
((PPTE)->u.Trans.Prototype == 0) && \
((PPTE)->u.Trans.Transition == 1)); \
(OUTPTE).u.Long = (((PPTE)->u.Long & ~0xFFF) | \
(MmProtectToPteMask[(PPTE)->u.Trans.Protection]) | \
MiDetermineUserGlobalPteMask ((PMMPTE)PPTE)); \
if (MmPaeMask != 0) { \
if (((PPTE) >= (PMMPTE)PDE_BASE) && ((PPTE) < (PMMPTE)PDE_TOP)) { \
(OUTPTE).u.Long &= ~MmPaeMask; \
} \
}
//++
//VOID
//MI_MAKE_TRANSITION_PROTOPTE_VALID (
// OUT OUTPTE,
// IN PPTE
// );
//
// Routine Description:
//
// This macro takes a transition prototype PTE (in paged pool) and
// makes it a valid PTE. Because we know this is a prototype PTE and
// not a pagetable PTE, this can directly or in the global bit. This
// makes a measurable performance gain since every instruction counts
// when holding the PFN lock.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the valid PTE.
//
// PPTE - Supplies a pointer to the transition PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_TRANSITION_PROTOPTE_VALID(OUTPTE,PPTE) \
ASSERT (((PPTE)->u.Hard.Valid == 0) && \
((PPTE)->u.Trans.Prototype == 0) && \
((PPTE)->u.Trans.Transition == 1)); \
(OUTPTE).u.Long = (((PPTE)->u.Long & ~0xFFF) | \
(MmProtectToPteMask[(PPTE)->u.Trans.Protection]) | \
(MmPteGlobal.u.Long)); \
(OUTPTE).u.Hard.Valid = 1; \
(OUTPTE).u.Hard.Accessed = 1;
#define MI_FAULT_STATUS_INDICATES_EXECUTION(_FaultStatus) (_FaultStatus & MmPaeErrMask)
#define MI_FAULT_STATUS_INDICATES_WRITE(_FaultStatus) (_FaultStatus & 0x1)
#define MI_CLEAR_FAULT_STATUS(_FaultStatus) (_FaultStatus = 0)
#define MI_IS_PTE_EXECUTABLE(_TempPte) (((_TempPte)->u.Long & MmPaeMask) == 0)
//++
//VOID
//MI_SET_PTE_IN_WORKING_SET (
// OUT PMMPTE PTE,
// IN ULONG WSINDEX
// );
//
// Routine Description:
//
// This macro inserts the specified working set index into the argument PTE.
// Since the x86 PTE has no free bits in the valid PTE, nothing needs to
// be done on this architecture.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to insert the working set index.
//
// WSINDEX - Supplies the working set index for the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_IN_WORKING_SET(PTE, WSINDEX)
//++
//ULONG WsIndex
//MI_GET_WORKING_SET_FROM_PTE(
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// This macro returns the working set index from the argument PTE.
// Since the x86 PTE has no free bits in the valid PTE, nothing needs to
// be done on this architecture.
//
// Arguments
//
// PTE - Supplies the PTE to extract the working set index from.
//
// Return Value:
//
// This macro returns the working set index for the argument PTE.
//
//--
#define MI_GET_WORKING_SET_FROM_PTE(PTE) 0
//++
//VOID
//MI_SET_PTE_WRITE_COMBINE (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and enables WriteCombining as the
// caching state. Note that the PTE bits may only be set this way
// if the Page Attribute Table is present and the PAT has been
// initialized to provide Write Combining.
//
// If either of the above conditions is not satisfied, then
// the macro enables WEAK UC (PCD = 1, PWT = 0) in the PTE.
//
// Arguments
//
// PTE - Supplies a valid PTE.
//
// Return Value:
//
// None.
//
//--
//
#define MI_SET_PTE_WRITE_COMBINE(PTE) \
{ \
if (MiWriteCombiningPtes == TRUE) { \
((PTE).u.Hard.CacheDisable = 0); \
((PTE).u.Hard.WriteThrough = 1); \
} else { \
((PTE).u.Hard.CacheDisable = 1); \
((PTE).u.Hard.WriteThrough = 0); \
} \
}
#define MI_SET_LARGE_PTE_WRITE_COMBINE(PTE) MI_SET_PTE_WRITE_COMBINE(PTE)
//++
//VOID
//MI_PREPARE_FOR_NONCACHED (
// IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute
// );
//
// Routine Description:
//
// This macro prepares the system prior to noncached PTEs being created.
//
// Note the entire TB must be flushed on all processors because there may
// be stale system PTE (or hyperspace or zeropage) mappings in the TB which
// may refer to the same physical page but with a different cache attribute.
//
// Arguments
//
// CacheAttribute - Supplies the cache attribute the PTEs will be filled
// with.
//
// Return Value:
//
// None.
//
//--
#define MI_PREPARE_FOR_NONCACHED(_CacheAttribute) \
if (_CacheAttribute != MiCached) { \
KeFlushEntireTb (FALSE, TRUE); \
KeInvalidateAllCaches (); \
}
//++
//VOID
//MI_SWEEP_CACHE (
// IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute,
// IN PVOID StartVa,
// IN ULONG NumberOfBytes
// );
//
// Routine Description:
//
// This macro prepares the system prior to noncached PTEs being created.
// This does nothing on x86.
//
// Arguments
//
// CacheAttribute - Supplies the cache attribute the PTEs were filled with.
//
// StartVa - Supplies the starting address that's been mapped.
//
// NumberOfBytes - Supplies the number of bytes that have been mapped.
//
// Return Value:
//
// None.
//
//--
#define MI_SWEEP_CACHE(_CacheType,_StartVa,_NumberOfBytes)
//++
//VOID
//MI_SET_PTE_DIRTY (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro sets the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to set dirty.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_DIRTY(PTE) (PTE).u.Long |= HARDWARE_PTE_DIRTY_MASK
//++
//VOID
//MI_SET_PTE_CLEAN (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro clears the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to set clear.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_CLEAN(PTE) (PTE).u.Long &= ~HARDWARE_PTE_DIRTY_MASK
//++
//VOID
//MI_IS_PTE_DIRTY (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro checks the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to check.
//
// Return Value:
//
// TRUE if the page is dirty (modified), FALSE otherwise.
