2020-09-30 16:53:55 +02:00

1278 lines
34 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1991-1992 Microsoft Corporation
Module Name:
secobj.c
Abstract:
This module provides support routines to simplify the creation of
security descriptors for user-mode objects.
Author:
Rita Wong (ritaw) 27-Feb-1991
Environment:
Contains NT specific code.
Revision History:
16-Apr-1991 JohnRo
Include header files for <netlib.h>.
14 Apr 1992 RichardW
Changed for modified ACE_HEADER struct.
--*/
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <windef.h> // DWORD.
#include <lmcons.h> // NET_API_STATUS.
#include <netlib.h>
#include <lmerr.h>
#include <lmapibuf.h>
#include <netdebug.h>
#include <debuglib.h>
#include <netlibnt.h>
#include <secobj.h>
#include <tstring.h> // NetpInitOemString().
#if DEVL
#define STATIC
#else
#define STATIC static
#endif // DEVL
//-------------------------------------------------------------------//
// //
// Local function prototypes //
// //
//-------------------------------------------------------------------//
STATIC
NTSTATUS
NetpInitializeAllowedAce(
IN PACCESS_ALLOWED_ACE AllowedAce,
IN USHORT AceSize,
IN UCHAR InheritFlags,
IN UCHAR AceFlags,
IN ACCESS_MASK Mask,
IN PSID AllowedSid
);
STATIC
NTSTATUS
NetpInitializeDeniedAce(
IN PACCESS_DENIED_ACE DeniedAce,
IN USHORT AceSize,
IN UCHAR InheritFlags,
IN UCHAR AceFlags,
IN ACCESS_MASK Mask,
IN PSID DeniedSid
);
STATIC
NTSTATUS
NetpInitializeAuditAce(
IN PACCESS_ALLOWED_ACE AuditAce,
IN USHORT AceSize,
IN UCHAR InheritFlags,
IN UCHAR AceFlags,
IN ACCESS_MASK Mask,
IN PSID AuditSid
);
//-------------------------------------------------------------------//
// //
// Global variables //
// //
//-------------------------------------------------------------------//
//
// NT well-known SIDs
//
PSID NullSid = NULL; // No members SID
PSID WorldSid = NULL; // All users SID
PSID LocalSid = NULL; // NT local users SID
PSID NetworkSid = NULL; // NT remote users SID
PSID LocalSystemSid = NULL; // NT system processes SID
PSID BuiltinDomainSid = NULL; // Domain Id of the Builtin Domain
PSID AuthenticatedUserSid = NULL; // Authenticated user SID
PSID AnonymousLogonSid = NULL; // Anonymous Logon SID
PSID LocalServiceSid = NULL; // Local Service SID
PSID OtherOrganizationSid = NULL; // Other org SID
//
// Well Known Aliases.
//
// These are aliases that are relative to the built-in domain.
//
PSID LocalAdminSid = NULL; // NT local admins SID
PSID AliasAdminsSid = NULL;
PSID AliasUsersSid = NULL;
PSID AliasGuestsSid = NULL;
PSID AliasPowerUsersSid = NULL;
PSID AliasAccountOpsSid = NULL;
PSID AliasSystemOpsSid = NULL;
PSID AliasPrintOpsSid = NULL;
PSID AliasBackupOpsSid = NULL;
#if DBG
typedef struct _STANDARD_ACE {
ACE_HEADER Header;
ACCESS_MASK Mask;
PSID Sid;
} STANDARD_ACE;
typedef STANDARD_ACE *PSTANDARD_ACE;
//
// The following macros used by DumpAcl(), these macros and DumpAcl() are
// stolen from private\ntos\se\ctaccess.c (written by robertre) for
// debugging purposes.
//
//
// Returns a pointer to the first Ace in an Acl (even if the Acl is empty).
//
#define FirstAce(Acl) ((PVOID)((PUCHAR)(Acl) + sizeof(ACL)))
//
// Returns a pointer to the next Ace in a sequence (even if the input
// Ace is the one in the sequence).
