2020-09-30 16:53:55 +02:00

1003 lines
29 KiB
C

#include <windows.h>
#include <malloc.h>
#include <string.h>
#include <wchar.h>
#include <WINSOCK2.H>
#include <Ws2tcpip.h>
#include <Wincrypt.h>
#include <setupbat.h>
// 40 bit key length
//#define KEYLENGTH 0x00280000
// 128 bit key length
//#define KEYLENGTH 0x00800000
// 56 bit key length needed to use DES.
//#define KEYLENGTH 0x00380000
// 168 bit key length needed to use 3DES.
#define KEYLENGTH 0x00A80000
#define CRYPT_PROV MS_ENHANCED_PROV_A
#define ENCRYPT_ALGORITHM CALG_3DES
//CALG_RC4
#define IsSpace(c) ((c) == ' ' || (c) == '\t' || (c) == '\r' || (c) == '\n' || (c) == '\v' || (c) == '\f')
#define IsDigit(c) ((c) >= '0' && (c) <= '9')
// 32 bytes of random password data, generated once using CryptGenRandom
BYTE iPassword[] = {0xc7, 0x1e, 0x6a, 0xab, 0xe3, 0x8f, 0x76, 0x5b, 0x0d, 0x7b, 0xe0, 0xcb, 0xbf, 0x1c, 0xee, 0x54,
0x9d, 0x62, 0xbd, 0xb6, 0x6a, 0x38, 0x69, 0x4b, 0xe1, 0x44, 0x9b, 0x76, 0x4a, 0xe4, 0x79, 0xce};
//=================================================================================================
//
// copied from msdev\crt\src\atox.c
//
// long MyAtoL(char *nptr) - Convert string to long
//
// Purpose:
// Converts ASCII string pointed to by nptr to binary.
// Overflow is not detected. So that this lib does not need CRT
//
// Entry:
// nptr = ptr to string to convert
//
// Exit:
// return long int value of the string
//
// Exceptions:
// None - overflow is not detected.
//
//=================================================================================================
long MyAtoL(const char *nptr)
{
int c; /* current char */
long total; /* current total */
int sign; /* if '-', then negative, otherwise positive */
// NOTE: no need to worry about DBCS chars here because IsSpace(c), IsDigit(c),
// '+' and '-' are "pure" ASCII chars, i.e., they are neither DBCS Leading nor
// DBCS Trailing bytes -- pritvi
/* skip whitespace */
while ( IsSpace((int)(unsigned char)*nptr) )
++nptr;
c = (int)(unsigned char)*nptr++;
sign = c; /* save sign indication */
if (c == '-' || c == '+')
c = (int)(unsigned char)*nptr++; /* skip sign */
total = 0;
while (IsDigit(c)) {
total = 10 * total + (c - '0'); /* accumulate digit */
c = (int)(unsigned char)*nptr++; /* get next char */
}
if (sign == '-')
return -total;
else
return total; /* return result, negated if necessary */
}
// Check that the time/date field has only digits, as a validation that no one manipulated the data
BOOL OnlyDigits(LPSTR szValue)
{
BOOL bRet = TRUE;
LPSTR pTemp = szValue;
while (*pTemp)
{
if (!IsDigit(*pTemp))
{
bRet = FALSE;
}
pTemp++;
}
return bRet;
}
// To decode and encode the binary buffer we get from the encyption function
unsigned char * base64decode (unsigned char * bufcoded, DWORD * plDecodedSize)
{
int pr2six[256];
int i;
int j=0;
unsigned char * cCurr = bufcoded;
int bDone = FALSE;
long lBufSize = 0;
long lCount = 0;
unsigned char * bufin;
unsigned char * bufout;
unsigned char * temp = NULL;
unsigned char * pBufDecoded = NULL;
int lop_off;
HRESULT hr = S_OK;
//
// Build up the reverse index from base64 characters to values