//
//--
#define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.Dirty != 0)
//++
//VOID
//MI_SET_GLOBAL_BIT_IF_SYSTEM (
// OUT OUTPTE,
// IN PPTE
// );
//
// Routine Description:
//
// This macro sets the global bit if the pointer PTE is within
// system space.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the valid PTE.
//
// PPTE - Supplies a pointer to the PTE becoming valid.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_GLOBAL_BIT_IF_SYSTEM(OUTPTE,PPTE) \
if ((((PMMPTE)PPTE) > MiHighestUserPte) && \
((((PMMPTE)PPTE) <= MiGetPteAddress (PTE_BASE)) || \
(((PMMPTE)PPTE) >= MmSystemCacheWorkingSetListPte))) { \
(OUTPTE).u.Long |= MmPteGlobal.u.Long; \
} \
else { \
(OUTPTE).u.Long &= ~MmPteGlobal.u.Long; \
}
//++
//VOID
//MI_SET_GLOBAL_STATE (
// IN MMPTE PTE,
// IN ULONG STATE
// );
//
// Routine Description:
//
// This macro sets the global bit in the PTE based on the state argument.
//
// Arguments
//
// PTE - Supplies the PTE to set global state into.
//
// STATE - Supplies 1 if global, 0 if not.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_GLOBAL_STATE(PTE,STATE) \
if (STATE) { \
(PTE).u.Long |= MmPteGlobal.u.Long; \
} \
else { \
(PTE).u.Long &= ~MmPteGlobal.u.Long; \
}
//++
//VOID
//MI_ENABLE_CACHING (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and sets the caching state to be
// enabled. This is performed by clearing the PCD and PWT bits in the PTE.
//
// Semantics of the overlap between PCD, PWT, and the
// USWC memory type in the MTRR are:
//
// PCD PWT Mtrr Mem Type Effective Memory Type
// 1 0 USWC USWC
// 1 1 USWC UC
//
// Arguments
//
// PTE - Supplies a valid PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_ENABLE_CACHING(PTE) \
{ \
((PTE).u.Hard.CacheDisable = 0); \
((PTE).u.Hard.WriteThrough = 0); \
}
//++
//VOID
//MI_DISABLE_CACHING (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and sets the caching state to be
// disabled. This is performed by setting the PCD and PWT bits in the PTE.
//
// Semantics of the overlap between PCD, PWT, and the
// USWC memory type in the MTRR are:
//
// PCD PWT Mtrr Mem Type Effective Memory Type
// 1 0 USWC USWC
// 1 1 USWC UC
//
// Since an effective memory type of UC is desired here,
// the WT bit is set.
//
// Arguments
//
// PTE - Supplies a pointer to the valid PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_DISABLE_CACHING(PTE) \
{ \
((PTE).u.Hard.CacheDisable = 1); \
((PTE).u.Hard.WriteThrough = 1); \
}
#define MI_DISABLE_LARGE_PTE_CACHING(PTE) MI_DISABLE_CACHING(PTE)
//++
//BOOLEAN
//MI_IS_CACHING_DISABLED (
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and returns TRUE if caching is
// disabled.
//
// Arguments
//
// PPTE - Supplies a pointer to the valid PTE.
//
// Return Value:
//
// TRUE if caching is disabled, FALSE if it is enabled.
//
//--
#define MI_IS_CACHING_DISABLED(PPTE) \
((PPTE)->u.Hard.CacheDisable == 1)
//++
//VOID
//MI_SET_PFN_DELETED (
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro takes a pointer to a PFN element and indicates that
// the PFN is no longer in use.
//
// Arguments
//
// PPFN - Supplies a pointer to the PFN element.
//
// Return Value:
//
// none.
//
//--
#define MI_SET_PFN_DELETED(PPFN) \
PPFN->PteAddress = (PMMPTE)(((ULONG_PTR)(PPFN->PteAddress)) | 0x1);
//++
//VOID
//MI_MARK_PFN_UNDELETED (
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro takes a pointer to a deleted PFN element and mark that
// the PFN is not deleted.
//
// Arguments
//
// PPTE - Supplies a pointer to the PFN element.
//
// Return Value:
//
// none.
//
//--
#define MI_MARK_PFN_UNDELETED(PPFN) \
PPFN->PteAddress = (PMMPTE)((ULONG_PTR)PPFN->PteAddress & ~0x1);
//++
//BOOLEAN
//MI_IS_PFN_DELETED (
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro takes a pointer to a PFN element and determines if
// the PFN is no longer in use.
//
// Arguments
//
// PPTE - Supplies a pointer to the PFN element.
//
// Return Value:
//
// TRUE if PFN is no longer used, FALSE if it is still being used.
//
//--
#define MI_IS_PFN_DELETED(PPFN) \
((ULONG_PTR)(PPFN)->PteAddress & 0x1)
//++
//VOID
//MI_CHECK_PAGE_ALIGNMENT (
// IN ULONG PAGE,
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro takes a PFN element number (Page) and checks to see
// if the virtual alignment for the previous address of the page
// is compatible with the new address of the page. If they are
// not compatible, the D cache is flushed.
//
// Arguments
//
// PAGE - Supplies the PFN element.
// PPTE - Supplies a pointer to the new PTE which will contain the page.
//
// Return Value:
//
// none.
//
//--
// does nothing on x86.
#define MI_CHECK_PAGE_ALIGNMENT(PAGE,PPTE)
//++
//VOID
//MI_INITIALIZE_HYPERSPACE_MAP (
// VOID
// );
//
// Routine Description:
//
// This macro initializes the PTEs reserved for double mapping within
// hyperspace.
//
// Arguments
//
// None.
//
// Return Value:
//
// None.
//
//--
// does nothing on x86.
#define MI_INITIALIZE_HYPERSPACE_MAP(INDEX)
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_PTE (
// IN PMMPTE PTEADDRESS
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// PTEADDRESS - Supplies the PTE address the page is (or was) mapped at.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_PTE(PTEADDRESS) \
((ULONG)((MI_SYSTEM_PAGE_COLOR++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_VA (
// IN PVOID ADDRESS
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// ADDRESS - Supplies the address the page is (or was) mapped at.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_VA(ADDRESS) \
((ULONG)((MI_SYSTEM_PAGE_COLOR++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_SESSION (
// IN PMM_SESSION_SPACE SessionSpace
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// SessionSpace - Supplies the session space the page will be mapped into.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_SESSION(_SessionSpace) \
((ULONG)((_SessionSpace->Color++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_PAGE_COLOR_PTE_PROCESS (
// IN PMMPTE PTE,
// IN PUSHORT COLOR
// );
//
// Routine Description:
//
// Select page color for this process.