//
#define NextAce(Ace) ((PVOID)((PUCHAR)(Ace) + ((PACE_HEADER)(Ace))->AceSize))
STATIC
VOID
DumpAcl(
IN PACL Acl
);
#endif //ifdef DBG
//
// Data describing the well-known SIDs created by NetpCreateWellKnownSids.
//
ULONG MakeItCompile1,
MakeItCompile2,
MakeItCompile3;
struct _SID_DATA {
PSID *Sid;
SID_IDENTIFIER_AUTHORITY IdentifierAuthority;
ULONG SubAuthority;
} SidData[] = {
{&NullSid, SECURITY_NULL_SID_AUTHORITY, SECURITY_NULL_RID},
{&WorldSid, SECURITY_WORLD_SID_AUTHORITY, SECURITY_WORLD_RID},
{&LocalSid, SECURITY_LOCAL_SID_AUTHORITY, SECURITY_LOCAL_RID},
{&NetworkSid, SECURITY_NT_AUTHORITY, SECURITY_NETWORK_RID},
{&LocalSystemSid, SECURITY_NT_AUTHORITY, SECURITY_LOCAL_SYSTEM_RID},
{&BuiltinDomainSid, SECURITY_NT_AUTHORITY, SECURITY_BUILTIN_DOMAIN_RID},
{&AuthenticatedUserSid, SECURITY_NT_AUTHORITY, SECURITY_AUTHENTICATED_USER_RID},
{&AnonymousLogonSid,SECURITY_NT_AUTHORITY, SECURITY_ANONYMOUS_LOGON_RID},
{&LocalServiceSid, SECURITY_NT_AUTHORITY, SECURITY_LOCAL_SERVICE_RID},
{&OtherOrganizationSid, SECURITY_NT_AUTHORITY, SECURITY_OTHER_ORGANIZATION_RID}
};
struct _BUILTIN_DOMAIN_SID_DATA {
PSID *Sid;
ULONG RelativeId;
} BuiltinDomainSidData[] = {
{ &LocalAdminSid, DOMAIN_ALIAS_RID_ADMINS},
{ &AliasAdminsSid, DOMAIN_ALIAS_RID_ADMINS },
{ &AliasUsersSid, DOMAIN_ALIAS_RID_USERS },
{ &AliasGuestsSid, DOMAIN_ALIAS_RID_GUESTS },
{ &AliasPowerUsersSid, DOMAIN_ALIAS_RID_POWER_USERS },
{ &AliasAccountOpsSid, DOMAIN_ALIAS_RID_ACCOUNT_OPS },
{ &AliasSystemOpsSid, DOMAIN_ALIAS_RID_SYSTEM_OPS },
{ &AliasPrintOpsSid, DOMAIN_ALIAS_RID_PRINT_OPS },
{ &AliasBackupOpsSid, DOMAIN_ALIAS_RID_BACKUP_OPS }
};
NTSTATUS
NetpCreateWellKnownSids(
IN PSID DomainId
)
/*++
Routine Description:
This function creates some well-known SIDs and store them in global
variables.
Arguments:
DomainId - Supplies the Domain SID of the primary domain of this system.
This can be attained from UaspGetDomainId.
Return Value:
STATUS_SUCCESS - if successful
STATUS_NO_MEMORY - if cannot allocate memory for SID
--*/
{
NTSTATUS ntstatus;
DWORD i;
UNREFERENCED_PARAMETER(DomainId);
//
// Allocate and initialize well-known SIDs which aren't relative to
// the domain Id.
//
for (i = 0; i < (sizeof(SidData) / sizeof(SidData[0])) ; i++) {
ntstatus = NetpAllocateAndInitializeSid(
SidData[i].Sid,
&(SidData[i].IdentifierAuthority),
1);
if (! NT_SUCCESS(ntstatus)) {
return STATUS_NO_MEMORY;
}
*(RtlSubAuthoritySid(*(SidData[i].Sid), 0)) = SidData[i].SubAuthority;
}
//
// Build each SID which is relative to the Builtin Domain Id.