// The multiple loops are easier
//
for (i=65; i<91; i++) {
pr2six[i]=j++;
}
for (i=97; i<123; i++) {
pr2six[i]=j++;
}
for (i=48; i<58; i++) {
pr2six[i]=j++;
}
pr2six[43]=j++;
pr2six[47]=j++;
pr2six[61]=0;
//
// The old code relied on the size of the original data provided before
// the encoding. We don't have that, so we'll just allocate as much as
// the encoded data, relying on the fact that the encoded data is always
// larger. (+4 for good measure)
//
lBufSize=lstrlenA((char *)cCurr)-1+4;
*plDecodedSize = lBufSize;
pBufDecoded = GlobalAlloc(GPTR, lBufSize);
if(!pBufDecoded)
{
//_tprintf(_T("Out of memory."));
return NULL;
}
ZeroMemory(pBufDecoded, lBufSize);
lCount = lstrlenA((char *)cCurr);
// Do the decoding to new buffer
bufin = cCurr;
bufout = pBufDecoded;
while(lCount > 0) {
*(bufout++) = (unsigned char) (pr2six[*bufin] << 2 | pr2six[bufin[1]] >> 4);
*(bufout++) = (unsigned char) (pr2six[bufin[1]] << 4 | pr2six[bufin[2]] >> 2);
*(bufout++) = (unsigned char) (pr2six[bufin[2]] << 6 | pr2six[bufin[3]]);
bufin += 4;
lCount -= 4;
}
//
// The line below does not make much sense since \0 is really a valid
// binary value, so we can't add it to our data stream
//
//*(bufout++) = '\0';
//
// Let's calculate the real size of our data
//
*plDecodedSize=(ULONG)(bufout-pBufDecoded);
//
// if there were pads in the encoded stream, lop off the nulls the
// NULLS they created
//
lop_off=0;
if (bufin[-1]=='=') lop_off++;
if (bufin[-2]=='=') lop_off++;
*plDecodedSize=*plDecodedSize-lop_off;
temp = GlobalAlloc(GPTR, (*plDecodedSize) + 2);
if (temp==NULL)
{
//_tprintf(_T("Out of memory."));
return NULL;
}
ZeroMemory(temp, *plDecodedSize);
memcpy(temp, pBufDecoded, *plDecodedSize);
temp[(*plDecodedSize)+0] = 0;
temp[(*plDecodedSize)+1] = 0;
if (pBufDecoded) {
GlobalFree(pBufDecoded);
}
return temp;
}
//
// the map for the encoder, according to RFC 1521
//
char _six2pr64[64] = {
'A','B','C','D','E','F','G','H','I','J','K','L','M',
'N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
'a','b','c','d','e','f','g','h','i','j','k','l','m',
'n','o','p','q','r','s','t','u','v','w','x','y','z',
'0','1','2','3','4','5','6','7','8','9','+','/'
};
unsigned char * base64encode(unsigned char * bufin, int nbytes)
{
unsigned char *outptr;
unsigned char *to_return;
long i;
long OutBufSize;
char *six2pr = _six2pr64;
//
// Size of input buffer * 133%
//
OutBufSize = nbytes + ((nbytes + 3) / 3) + 5;
//
// Allocate buffer with 133% of nbytes
//
outptr = GlobalAlloc(GPTR,OutBufSize + 1);
if(outptr==NULL) {
//_tprintf(_T("Out of memory."));
return NULL;
}
ZeroMemory(outptr, OutBufSize + 1);
to_return = outptr;
nbytes = nbytes - 3;
//
// Encode everything
//
for (i=0; i<nbytes; i += 3) {
*(outptr++) = six2pr[*bufin >> 2]; // c1
*(outptr++) = six2pr[((*bufin << 4) & 060) | ((bufin[1] >> 4) & 017)]; // c2
*(outptr++) = six2pr[((bufin[1] << 2) & 074) | ((bufin[2] >> 6) & 03)];// c3
*(outptr++) = six2pr[bufin[2] & 077]; // c4
bufin += 3;
}
//
// If nbytes was not a multiple of 3, then we have encoded too
// many characters. Adjust appropriately.