//
// Arguments
//
// PTE Not used.
// COLOR Value from which color is determined. This
// variable is incremented.
//
// Return Value:
//
// Page color.
//
//--
#define MI_PAGE_COLOR_PTE_PROCESS(PTE,COLOR) \
(((ULONG)((*(COLOR))++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_PAGE_COLOR_VA_PROCESS (
// IN PVOID ADDRESS,
// IN PEPROCESS COLOR
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// ADDRESS - Supplies the address the page is (or was) mapped at.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_PAGE_COLOR_VA_PROCESS(ADDRESS,COLOR) \
(((ULONG)((*(COLOR))++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_GET_NEXT_COLOR (
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the next color in the sequence.
//
// Arguments
//
// COLOR - Supplies the color to return the next of.
//
// Return Value:
//
// Next color in sequence.
//
//--
#define MI_GET_NEXT_COLOR(COLOR) ((COLOR + 1) & MM_COLOR_MASK)
//++
//ULONG
//MI_GET_PREVIOUS_COLOR (
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the previous color in the sequence.
//
// Arguments
//
// COLOR - Supplies the color to return the previous of.
//
// Return Value:
//
// Previous color in sequence.
//
//--
#define MI_GET_PREVIOUS_COLOR(COLOR) (0)
#define MI_GET_SECONDARY_COLOR(PAGE,PFN) (PAGE & MmSecondaryColorMask)
#define MI_GET_COLOR_FROM_SECONDARY(SECONDARY_COLOR) (0)
//++
//VOID
//MI_GET_MODIFIED_PAGE_BY_COLOR (
// OUT ULONG PAGE,
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the first page destined for a paging
// file with the desired color. It does NOT remove the page
// from its list.
//
// Arguments
//
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
//
// COLOR - Supplies the color of page to locate.
//
// Return Value:
//
// none.
//
//--
#define MI_GET_MODIFIED_PAGE_BY_COLOR(PAGE,COLOR) \
PAGE = MmModifiedPageListByColor[COLOR].Flink
//++
//VOID
//MI_GET_MODIFIED_PAGE_ANY_COLOR (
// OUT ULONG PAGE,
// IN OUT ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the first page destined for a paging
// file with the desired color. If not page of the desired
// color exists, all colored lists are searched for a page.
// It does NOT remove the page from its list.
//
// Arguments
//
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
//
// COLOR - Supplies the color of page to locate and returns the
// color of the page located.
//
// Return Value:
//
// none.
//
//--
#define MI_GET_MODIFIED_PAGE_ANY_COLOR(PAGE,COLOR) \
{ \
if (MmTotalPagesForPagingFile == 0) { \
PAGE = MM_EMPTY_LIST; \
} else { \
PAGE = MmModifiedPageListByColor[COLOR].Flink; \
} \
}
//++
//VOID
//MI_MAKE_VALID_PTE_WRITE_COPY (
// IN OUT PMMPTE PTE
// );
//
// Routine Description:
//
// This macro checks to see if the PTE indicates that the
// page is writable and if so it clears the write bit and
// sets the copy-on-write bit.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
#define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \
if ((PPTE)->u.Hard.Write == 1) { \
(PPTE)->u.Hard.CopyOnWrite = 1; \
(PPTE)->u.Hard.Write = 0; \
}
#else
#define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \
if ((PPTE)->u.Hard.Write == 1) { \
(PPTE)->u.Hard.CopyOnWrite = 1; \
(PPTE)->u.Hard.Write = 0; \
(PPTE)->u.Hard.Writable = 0; \
}
#endif
#define MI_PTE_OWNER_USER 1
#define MI_PTE_OWNER_KERNEL 0
//++
//ULONG
//MI_DETERMINE_OWNER (
// IN MMPTE PPTE
// );
//
// Routine Description:
//
// This macro examines the virtual address of the PTE and determines
// if the PTE resides in system space or user space.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
//
//--
#define MI_DETERMINE_OWNER(PPTE) \
((((PPTE) <= MiHighestUserPte) || \
((PPTE) >= MiGetPdeAddress(NULL) && \
((PPTE) <= MiHighestUserPde))) ? MI_PTE_OWNER_USER : MI_PTE_OWNER_KERNEL)
//++
//VOID
//MI_SET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE,
// IN ULONG ACCESSED
// );
//
// Routine Description:
//
// This macro sets the ACCESSED field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// None
//
//--
#define MI_SET_ACCESSED_IN_PTE(PPTE,ACCESSED) \
((PPTE)->u.Hard.Accessed = ACCESSED)
//++
//ULONG
//MI_GET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
//
// Routine Description:
//
// This macro returns the state of the ACCESSED field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The state of the ACCESSED field.
//
//--
#define MI_GET_ACCESSED_IN_PTE(PPTE) ((PPTE)->u.Hard.Accessed)
//++
//VOID
//MI_SET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// IN ULONG OWNER
// );
//
// Routine Description:
//
// This macro sets the owner field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_OWNER_IN_PTE(PPTE,OWNER) ((PPTE)->u.Hard.Owner = OWNER)
//
// bit mask to clear out fields in a PTE to or in paging file location.
//
#define CLEAR_FOR_PAGE_FILE 0x000003E0
//++
//VOID
//MI_SET_PAGING_FILE_INFO (
// OUT MMPTE OUTPTE,
// IN MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to store the result.
//
// PTE - Supplies the PTE to operate upon.
//
// FILEINFO - Supplies the number of the paging file.
//
// OFFSET - Supplies the offset into the paging file.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PAGING_FILE_INFO(OUTPTE,PPTE,FILEINFO,OFFSET) \
(OUTPTE).u.Long = (PPTE).u.Long; \
(OUTPTE).u.Long &= CLEAR_FOR_PAGE_FILE; \
(OUTPTE).u.Long |= ((ULONGLONG)FILEINFO << 1); \
(OUTPTE).u.Soft.PageFileHigh = (OFFSET);
//++
//PMMPTE
//MiPteToProto (
// IN OUT MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
//
// Routine Description:
//
// This macro returns the address of the corresponding prototype which
// was encoded earlier into the supplied PTE.