//
for ( i = 0;
i < (sizeof(BuiltinDomainSidData) / sizeof(BuiltinDomainSidData[0]));
i++) {
NET_API_STATUS NetStatus;
NetStatus = NetpDomainIdToSid(
BuiltinDomainSid,
BuiltinDomainSidData[i].RelativeId,
BuiltinDomainSidData[i].Sid );
if ( NetStatus != NERR_Success ) {
return STATUS_NO_MEMORY;
}
}
return STATUS_SUCCESS;
}
VOID
NetpFreeWellKnownSids(
VOID
)
/*++
Routine Description:
This function frees up the dynamic memory consumed by the well-known
SIDs.
Arguments:
none.
Return Value:
none
--*/
{
DWORD i;
//
// free up memory allocated for well-known SIDs
//
for (i = 0; i < (sizeof(SidData) / sizeof(SidData[0])) ; i++) {
if( *SidData[i].Sid != NULL ) {
NetpMemoryFree( *SidData[i].Sid );
*SidData[i].Sid = NULL;
}
}
//
// free up memory allocated for Builtin Domain SIDs
//
for (i = 0;
i < (sizeof(BuiltinDomainSidData) /
sizeof(BuiltinDomainSidData[0])) ;
i++) {
if( *BuiltinDomainSidData[i].Sid != NULL ) {
NetpMemoryFree( *BuiltinDomainSidData[i].Sid );
*BuiltinDomainSidData[i].Sid = NULL;
}
}
}
NTSTATUS
NetpAllocateAndInitializeSid(
OUT PSID *Sid,
IN PSID_IDENTIFIER_AUTHORITY IdentifierAuthority,
IN ULONG SubAuthorityCount
)
/*++
Routine Description:
This function allocates memory for a SID and initializes it.
Arguments:
None.
Return Value:
STATUS_SUCCESS - if successful
STATUS_NO_MEMORY - if cannot allocate memory for SID
--*/
{
*Sid = (PSID) NetpMemoryAllocate(RtlLengthRequiredSid(SubAuthorityCount));
if (*Sid == NULL) {
return STATUS_NO_MEMORY;
}
RtlInitializeSid(*Sid, IdentifierAuthority, (UCHAR)SubAuthorityCount);
return STATUS_SUCCESS;
}
NET_API_STATUS
NetpDomainIdToSid(
IN PSID DomainId,
IN ULONG RelativeId,
OUT PSID *Sid
)
/*++
Routine Description:
Given a domain Id and a relative ID create a SID
Arguments:
DomainId - The template SID to use.
RelativeId - The relative Id to append to the DomainId.
Sid - Returns a pointer to an allocated buffer containing the resultant
Sid. Free this buffer using NetpMemoryFree.
Return Value:
STATUS_SUCCESS - if successful
STATUS_NO_MEMORY - if cannot allocate memory for SID
--*/
{
UCHAR DomainIdSubAuthorityCount; // Number of sub authorities in domain ID
ULONG SidLength; // Length of newly allocated SID
//
// Allocate a Sid which has one more sub-authority than the domain ID.
//
DomainIdSubAuthorityCount = *(RtlSubAuthorityCountSid( DomainId ));
SidLength = RtlLengthRequiredSid(DomainIdSubAuthorityCount+1);
if ((*Sid = (PSID) NetpMemoryAllocate( SidLength )) == NULL ) {
return ERROR_NOT_ENOUGH_MEMORY;
}
//
// Initialize the new SID to have the same inital value as the
// domain ID.
//
if ( !NT_SUCCESS( RtlCopySid( SidLength, *Sid, DomainId ) ) ) {
NetpMemoryFree( *Sid );
return NERR_InternalError;
}
//
// Adjust the sub-authority count and
// add the relative Id unique to the newly allocated SID
//
(*(RtlSubAuthorityCountSid( *Sid ))) ++;
*RtlSubAuthoritySid( *Sid, DomainIdSubAuthorityCount ) = RelativeId;
return NERR_Success;
}
NTSTATUS
NetpCreateSecurityDescriptor(
IN PACE_DATA AceData,
IN ULONG AceCount,
IN PSID OwnerSid OPTIONAL,
IN PSID GroupSid OPTIONAL,
OUT PSECURITY_DESCRIPTOR *NewDescriptor
)
/*++
Routine Description:
This function creates an absolutes security descriptor containing
the supplied ACE information.