//
if(i == nbytes) {
// There are 3 bytes in the last group
*(outptr++) = six2pr[*bufin >> 2]; // c1
*(outptr++) = six2pr[((*bufin << 4) & 060) | ((bufin[1] >> 4) & 017)]; // c2
*(outptr++) = six2pr[((bufin[1] << 2) & 074) | ((bufin[2] >> 6) & 03)];// c3
*(outptr++) = six2pr[bufin[2] & 077]; // c4
} else if(i == nbytes+1) {
// There are only 2 bytes in the last group
*(outptr++) = six2pr[*bufin >> 2]; // c1
*(outptr++) = six2pr[((*bufin << 4) & 060) | ((bufin[1] >> 4) & 017)]; // c2
*(outptr++) = six2pr[((bufin[1] << 2) & 074) | ((0 >> 6) & 03)]; // c3
*(outptr++) = '=';
} else if(i == nbytes+2) {
// There are only 1 byte in the last group
*(outptr++) = six2pr[*bufin >> 2]; // c1
*(outptr++) = six2pr[((*bufin << 4) & 060) | ((0 >> 4) & 017)]; // c2
*(outptr++) = '=';
*(outptr++) = '=';
}
*outptr = '\0';
return to_return;
}
// Unicode Ansi conversion function
LPSTR _PEConvertW2A (
IN LPCWSTR Unicode,
IN UINT CodePage
)
{
LPSTR ansi = NULL;
DWORD rc;
if (Unicode)
{
rc = WideCharToMultiByte (
CodePage,
0,
Unicode,
-1,
NULL,
0,
NULL,
NULL
);
if (rc || *Unicode == L'\0') {
ansi = (LPSTR)GlobalAlloc(GPTR, (rc + 1) * sizeof (CHAR));
if (ansi) {
rc = WideCharToMultiByte (
CodePage,
0,
Unicode,
-1,
ansi,
rc + 1,
NULL,
NULL
);
if (!(rc || *Unicode == L'\0')) {
rc = GetLastError ();
GlobalFree((PVOID)ansi);
ansi = NULL;
SetLastError (rc);
}
}
}
}
return ansi;
}
// Ansi Unicode conversion function
LPWSTR _PEConvertA2W (
IN LPCSTR Ansi,
IN UINT CodePage
)
{
PWSTR unicode = NULL;
DWORD rc;
if (Ansi)
{
rc = MultiByteToWideChar (
CodePage,
MB_ERR_INVALID_CHARS,
Ansi,
-1,
NULL,
0
);
if (rc || *Ansi == '\0') {
unicode = (LPWSTR) GlobalAlloc (GPTR, (rc + 1) * sizeof (WCHAR));
if (unicode) {
rc = MultiByteToWideChar (
CodePage,
MB_ERR_INVALID_CHARS,
Ansi,
-1,
unicode,
rc + 1
);
if (!(rc || *Ansi == '\0')) {
rc = GetLastError ();
GlobalFree ((PVOID)unicode);
unicode = NULL;
SetLastError (rc);
}
}
}
}
return unicode;
}
// Ansi version to Encypt the input data.
// The encrypted and base 64 encoded buffer is allocated and returned to the caller.
// The caller needs to GloblaFree the buffer.
HRESULT EncryptDataA(LPSTR szInData, DWORD chSizeIn, LPSTR *szOutData)
{
HRESULT hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
HCRYPTPROV hCryptProv;
HCRYPTKEY hKey;
HCRYPTHASH hHash;
LPSTR pw;
PBYTE pbData = NULL;
*szOutData = NULL;
pw = GlobalAlloc(GPTR, sizeof(iPassword)+1);
if (pw == NULL)
{
return hr;
}
memcpy(pw, iPassword, sizeof(iPassword));
// Get handle to the default provider.