//
// Arguments
//
// lpte - Supplies the PTE to operate upon.
//
// Return Value:
//
// Pointer to the prototype PTE that backs this PTE.
//
//--
#define MiPteToProto(lpte) \
((PMMPTE)(ULONG_PTR)((lpte)->u.Proto.ProtoAddress))
//++
//MMPTE
//MiProtoAddressForPte (
// IN PMMPTE proto_va
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
//
// N.B. This macro is dependent on the layout of the prototype PTE.
//
// Arguments
//
// proto_va - Supplies the address of the prototype PTE.
//
// Return Value:
//
// Mask to set into the PTE.
//
//--
#define MiProtoAddressForPte(proto_va) \
(((ULONGLONG)proto_va << 32) | MM_PTE_PROTOTYPE_MASK)
//++
//ULONG
//MiProtoAddressForKernelPte (
// IN PMMPTE proto_va
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
//
// This macro also sets any other information (such as global bits)
// required for kernel mode PTEs.
//
// Arguments
//
// proto_va - Supplies the address of the prototype PTE.
//
// Return Value:
//
// Mask to set into the PTE.
//
//--
// not different on x86.
#define MiProtoAddressForKernelPte(proto_va) MiProtoAddressForPte(proto_va)
//++
//PSUBSECTION
//MiGetSubsectionAddress (
// IN PMMPTE lpte
// );
//
// Routine Description:
//
// This macro takes a PTE and returns the address of the subsection that
// the PTE refers to. Subsections are quadword structures allocated
// from nonpaged pool.
//
// Arguments
//
// lpte - Supplies the PTE to operate upon.
//
// Return Value:
//
// A pointer to the subsection referred to by the supplied PTE.
//
//--
#define MiGetSubsectionAddress(lpte) \
((PSUBSECTION)(ULONG_PTR)((lpte)->u.Subsect.SubsectionAddress))
//++
//ULONG
//MiGetSubsectionAddressForPte (
// IN PSUBSECTION VA
// );
//
// Routine Description:
//
// This macro takes the address of a subsection and encodes it for use
// in a PTE.
//
// Arguments
//
// VA - Supplies a pointer to the subsection to encode.
//
// Return Value:
//
// The mask to set into the PTE to make it reference the supplied
// subsection.
//
//--
#define MiGetSubsectionAddressForPte(VA) ((ULONGLONG)VA << 32)
//++
//PMMPTE
//MiGetPdeAddress (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeAddress returns the address of the PDE which maps the
// given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the PDE for.
//
// Return Value:
//
// The address of the PDE.
//
//--
#define MiGetPdeAddress(va) ((PMMPTE)(PDE_BASE + ((((ULONG)(va)) >> 21) << 3)))
//++
//PMMPTE
//MiGetPteAddress (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPteAddress returns the address of the PTE which maps the
// given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the PTE for.
//
// Return Value:
//
// The address of the PTE.
//
//--
#define MiGetPteAddress(va) ((PMMPTE)(PTE_BASE + ((((ULONG)(va)) >> 12) << 3)))
//++
//ULONG
//MiGetPpeOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPpeOffset returns the offset into a page root
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page root table the corresponding PPE is at.
//
//--
#define MiGetPpeOffset(va) (0)
//++
//ULONG
//MiGetPdPteOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdPteOffset returns the offset into a page directory
// pointer PTE table for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page directory pointer PTE table the corresponding
// PDE is at.
//
//--
#define MiGetPdPteOffset(va) (((ULONG)(va)) >> 30)
//++
//ULONG
//MiGetPdeOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeOffset returns the offset into a page directory
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page directory table the corresponding PDE is at.
//
//--
#define MiGetPdeOffset(va) ((((ULONG)(va)) >> 21) & 0x1FF)
//++
//ULONG
//MiGetPdeIndex (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeIndex returns the page directory index
// for a given virtual address.
//
// N.B. This does not mask off PPE bits.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The index into the page directory - ie: the virtual page table number.
// This is different from the page directory offset because this spans
// page directories on supported platforms.
//
//--
#define MiGetPdeIndex(va) (((ULONG)(va)) >> 21)
//++
//ULONG
//MiGetPteOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPteOffset returns the offset into a page table page
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page table page table the corresponding PTE is at.
//
//--
#define MiGetPteOffset(va) ((((ULONG)(va)) << 11) >> 23)
//++
//PVOID
//MiGetVirtualAddressMappedByPpe (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPpe returns the virtual address
// which is mapped by a given PPE address.
//
// Arguments
//
// PPE - Supplies the PPE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PPE.
//
//--
#define MiGetVirtualAddressMappedByPpe(PPE) (NULL)
//++
//PVOID
//MiGetVirtualAddressMappedByPde (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPde returns the virtual address
// which is mapped by a given PDE address.
//
// Arguments
//
// PDE - Supplies the PDE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PDE.
//
//--
#define MiGetVirtualAddressMappedByPde(PDE) ((PVOID)((ULONG)(PDE) << 18))
//++
//PVOID
//MiGetVirtualAddressMappedByPte (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPte returns the virtual address
// which is mapped by a given PTE address.
//
// Arguments
//
// PTE - Supplies the PTE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PTE.
//
//--
#define MiGetVirtualAddressMappedByPte(PTE) ((PVOID)((ULONG)(PTE) << 9))
//++
//LOGICAL
//MiIsVirtualAddressOnPpeBoundary (
// IN PVOID VA
// );
//
// Routine Description:
//
// MiIsVirtualAddressOnPpeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
//
// Arguments
//
// VA - Supplies the virtual address to check.
//
// Return Value:
//
// TRUE if on a boundary, FALSE if not.
//
//--
#define MiIsVirtualAddressOnPpeBoundary(VA) (FALSE)
//++
//LOGICAL
//MiIsVirtualAddressOnPdeBoundary (
// IN PVOID VA
// );
//
// Routine Description:
//
// MiIsVirtualAddressOnPdeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
//
// Arguments
//
// VA - Supplies the virtual address to check.
//
// Return Value:
//
// TRUE if on a 4MB PDE boundary, FALSE if not.
//
//--
#define MiIsVirtualAddressOnPdeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY_MASK) == 0)
//++
//LOGICAL
//MiIsPteOnPdeBoundary (
// IN PVOID PTE
// );
//
// Routine Description:
//
// MiIsPteOnPdeBoundary returns TRUE if the PTE is
// on a page directory entry boundary.