A sample usage of this function:
//
// Order matters! These ACEs are inserted into the DACL in the
// following order. Security access is granted or denied based on
// the order of the ACEs in the DACL.
//
ACE_DATA AceData[4] = {
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
GENERIC_ALL, &LocalAdminSid},
{ACCESS_DENIED_ACE_TYPE, 0, 0,
GENERIC_ALL, &NetworkSid},
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
WKSTA_CONFIG_GUEST_INFO_GET |
WKSTA_CONFIG_USER_INFO_GET, &DomainUsersSid},
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
WKSTA_CONFIG_GUEST_INFO_GET, &DomainGuestsSid}
};
return NetpCreateSecurityDescriptor(
AceData,
4,
NullSid,
LocalSystemSid,
&ConfigurationInfoSd
);
Arguments:
AceData - Supplies the structure of information that describes the DACL.
AceCount - Supplies the number of entries in AceData structure.
OwnerSid - Supplies the pointer to the SID of the security descriptor
owner. If not specified, a security descriptor with no owner
will be created.
GroupSid - Supplies the pointer to the SID of the security descriptor
primary group. If not specified, a security descriptor with no primary
group will be created.
NewDescriptor - Returns a pointer to the absolute secutiry descriptor
allocated using NetpMemoryAllocate.
Return Value:
STATUS_SUCCESS - if successful
STATUS_NO_MEMORY - if cannot allocate memory for DACL, ACEs, and
security descriptor.
Any other status codes returned from the security Rtl routines.
--*/
{
NTSTATUS ntstatus;
DWORD i;
//
// Pointer to memory dynamically allocated by this routine to hold
// the absolute security descriptor, the DACL, the SACL, and all the ACEs.
//
// +---------------------------------------------------------------+
// | Security Descriptor |
// +-------------------------------+-------+---------------+-------+
// | DACL | ACE 1 | . . . | ACE n |
// +-------------------------------+-------+---------------+-------+
// | SACL | ACE 1 | . . . | ACE n |
// +-------------------------------+-------+---------------+-------+
//
PSECURITY_DESCRIPTOR AbsoluteSd = NULL;
PACL Dacl = NULL; // Pointer to the DACL portion of above buffer
PACL Sacl = NULL; // Pointer to the SACL portion of above buffer
DWORD DaclSize = sizeof(ACL);
DWORD SaclSize = sizeof(ACL);
DWORD MaxAceSize = 0;
PVOID MaxAce = NULL;
LPBYTE CurrentAvailable;
DWORD Size;
ASSERT( AceCount > 0 );
//
// Compute the total size of the DACL and SACL ACEs and the maximum
// size of any ACE.
//
for (i = 0; i < AceCount; i++) {
DWORD AceSize;
AceSize = RtlLengthSid(*(AceData[i].Sid));
switch (AceData[i].AceType) {
case ACCESS_ALLOWED_ACE_TYPE:
AceSize += sizeof(ACCESS_ALLOWED_ACE) - sizeof(ULONG);
DaclSize += AceSize;
break;
case ACCESS_DENIED_ACE_TYPE:
AceSize += sizeof(ACCESS_DENIED_ACE) - sizeof(ULONG);
DaclSize += AceSize;
break;
case SYSTEM_AUDIT_ACE_TYPE:
AceSize += sizeof(SYSTEM_AUDIT_ACE) - sizeof(ULONG);
SaclSize += AceSize;
break;
default:
return STATUS_INVALID_PARAMETER;
}
MaxAceSize = max( MaxAceSize, AceSize );
}
//
// Allocate a chunk of memory large enough the security descriptor
// the DACL, the SACL and all ACEs.
//
// A security descriptor is of opaque data type but
// SECURITY_DESCRIPTOR_MIN_LENGTH is the right size.