if(CryptAcquireContextA(
&hCryptProv,
NULL,
CRYPT_PROV,
PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT))
{
hr = E_FAIL;
if(CryptCreateHash(
hCryptProv,
CALG_MD5,
0,
0,
&hHash))
{
if(CryptHashData(hHash,
(BYTE *)pw,
lstrlenA(pw),
0))
{
if(CryptDeriveKey(
hCryptProv,
ENCRYPT_ALGORITHM,
hHash,
KEYLENGTH,
&hKey))
{
DWORD dwCryptDataLen = chSizeIn;
DWORD dwDataLen = dwCryptDataLen;
CryptEncrypt(
hKey,
0,
TRUE,
0,
NULL,
&dwCryptDataLen,
dwDataLen);
pbData = GlobalAlloc(GPTR, dwCryptDataLen+1);
if (pbData != NULL)
{
memcpy(pbData, szInData, chSizeIn);
// size of the buffer
dwDataLen = dwCryptDataLen;
// number of bytes to be encrypted
dwCryptDataLen = chSizeIn;
if(CryptEncrypt(
hKey,
0,
TRUE,
0,
pbData,
&dwCryptDataLen,
dwDataLen))
{
*szOutData = base64encode(pbData, (int)dwCryptDataLen);
if (*szOutData)
{
hr = S_OK;
}
}
else
{
hr = GetLastError();
}
}
else
{
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
}
CryptDestroyKey(hKey);
}
else
{
hr = GetLastError();
}
}
else
{
hr = GetLastError();
}
CryptDestroyHash(hHash);
}
else
{
hr = GetLastError();
}
CryptReleaseContext(hCryptProv, 0);
}
else
{
hr = GetLastError();
}
if (pbData)
{
GlobalFree(pbData);
}
GlobalFree(pw);
return hr;
}
// Unicode version to Encypt the input data.
// Converts the in data to Ansi and calls the Ansi version and converts the out data to unicode
// and returns the buffer to the caller.
HRESULT EncryptDataW(LPWSTR szInData, DWORD chSizeIn, LPWSTR *szOutData)
{
HRESULT hr = E_FAIL;
LPBYTE pBuffer = NULL;
LPSTR szData = NULL;
*szOutData = NULL;
pBuffer = (LPBYTE)_PEConvertW2A (szInData, CP_ACP);
if (pBuffer == NULL)
{
return hr;
}
if ((hr = EncryptDataA(pBuffer, lstrlenA(pBuffer)+1, &szData)) == S_OK)
{
*szOutData = _PEConvertA2W (szData, CP_ACP);
if ((*szOutData) == NULL)
{
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
}
GlobalFree(szData);
}
GlobalFree(pBuffer);
return hr;
}
HRESULT DecryptDataA(LPSTR szInData, LPSTR *szOutData)
{
HRESULT hr = E_FAIL;
HCRYPTPROV hCryptProv;
HCRYPTKEY hKey;
HCRYPTHASH hHash;
DWORD dwErr;
DWORD dwCipherTextLen = lstrlenA(szInData);
char *pw;
DWORD dwCount;
char *pBuffer;
*szOutData = NULL;
pw = GlobalAlloc(GPTR, sizeof(iPassword)+1);
if (pw == NULL)
{
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
return hr;
}
memcpy(pw, iPassword, sizeof(iPassword));
pBuffer = (char *) (base64decode((unsigned char *)szInData, &dwCount));
if (pBuffer == NULL)
{
GlobalFree(pw);
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
return hr;
}
// Get a handle to the default provider.
if(CryptAcquireContextA(
&hCryptProv,
NULL,
CRYPT_PROV,
PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT))
{
hr = E_FAIL;
// Create a hash object.
if(CryptCreateHash(
hCryptProv,
CALG_MD5,
0,
0,
&hHash))
{
if(CryptHashData(hHash,
(BYTE *)pw,
lstrlenA(pw),
0))
{
if(CryptDeriveKey(
hCryptProv,
ENCRYPT_ALGORITHM,
hHash,
KEYLENGTH,
&hKey))
{
// pBuffer is bigger when the data is encrypted.