//
// Arguments
//
// PTE - Supplies the PTE to check.
//
// Return Value:
//
// TRUE if on a 4MB PDE boundary, FALSE if not.
//
//--
#define MiIsPteOnPdeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_SIZE - 1)) == 0)
//++
//ULONG
//GET_PAGING_FILE_NUMBER (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro extracts the paging file number from a PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The paging file number.
//
//--
#define GET_PAGING_FILE_NUMBER(PTE) ((ULONG)((((PTE).u.Long) >> 1) & 0x0000000F))
//++
//ULONG
//GET_PAGING_FILE_OFFSET (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro extracts the offset into the paging file from a PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The paging file offset.
//
//--
#define GET_PAGING_FILE_OFFSET(PTE) ((ULONG)((PTE).u.Soft.PageFileHigh))
//++
//ULONG
//IS_PTE_NOT_DEMAND_ZERO (
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro checks to see if a given PTE is NOT a demand zero PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// Returns 0 if the PTE is demand zero, non-zero otherwise.
//
//--
#define IS_PTE_NOT_DEMAND_ZERO(PTE) ((PTE).u.Long & ~0x3FE)
//++
//VOID
//MI_MAKING_VALID_PTE_INVALID(
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// Prepare to make a single valid PTE invalid.
// No action is required on x86.
//
// Arguments
//
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKING_VALID_PTE_INVALID(SYSTEM_WIDE)
//++
//VOID
//MI_MAKING_VALID_MULTIPLE_PTES_INVALID(
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// Prepare to make multiple valid PTEs invalid.
// No action is required on x86.
//
// Arguments
//
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKING_MULTIPLE_PTES_INVALID(SYSTEM_WIDE)
//++
//VOID
//MI_MAKE_PROTECT_WRITE_COPY (
// IN OUT MMPTE PPTE
// );
//
// Routine Description:
//
// This macro makes a writable PTE a writable-copy PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// NONE
//
//--
#define MI_MAKE_PROTECT_WRITE_COPY(PTE) \
if ((PTE).u.Soft.Protection & MM_PROTECTION_WRITE_MASK) { \
(PTE).u.Long |= (ULONGLONG)MM_PROTECTION_COPY_MASK << MM_PROTECT_FIELD_SHIFT; \
}
//++
//VOID
//MI_SET_PAGE_DIRTY(
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
//
// Routine Description:
//
// This macro sets the dirty bit (and release page file space).
//
// Arguments
//
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
//
// VA - Supplies a the virtual address of the page fault.
//
// PFNHELD - Supplies TRUE if the PFN lock is held.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
#define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD)
#else
#define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD) \
if ((PPTE)->u.Hard.Dirty == 1) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
}
#endif
//++
//VOID
//MI_NO_FAULT_FOUND(
// IN FAULTSTATUS,
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
//
// Routine Description:
//
// This macro handles the case when a page fault is taken and no
// PTE with the valid bit clear is found.
//
// Arguments
//
// FAULTSTATUS - Supplies the fault status.
//
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
//
// VA - Supplies a the virtual address of the page fault.
//
// PFNHELD - Supplies TRUE if the PFN lock is held.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
#define MI_NO_FAULT_FOUND(FAULTSTATUS,PPTE,VA,PFNHELD)
#else
#define MI_NO_FAULT_FOUND(FAULTSTATUS,PPTE,VA,PFNHELD) \
if ((MI_FAULT_STATUS_INDICATES_WRITE(FAULTSTATUS)) && ((PPTE)->u.Hard.Dirty == 0)) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
}
#endif
//++
//ULONG
//MI_CAPTURE_DIRTY_BIT_TO_PFN (
// IN PMMPTE PPTE,
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro gets captures the state of the dirty bit to the PFN
// and frees any associated page file space if the PTE has been
// modified element.
//
// NOTE - THE PFN LOCK MUST BE HELD!
//
// Arguments
//
// PPTE - Supplies the PTE to operate upon.
//
// PPFN - Supplies a pointer to the PFN database element that corresponds
// to the page mapped by the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_CAPTURE_DIRTY_BIT_TO_PFN(PPTE,PPFN) \
ASSERT (KeGetCurrentIrql() > APC_LEVEL); \
if (((PPFN)->u3.e1.Modified == 0) && \
((PPTE)->u.Hard.Dirty != 0)) { \
MI_SET_MODIFIED (PPFN, 1, 0x18); \
if (((PPFN)->OriginalPte.u.Soft.Prototype == 0) && \
((PPFN)->u3.e1.WriteInProgress == 0)) { \
MiReleasePageFileSpace ((PPFN)->OriginalPte); \
(PPFN)->OriginalPte.u.Soft.PageFileHigh = 0; \
} \
}
//++
//BOOLEAN
//MI_IS_PHYSICAL_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro determines if a given virtual address is really a
// physical address.
//
// Arguments
//
// VA - Supplies the virtual address.
//
// Return Value:
//
// FALSE if it is not a physical address, TRUE if it is.
//
//--
#define MI_IS_PHYSICAL_ADDRESS(Va) \
((MiGetPdeAddress(Va)->u.Long & 0x81) == 0x81)
//++
//ULONG
//MI_CONVERT_PHYSICAL_TO_PFN (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro converts a physical address (see MI_IS_PHYSICAL_ADDRESS)
// to its corresponding physical frame number.
//
// Arguments
//
// VA - Supplies a pointer to the physical address.
//
// Return Value:
//
// Returns the PFN for the page.
//
//--
#define MI_CONVERT_PHYSICAL_TO_PFN(Va) \
((PFN_NUMBER)(MiGetPdeAddress(Va)->u.Hard.PageFrameNumber) + (MiGetPteOffset((ULONG)Va)))
typedef struct _MMCOLOR_TABLES {
PFN_NUMBER Flink;
PVOID Blink;
PFN_NUMBER Count;
} MMCOLOR_TABLES, *PMMCOLOR_TABLES;
extern PMMCOLOR_TABLES MmFreePagesByColor[2];
extern ULONG MmTotalPagesForPagingFile;
//
// A VALID Page Table Entry on PAE x86 has the following definition.