//
Size = SECURITY_DESCRIPTOR_MIN_LENGTH;
if ( DaclSize != sizeof(ACL) ) {
Size += DaclSize;
}
if ( SaclSize != sizeof(ACL) ) {
Size += SaclSize;
}
if ((AbsoluteSd = NetpMemoryAllocate( Size )) == NULL) {
IF_DEBUG(SECURITY) {
NetpKdPrint(( "NetpCreateSecurityDescriptor Fail Create abs SD\n"));
}
ntstatus = STATUS_NO_MEMORY;
goto Cleanup;
}
//
// Initialize the Dacl and Sacl
//
CurrentAvailable = (LPBYTE)AbsoluteSd + SECURITY_DESCRIPTOR_MIN_LENGTH;
if ( DaclSize != sizeof(ACL) ) {
Dacl = (PACL)CurrentAvailable;
CurrentAvailable += DaclSize;
ntstatus = RtlCreateAcl( Dacl, DaclSize, ACL_REVISION );
if ( !NT_SUCCESS(ntstatus) ) {
IF_DEBUG(SECURITY) {
NetpKdPrint(( "NetpCreateSecurityDescriptor Fail DACL Create ACL\n"));
}
goto Cleanup;
}
}
if ( SaclSize != sizeof(ACL) ) {
Sacl = (PACL)CurrentAvailable;
CurrentAvailable += SaclSize;
ntstatus = RtlCreateAcl( Sacl, SaclSize, ACL_REVISION );
if ( !NT_SUCCESS(ntstatus) ) {
IF_DEBUG(SECURITY) {
NetpKdPrint(( "NetpCreateSecurityDescriptor Fail SACL Create ACL\n"));
}
goto Cleanup;
}
}
//
// Allocate a temporary buffer big enough for the biggest ACE.
//
if ((MaxAce = NetpMemoryAllocate( MaxAceSize )) == NULL ) {
IF_DEBUG(SECURITY) {
NetpKdPrint(( "NetpCreateSecurityDescriptor Fail Create max ace\n"));
}
ntstatus = STATUS_NO_MEMORY;
goto Cleanup;
}
//
// Initialize each ACE, and append it into the end of the DACL or SACL.
//
for (i = 0; i < AceCount; i++) {
DWORD AceSize;
PACL CurrentAcl;
AceSize = RtlLengthSid(*(AceData[i].Sid));
switch (AceData[i].AceType) {
case ACCESS_ALLOWED_ACE_TYPE:
AceSize += sizeof(ACCESS_ALLOWED_ACE) - sizeof(ULONG);
CurrentAcl = Dacl;
ntstatus = NetpInitializeAllowedAce(
MaxAce,
(USHORT) AceSize,
AceData[i].InheritFlags,
AceData[i].AceFlags,
AceData[i].Mask,
*(AceData[i].Sid)
);
break;
case ACCESS_DENIED_ACE_TYPE:
AceSize += sizeof(ACCESS_DENIED_ACE) - sizeof(ULONG);
CurrentAcl = Dacl;
ntstatus = NetpInitializeDeniedAce(
MaxAce,
(USHORT) AceSize,
AceData[i].InheritFlags,
AceData[i].AceFlags,
AceData[i].Mask,
*(AceData[i].Sid)
);
break;
case SYSTEM_AUDIT_ACE_TYPE:
AceSize += sizeof(SYSTEM_AUDIT_ACE) - sizeof(ULONG);
CurrentAcl = Sacl;
ntstatus = NetpInitializeAuditAce(
MaxAce,
(USHORT) AceSize,
AceData[i].InheritFlags,
AceData[i].AceFlags,
AceData[i].Mask,
*(AceData[i].Sid)
);
break;
}
if ( !NT_SUCCESS( ntstatus ) ) {
IF_DEBUG(SECURITY) {
NetpKdPrint(( "NetpCreateSecurityDescriptor Fail InitAce i: %d ntstatus: %lx\n", i, ntstatus));
}
goto Cleanup;
}
//
// Append the initialized ACE to the end of DACL or SACL
//
if (! NT_SUCCESS (ntstatus = RtlAddAce(
CurrentAcl,
ACL_REVISION,
MAXULONG,
MaxAce,
AceSize
))) {
IF_DEBUG(SECURITY) {
NetpKdPrint(( "NetpCreateSecurityDescriptor Fail add ace i: %d ntstatus: %lx\n", i, ntstatus));
}
goto Cleanup;
}
}
#if DBG
DumpAcl(Dacl);
DumpAcl(Sacl);
#endif
//
// Create the security descriptor with absolute pointers to SIDs
// and ACLs.