// The decrypted data (on output) is smaller, because we are using
// a block cyoher at encryption.
if(CryptDecrypt(
hKey,
0,
TRUE,
0,
pBuffer,
&dwCount))
{
*szOutData = GlobalAlloc(GPTR, dwCount+1);
if (*szOutData)
{
// lstrcpyn includes the NULL in the count and makes sure there is one.
lstrcpynA(*szOutData, pBuffer, dwCount+1);
hr = S_OK;
}
else
{
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
}
}
else
{
hr = GetLastError();
}
CryptDestroyKey(hKey);
}
else
{
hr = GetLastError();
}
}
else
{
hr = GetLastError();
}
CryptDestroyHash(hHash);
hHash = 0;
}
else
{
hr = GetLastError();
}
CryptReleaseContext(hCryptProv, 0);
}
else
{
hr = GetLastError();
}
GlobalFree(pBuffer);
GlobalFree(pw);
return hr;
}
HRESULT DecryptDataW(LPWSTR szInData, LPWSTR *szOutData)
{
HRESULT hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
LPBYTE pBuffer = NULL;
LPSTR szData = NULL;
*szOutData = NULL;
pBuffer = (LPBYTE)_PEConvertW2A (szInData, CP_ACP);
if (pBuffer == NULL)
{
return hr;
}
if ((hr = DecryptDataA(pBuffer, &szData)) == S_OK)
{
*szOutData = _PEConvertA2W (szData, CP_ACP);
if ((*szOutData) == NULL)
{
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
}
GlobalFree(szData);
}
GlobalFree(pBuffer);
return hr;
}
#define _SECOND ((__int64) 10000000)
#define _MINUTE (60 * _SECOND)
#define _HOUR (60 * _MINUTE)
#define _DAY (24 * _HOUR)
// encode the position of the PID character. 0 is for the dashes
int iPID[] = {3 ,251,43 ,89 ,75,0,
123,35 ,23 ,97 ,77,0,
5 ,135,189,213,13,0,
245,111,91 ,71 ,65,0,
25 ,49 ,81 ,129,239};
int iTime1[] = {253, 247, 233, 221, 211, 191, 181, 171, 161, 151, 141, 131, 121, 112, 101, 93, 80, 70, 61, 51};
int iTime2[] = {250, 242, 237, 225, 215, 195, 185, 175, 165, 155, 145, 137, 125, 115, 105, 95, 85, 73, 67, 55};
HRESULT PrepareEncryptedPIDA(LPSTR szPID, UINT uiDays, LPSTR *szOut)
{
HRESULT hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
HCRYPTPROV hCryptProv;
FILETIME ft1, ft2;
LONGLONG ll;
LONGLONG ll2;
char szLine[256];
GetSystemTimeAsFileTime(&ft1);
ll = ((LONGLONG)ft1.dwHighDateTime << 32) + ft1.dwLowDateTime;
ll2 = ll - (_HOUR*12); // Substract 12 hours
ll += (uiDays*_DAY) + (_HOUR*24); // Add 24 hours
ft1.dwLowDateTime = (DWORD)ll2;
ft1.dwHighDateTime = (DWORD)(ll2 >> 32);
ft2.dwLowDateTime = (DWORD)ll;
ft2.dwHighDateTime = (DWORD)(ll >> 32);
// Build a 256 character string that we encode. In the 256 character strign we hide
// the PID and the time/date info for the interval the encypted data is valid.
// We need 20 characters each for the start and end of the time interval
// and we need 25 characters for the PID. 20+20+25 = 65 characters. All other characters
// are random.
// 1. fill the string with random characters
// 2. replace some with the PID charactes
// 3. replace some with the time/date info
if(CryptAcquireContextA(&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
{
int i;
hr = S_OK;
if(!CryptGenRandom(hCryptProv, sizeof(szLine), (PBYTE)szLine))
{
hr = GetLastError();
}
CryptReleaseContext(hCryptProv, 0);
// in the case the random generator create 0x0 we want to replace it with
// some value, otherwise we cannot use it as a character string,
// the string would be terminated.
for (i = 0; i < sizeof(szLine); i++)
{
if (szLine[i] == '\0')
{
szLine[i] = 0x01;
}
}
szLine[i-1] = '\0'; // Make sure we have a terminated string.