//
#define MI_MAXIMUM_PAGEFILE_SIZE (((UINT64)4 * 1024 * 1024 * 1024 - 1) * PAGE_SIZE)
#define MI_PTE_LOOKUP_NEEDED (0xffffffff)
typedef struct _MMPTE_SOFTWARE {
ULONGLONG Valid : 1;
ULONGLONG PageFileLow : 4;
ULONGLONG Protection : 5;
ULONGLONG Prototype : 1;
ULONGLONG Transition : 1;
ULONGLONG Unused : 20;
ULONGLONG PageFileHigh : 32;
} MMPTE_SOFTWARE;
typedef struct _MMPTE_TRANSITION {
ULONGLONG Valid : 1;
ULONGLONG Write : 1;
ULONGLONG Owner : 1;
ULONGLONG WriteThrough : 1;
ULONGLONG CacheDisable : 1;
ULONGLONG Protection : 5;
ULONGLONG Prototype : 1;
ULONGLONG Transition : 1;
ULONGLONG PageFrameNumber : 26;
ULONGLONG Unused : 26;
} MMPTE_TRANSITION;
typedef struct _MMPTE_PROTOTYPE {
ULONGLONG Valid : 1;
ULONGLONG Unused0: 7;
ULONGLONG ReadOnly : 1; // if set allow read only access.
ULONGLONG Unused1: 1;
ULONGLONG Prototype : 1;
ULONGLONG Protection : 5;
ULONGLONG Unused: 16;
ULONGLONG ProtoAddress: 32;
} MMPTE_PROTOTYPE;
typedef struct _MMPTE_SUBSECTION {
ULONGLONG Valid : 1;
ULONGLONG Unused0 : 4;
ULONGLONG Protection : 5;
ULONGLONG Prototype : 1;
ULONGLONG Unused1 : 21;
ULONGLONG SubsectionAddress : 32;
} MMPTE_SUBSECTION;
typedef struct _MMPTE_LIST {
ULONGLONG Valid : 1;
ULONGLONG OneEntry : 1;
ULONGLONG filler0 : 8;
//
// Note the Prototype bit must not be used for lists like freed nonpaged
// pool because lookaside pops can legitimately reference bogus addresses
// (since the pop is unsynchronized) and the fault handler must be able to
// distinguish lists from protos so a retry status can be returned (vs a
// fatal bugcheck).
//
ULONGLONG Prototype : 1; // MUST BE ZERO as per above comment.
ULONGLONG filler1 : 21;
ULONGLONG NextEntry : 32;
} MMPTE_LIST;
typedef struct _MMPTE_HIGHLOW {
ULONG LowPart;
ULONG HighPart;
} MMPTE_HIGHLOW;
//
// A Page Table Entry on PAE has the following definition.
// Note the MP version is to avoid stalls when flushing TBs across processors.
//
//
// Uniprocessor version.
//
typedef struct _MMPTE_HARDWARE {
ULONGLONG Valid : 1;
#if defined(NT_UP)
ULONGLONG Write : 1; // UP version
#else
ULONGLONG Writable : 1; // changed for MP version
#endif
ULONGLONG Owner : 1;
ULONGLONG WriteThrough : 1;
ULONGLONG CacheDisable : 1;
ULONGLONG Accessed : 1;
ULONGLONG Dirty : 1;
ULONGLONG LargePage : 1;
ULONGLONG Global : 1;
ULONGLONG CopyOnWrite : 1; // software field
ULONGLONG Prototype : 1; // software field
#if defined(NT_UP)
ULONGLONG reserved0 : 1; // software field
#else
ULONGLONG Write : 1; // software field - MP change
#endif
ULONGLONG PageFrameNumber : 26;
ULONGLONG reserved1 : 26; // software field
} MMPTE_HARDWARE, *PMMPTE_HARDWARE;
#if defined(NT_UP)
#define HARDWARE_PTE_DIRTY_MASK 0x40
#else
#define HARDWARE_PTE_DIRTY_MASK 0x42
#endif
#define MI_PDE_MAPS_LARGE_PAGE(PDE) ((PDE)->u.Hard.LargePage == 1)
#define MI_MAKE_PDE_MAP_LARGE_PAGE(PDE) ((PDE)->u.Hard.LargePage = 1)
#define MI_GET_PAGE_FRAME_FROM_PTE(PTE) ((PFN_NUMBER)(PTE)->u.Hard.PageFrameNumber)
#define MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(PTE) ((PFN_NUMBER)(PTE)->u.Trans.PageFrameNumber)
#define MI_GET_PROTECTION_FROM_SOFT_PTE(PTE) ((ULONG)(PTE)->u.Soft.Protection)
#define MI_GET_PROTECTION_FROM_TRANSITION_PTE(PTE) ((ULONG)(PTE)->u.Trans.Protection)
typedef struct _MMPTE {
union {
ULONGLONG Long;
MMPTE_HIGHLOW HighLow;
MMPTE_HARDWARE Hard;
HARDWARE_PTE Flush;
MMPTE_PROTOTYPE Proto;
MMPTE_SOFTWARE Soft;
MMPTE_TRANSITION Trans;
MMPTE_SUBSECTION Subsect;
MMPTE_LIST List;
} u;
} MMPTE;
typedef MMPTE *PMMPTE;
extern LOGICAL MiUseGlobalBitInLargePdes;
extern MMPTE MmPteGlobal; // Set if processor supports Global Page, else zero.
extern PMMPTE MiFirstReservedZeroingPte;
//
// A compiler intrinsic for InterlockedCompareExchange64I would be much better
// but since there isn't, make it an inline.