}
if (hr == S_OK)
{
char szTime[21]; // 10 digits for dwHighDateTime and 10 for dwLowDateTime + termination
// The buffer is filled with random characters
// Now insert the PID characters
int i = 0;
while (szPID[i])
{
if (szPID[i] != '-')
{
szLine[iPID[i]] = szPID[i];
}
i++;
}
// Now fill in the time-date info
wsprintf(szTime, "%010lu%010lu", ft1.dwHighDateTime, ft1.dwLowDateTime);
i = 0;
while (szTime[i])
{
szLine[iTime1[i]] = szTime[i];
i++;
}
wsprintf(szTime, "%010lu%010lu", ft2.dwHighDateTime, ft2.dwLowDateTime);
i = 0;
while (szTime[i])
{
szLine[iTime2[i]] = szTime[i];
i++;
}
// szLine has the mengled data in it. Pass it to the encryption.
hr = EncryptDataA(szLine, sizeof(szLine), szOut);
}
return hr;
}
HRESULT PrepareEncryptedPIDW(LPWSTR szPID, UINT uiDays, LPWSTR *szOutData)
{
HRESULT hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
LPSTR pPID = NULL;
LPSTR szOut = NULL;
*szOutData = NULL;
pPID = _PEConvertW2A (szPID, CP_ACP);
if (pPID != NULL)
{
hr = PrepareEncryptedPIDA(pPID, uiDays, &szOut);
if (hr == S_OK)
{
*szOutData = _PEConvertA2W (szOut, CP_ACP);
if (*szOutData)
{
hr = S_OK;
}
else
{
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
}
GlobalFree(szOut);
}
GlobalFree(pPID);
}
return hr;
}
HRESULT ValidateEncryptedPIDA(LPSTR PID, LPSTR *szOutData)
{
HRESULT hr = E_FAIL;
LPSTR szDecrypt = NULL;
FILETIME ft, ftCurrent;
LONGLONG ll1, ll2, llCurrent;
int iCount = 0;
char szPID[(5*5)+5]; // 5 characters 5 times + '-' inbetween + termimation
char szTime[11]; // each part of hte time is 10 digits + termination
GetSystemTimeAsFileTime(&ftCurrent);
hr = DecryptDataA(PID, &szDecrypt);
if (hr == S_OK)
{
int i = 0;
hr = 0x01;
// Extract the time values first.
while (i < 10)
{
szTime[i] = szDecrypt[iTime1[i]];
i++;
}
szTime[10] = '\0';
if (OnlyDigits(szTime)) // 1. time
{
ft.dwHighDateTime = MyAtoL(szTime);
while (i < 20)
{
szTime[i-10] = szDecrypt[iTime1[i]];
i++;
}
szTime[10] = '\0';
if (OnlyDigits(szTime))
{
ft.dwLowDateTime = MyAtoL(szTime);
ll1 = ((LONGLONG)ft.dwHighDateTime << 32) + ft.dwLowDateTime;
ll1 = ll1 /_HOUR; // FileTime in hours;
hr = S_OK;
}
}
if (hr == S_OK)
{
hr = 0x02;
i = 0;
while (i < 10)
{
szTime[i] = szDecrypt[iTime2[i]];
i++;
}
szTime[10] = '\0';
if (OnlyDigits(szTime)) // 1. time
{
ft.dwHighDateTime = MyAtoL(szTime);
while (i < 20)
{
szTime[i-10] = szDecrypt[iTime2[i]];
i++;
}
szTime[10] = '\0';
if (OnlyDigits(szTime))
{
ft.dwLowDateTime = MyAtoL(szTime);
ll2 = ((LONGLONG)ft.dwHighDateTime << 32) + ft.dwLowDateTime;
ll2 = ll2 /_HOUR; // FileTime in hours;
hr = S_OK;
}
}
}
if (hr == S_OK)
{
// Now that we have the time values, compare them and make sure that the current
// time falls inside the time interval.
hr = 0x03;
llCurrent = ((LONGLONG)ftCurrent.dwHighDateTime << 32) + ftCurrent.dwLowDateTime;
llCurrent = llCurrent /_HOUR; // FileTime in hours;
if ((ll1 <= llCurrent) && ( llCurrent <= ll2))
{
i = 0;
// Time is OK.