//
FORCEINLINE
LONG64
FASTCALL
InterlockedCompareExchange64I (
IN OUT LONG64 volatile *Destination,
IN PLONG64 Exchange,
IN PLONG64 Comperand
)
{
__asm {
push ebx
push esi
mov esi, Destination ; set destination address
mov edx, Exchange
mov ebx, [edx] ; get exchange value
mov ecx, [edx] + 4 ;
mov edx, Comperand ; get comperand address
mov eax, [edx] ; get comperand value
mov edx, [edx] + 4 ;
lock cmpxchg8b qword ptr [esi] ; compare and exchange
pop esi ; restore nonvolatile registers
pop ebx ;
}
}
#define InterlockedCompareExchangePte(Destination, ExChange, Comperand) \
InterlockedCompareExchange64I((LONG64 volatile *)(Destination), (PLONG64)&(ExChange), (PLONG64)&(Comperand))
VOID
InterlockedExchangePte (
IN OUT PMMPTE Destination,
IN ULONGLONG Exchange
);
//++
//VOID
//MI_WRITE_VALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_VALID_PTE fills in the specified PTE making it valid with the
// specified contents. Note that the contents are very carefully written.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_VALID_PTE(_PointerPte, _PteContents) \
ASSERT ((_PointerPte)->u.Hard.Valid == 0); \
ASSERT ((_PteContents).u.Hard.Valid == 1); \
MI_LOG_PTE_CHANGE (_PointerPte, _PteContents); \
((_PointerPte)->u.HighLow.HighPart = ((_PteContents).u.HighLow.HighPart)); \
((_PointerPte)->u.HighLow.LowPart = ((_PteContents).u.HighLow.LowPart))
//++
//VOID
//MI_WRITE_INVALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_INVALID_PTE fills in the specified PTE making it invalid with the
// specified contents. Note that the contents are very carefully written.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_INVALID_PTE(_PointerPte, _PteContents) \
ASSERT ((_PteContents).u.Hard.Valid == 0); \
MI_LOG_PTE_CHANGE (_PointerPte, _PteContents); \
((_PointerPte)->u.HighLow.LowPart = ((_PteContents).u.HighLow.LowPart)); \
((_PointerPte)->u.HighLow.HighPart = ((_PteContents).u.HighLow.HighPart))
//++
//VOID
//MI_WRITE_VALID_PTE_NEW_PROTECTION (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_VALID_PTE_NEW_PROTECTION fills in the specified PTE (which was
// already valid) changing only the protection, dirty or execute bit.
// Note that the contents are very carefully written.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_VALID_PTE_NEW_PROTECTION(_PointerPte, _PteContents) \
ASSERT ((_PointerPte)->u.Hard.Valid == 1); \
ASSERT ((_PteContents).u.Hard.Valid == 1); \
ASSERT ((_PointerPte)->u.Hard.PageFrameNumber == (_PteContents).u.Hard.PageFrameNumber); \
MI_LOG_PTE_CHANGE (_PointerPte, _PteContents); \
((_PointerPte)->u.HighLow.LowPart = ((_PteContents).u.HighLow.LowPart)); \
((_PointerPte)->u.HighLow.HighPart = ((_PteContents).u.HighLow.HighPart));
//++
//VOID
//MI_WRITE_VALID_PTE_NEW_PAGE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_VALID_PTE_NEW_PAGE fills in the specified PTE (which was
// already valid) changing the page and the protection.
// Note that the contents are very carefully written.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_VALID_PTE_NEW_PAGE(_PointerPte, _PteContents) \
ASSERT ((_PointerPte)->u.Hard.Valid == 1); \
ASSERT ((_PteContents).u.Hard.Valid == 1); \
ASSERT ((_PointerPte)->u.Hard.PageFrameNumber != (_PteContents).u.Hard.PageFrameNumber); \
MI_LOG_PTE_CHANGE (_PointerPte, _PteContents); \
InterlockedExchangePte (_PointerPte, (_PteContents).u.Long);
//++
//VOID
//MiFillMemoryPte (
// IN PMMPTE Destination,
// IN ULONG NumberOfPtes,
// IN MMPTE Pattern,
// };
//
// Routine Description:
//
// This function fills memory with the specified PTE pattern.
//
// Arguments
//
// Destination - Supplies a pointer to the memory to fill.
//
// NumberOfPtes - Supplies the number of PTEs (not bytes!) to be filled.
//
// Pattern - Supplies the PTE fill pattern.
//
// Return Value:
//
// None.
//
//--
#define MiFillMemoryPte(Destination, Length, Pattern) \
RtlFillMemoryUlonglong ((Destination), (Length) * sizeof (MMPTE), (Pattern))
#define MiZeroMemoryPte(Destination, Length) \
RtlZeroMemory ((Destination), (Length) * sizeof (MMPTE))
ULONG
FASTCALL
MiDetermineUserGlobalPteMask (
IN PMMPTE Pte
);
//++
//BOOLEAN
//MI_IS_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page table address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a page table address, FALSE if not.
//
//--
#define MI_IS_PAGE_TABLE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)PTE_TOP)
//++
//BOOLEAN
//MI_IS_PAGE_TABLE_OR_HYPER_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page table or hyperspace address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a page table or hyperspace address, FALSE if not.
//
//--
#define MI_IS_PAGE_TABLE_OR_HYPER_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)MmHyperSpaceEnd)
//++
//BOOLEAN
//MI_IS_KERNEL_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page table address for a kernel address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a kernel page table address, FALSE if not.
//
//--
#define MI_IS_KERNEL_PAGE_TABLE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)MiGetPteAddress(MmSystemRangeStart) && (PVOID)(VA) <= (PVOID)PTE_TOP)
//++
//BOOLEAN
//MI_IS_PAGE_DIRECTORY_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page directory address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a page directory address, FALSE if not.
//
//--
#define MI_IS_PAGE_DIRECTORY_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PDE_BASE && (PVOID)(VA) <= (PVOID)PDE_TOP)
//++
//BOOLEAN
//MI_IS_HYPER_SPACE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a hyper space address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a hyper space address, FALSE if not.
//
//--
#define MI_IS_HYPER_SPACE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)HYPER_SPACE && (PVOID)(VA) <= (PVOID)MmHyperSpaceEnd)
//++
//BOOLEAN
//MI_IS_PROCESS_SPACE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a process-specific address. This is an address in user space
// or page table pages or hyper space.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a process-specific address, FALSE if not.
//
//--
#define MI_IS_PROCESS_SPACE_ADDRESS(VA) \
(((PVOID)(VA) <= (PVOID)MM_HIGHEST_USER_ADDRESS) || \
((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)MmHyperSpaceEnd))
//++
//BOOLEAN
//MI_IS_PTE_PROTOTYPE (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a PTE address and determines if it is a prototype PTE.
//
// Arguments
//
// PTE - Supplies the virtual address of the PTE to check.
//
// Return Value:
//
// TRUE if the PTE is in a segment (ie, a prototype PTE), FALSE if not.
//
//--
#define MI_IS_PTE_PROTOTYPE(PTE) \
((PTE) > (PMMPTE)PTE_TOP)
//++
//BOOLEAN
//MI_IS_SYSTEM_CACHE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a system cache address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is in the system cache, FALSE if not.
//
//--
#define MI_IS_SYSTEM_CACHE_ADDRESS(VA) \
(((PVOID)(VA) >= (PVOID)MmSystemCacheStart && \
(PVOID)(VA) <= (PVOID)MmSystemCacheEnd) || \
((PVOID)(VA) >= (PVOID)MiSystemCacheStartExtra && \
(PVOID)(VA) <= (PVOID)MiSystemCacheEndExtra))
extern PMMPTE MmSystemCacheWorkingSetListPte;
//++
//VOID
//MI_BARRIER_SYNCHRONIZE (
// IN ULONG TimeStamp
// );
//
// Routine Description:
//
// MI_BARRIER_SYNCHRONIZE compares the argument timestamp against the
// current IPI barrier sequence stamp. When equal, all processors will
// issue memory barriers to ensure that newly created pages remain coherent.
//
// When a page is put in the zeroed or free page list the current
// barrier sequence stamp is read (interlocked - this is necessary
// to get the correct value - memory barriers won't do the trick)
// and stored in the pfn entry for the page. The current barrier
// sequence stamp is maintained by the IPI send logic and is
// incremented (interlocked) when the target set of an IPI send
// includes all processors, but the one doing the send. When a page
// is needed its sequence number is compared against the current
// barrier sequence number. If it is equal, then the contents of
// the page may not be coherent on all processors, and an IPI must
// be sent to all processors to ensure a memory barrier is
// executed (generic call can be used for this). Sending the IPI
// automatically updates the barrier sequence number. The compare
// is for equality as this is the only value that requires the IPI
// (i.e., the sequence number wraps, values in both directions are
// older). When a page is removed in this fashion and either found
// to be coherent or made coherent, it cannot be modified between
// that time and writing the PTE. If the page is modified between
// these times, then an IPI must be sent.
//
// Arguments
//
// TimeStamp - Supplies the timestamp at the time when the page was zeroed.
//
// Return Value:
//
// None.
//
//--
// does nothing on PAE.
#define MI_BARRIER_SYNCHRONIZE(TimeStamp)
//++
//VOID
//MI_BARRIER_STAMP_ZEROED_PAGE (
// IN PULONG PointerTimeStamp
// );
//
// Routine Description:
//
// MI_BARRIER_STAMP_ZEROED_PAGE issues an interlocked read to get the
// current IPI barrier sequence stamp. This is called AFTER a page is
// zeroed.
//
// Arguments
//
// PointerTimeStamp - Supplies a timestamp pointer to fill with the
// current IPI barrier sequence stamp.
//
// Return Value:
//
// None.
//
//--
// does nothing on PAE.
#define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp)
typedef struct _PAE_PAGEINFO {
LIST_ENTRY ListHead;
PFN_NUMBER PageFrameNumber;
ULONG EntriesInUse;
} PAE_PAGEINFO, *PPAE_PAGEINFO;
typedef struct _PAE_ENTRY {
union {
MMPTE PteEntry[PD_PER_SYSTEM];
PAE_PAGEINFO PaeEntry;
SLIST_ENTRY NextPae;
};
} PAE_ENTRY, *PPAE_ENTRY;
extern PAE_ENTRY MiSystemPaeVa;
//++
//VOID
//MI_FLUSH_SINGLE_SESSION_TB (
// IN PVOID Virtual
// );
//
// Routine Description:
//
// MI_FLUSH_SINGLE_SESSION_TB flushes the requested single address
// translation from the TB.
//
// Since there are no ASNs on the x86, this routine becomes a single
// TB invalidate.
//
// Arguments
//
// Virtual - Supplies the virtual address to invalidate.
//
// Return Value:
//
// None.
//
//--
#define MI_FLUSH_SINGLE_SESSION_TB(Virtual) \
KeFlushSingleTb (Virtual, TRUE);
//++
//VOID
//MI_FLUSH_ENTIRE_SESSION_TB (
// IN ULONG Invalid,
// IN LOGICAL AllProcessors
// );
//
// Routine Description:
//
// MI_FLUSH_ENTIRE_SESSION_TB flushes the entire TB on processors which
// support ASNs.
//
// Since there are no ASNs on the x86, this routine does nothing.
//
// Arguments
//
// Invalid - TRUE if invalidating.
//
// AllProcessors - TRUE if all processors need to be IPI'd.
//
// Return Value:
//
// None.
//
#define MI_FLUSH_ENTIRE_SESSION_TB(Invalid, AllProcessors) \
NOTHING;
//++
//LOGICAL
//MI_RESERVED_BITS_CANONICAL (
// IN PVOID VirtualAddress
// );
//
// Routine Description:
//
// This routine checks whether all of the reserved bits are correct.
//
// This does nothing on PAE x86.
//
// Arguments
//
// VirtualAddress - Supplies the virtual address to check.
//
// Return Value:
//
// None.
//
#define MI_RESERVED_BITS_CANONICAL(VirtualAddress) TRUE
//++
//VOID
//MI_DISPLAY_TRAP_INFORMATION (
// IN PVOID TrapInformation
// );
//
// Routine Description:
//
// Display any relevant trap information to aid debugging.
//
// Arguments
//
// TrapInformation - Supplies a pointer to a trap frame.
//
// Return Value:
//
// None.
//
#define MI_DISPLAY_TRAP_INFORMATION(TrapInformation) \
KdPrint(("MM:***EIP %p, EFL %p\n", \
((PKTRAP_FRAME) (TrapInformation))->Eip, \
((PKTRAP_FRAME) (TrapInformation))->EFlags)); \
KdPrint(("MM:***EAX %p, ECX %p EDX %p\n", \
((PKTRAP_FRAME) (TrapInformation))->Eax, \
((PKTRAP_FRAME) (TrapInformation))->Ecx, \
((PKTRAP_FRAME) (TrapInformation))->Edx)); \
KdPrint(("MM:***EBX %p, ESI %p EDI %p\n", \
((PKTRAP_FRAME) (TrapInformation))->Ebx, \
((PKTRAP_FRAME) (TrapInformation))->Esi, \
((PKTRAP_FRAME) (TrapInformation))->Edi));
//
// Turn off U/S, R/W and any other appropriate bits required by the processor.
//
#define MM_PAE_PDPTE_MASK 0x1e6
ULONG
MiPaeAllocate (
PPAE_ENTRY *
);
VOID
MiPaeFree (
PPAE_ENTRY Pae
);
#endif