// Extract the PID
while (i < sizeof(iPID)/sizeof(iPID[0]))
{
if (iPID[i] != 0)
{
szPID[i] = szDecrypt[iPID[i]];
}
else
{
szPID[i] = '-';
}
i++;
}
szPID[i] = '\0';
*szOutData = (LPSTR)GlobalAlloc(GPTR, lstrlen(szPID)+1);
if (*szOutData)
{
lstrcpy(*szOutData, szPID);
hr = S_OK;
}
}
}
}
if (szDecrypt)
{
GlobalFree(szDecrypt);
}
return hr;
}
HRESULT ValidateEncryptedPIDW(LPWSTR szPID, LPWSTR *szOutData)
{
HRESULT hr = E_FAIL;
LPSTR szData = NULL;
LPSTR pPid = NULL;
pPid = (LPBYTE)_PEConvertW2A (szPID, CP_ACP);
if (pPid != NULL)
{
if ((hr = ValidateEncryptedPIDA(pPid, &szData)) == S_OK)
{
*szOutData = _PEConvertA2W (szData, CP_ACP);
if (*szOutData)
{
hr = S_OK;
}
else
{
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
}
GlobalFree(szData);
}
GlobalFree(pPid);
}
else
{
hr = HRESULT_FROM_WIN32(ERROR_NOT_ENOUGH_MEMORY);
}
return hr;
}
#if 0
void
_stdcall
ModuleEntry(
VOID
)
{
CHAR szInData[256];
CHAR szPID[] = "Ctpdw-6q4d3-wrgdy-796g2-9vrmq";
LPSTR szOutData = NULL;
CHAR *szDecrypt = NULL;
#if 0
SYSTEMTIME CurrentTime;
SYSTEMTIME UniversalTime;
GetLocalTime(&UniversalTime);
wsprintf( szInData, "%s$%02d-%02d-%04d %02d:%02d:%02d",
szPID,
UniversalTime.wMonth,
UniversalTime.wDay,
UniversalTime.wYear,
UniversalTime.wHour,
UniversalTime.wMinute,
UniversalTime.wSecond);
WritePrivateProfileStringA("UserData","ProductID", szInData, "f:\\test.ini");
EncryptDataA((LPSTR)szInData, sizeof(szInData), &szOutData);
if (szOutData)
{
WritePrivateProfileStringA("UserData","ProductIDEncryped", szOutData, "f:\\test.ini");
DecryptDataA(szOutData, &szDecrypt);
if (lstrcmpA(szInData, szDecrypt) == 0)
{
WritePrivateProfileStringA("UserData","Compare", "Same", "f:\\test.ini");
}
else
{
WritePrivateProfileStringA("UserData","Compare", "Different", "f:\\test.ini");
}
GlobalFree ((PVOID)szOutData);
if (szDecrypt)
{
WritePrivateProfileStringA("UserData","ProductIDDecypted", szDecrypt, "f:\\test.ini");
GlobalFree ((PVOID)szDecrypt);
}
}
#else
WritePrivateProfileStringA("UserData","ProductID", szPID, "f:\\test.ini");
if (PrepareEncryptedPIDA(szPID, 5, &szOutData) == S_OK)
{
WritePrivateProfileStringA("UserData","ProductIDEncryped", szOutData, "f:\\test.ini");
if (ValidateEncryptedPIDA(szOutData, &szDecrypt) == S_OK)
{
WritePrivateProfileStringA("UserData","ProductIDDecypted", szDecrypt, "f:\\test.ini");
}
}
#endif
}
#endif