//
// Owner = OwnerSid
// Group = GroupSid
// Dacl = Dacl
// Sacl = Sacl
//
if (! NT_SUCCESS(ntstatus = RtlCreateSecurityDescriptor(
AbsoluteSd,
SECURITY_DESCRIPTOR_REVISION
))) {
goto Cleanup;
}
if (! NT_SUCCESS(ntstatus = RtlSetOwnerSecurityDescriptor(
AbsoluteSd,
OwnerSid,
FALSE
))) {
goto Cleanup;
}
if (! NT_SUCCESS(ntstatus = RtlSetGroupSecurityDescriptor(
AbsoluteSd,
GroupSid,
FALSE
))) {
goto Cleanup;
}
if (! NT_SUCCESS(ntstatus = RtlSetDaclSecurityDescriptor(
AbsoluteSd,
TRUE,
Dacl,
FALSE
))) {
goto Cleanup;
}
if (! NT_SUCCESS(ntstatus = RtlSetSaclSecurityDescriptor(
AbsoluteSd,
FALSE,
Sacl,
FALSE
))) {
goto Cleanup;
}
//
// Done
//
ntstatus = STATUS_SUCCESS;
//
// Clean up
//
Cleanup:
//
// Either return the security descriptor to the caller or delete it
//
if ( NT_SUCCESS( ntstatus ) ) {
*NewDescriptor = AbsoluteSd;
} else if ( AbsoluteSd != NULL ) {
NetpMemoryFree(AbsoluteSd);
}
//
// Delete the temporary ACE
//
if ( MaxAce != NULL ) {
NetpMemoryFree( MaxAce );
}
return ntstatus;
}
NTSTATUS
NetpCreateSecurityObject(
IN PACE_DATA AceData,
IN ULONG AceCount,
IN PSID OwnerSid,
IN PSID GroupSid,
IN PGENERIC_MAPPING GenericMapping,
OUT PSECURITY_DESCRIPTOR *NewDescriptor
)
/*++
Routine Description:
This function creates the DACL for the security descriptor based on
on the ACE information specified, and creates the security descriptor
which becomes the user-mode security object.
A sample usage of this function:
//
// Structure that describes the mapping of Generic access rights to
// object specific access rights for the ConfigurationInfo object.
//
GENERIC_MAPPING WsConfigInfoMapping = {
STANDARD_RIGHTS_READ | // Generic read
WKSTA_CONFIG_GUEST_INFO_GET |
WKSTA_CONFIG_USER_INFO_GET |
WKSTA_CONFIG_ADMIN_INFO_GET,
STANDARD_RIGHTS_WRITE | // Generic write
WKSTA_CONFIG_INFO_SET,
STANDARD_RIGHTS_EXECUTE, // Generic execute
WKSTA_CONFIG_ALL_ACCESS // Generic all
};
//
// Order matters! These ACEs are inserted into the DACL in the
// following order. Security access is granted or denied based on
// the order of the ACEs in the DACL.
//
ACE_DATA AceData[4] = {
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
GENERIC_ALL, &LocalAdminSid},
{ACCESS_DENIED_ACE_TYPE, 0, 0,
GENERIC_ALL, &NetworkSid},
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
WKSTA_CONFIG_GUEST_INFO_GET |
WKSTA_CONFIG_USER_INFO_GET, &DomainUsersSid},
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
WKSTA_CONFIG_GUEST_INFO_GET, &DomainGuestsSid}
};
return NetpCreateSecurityObject(
AceData,
4,
NullSid,
LocalSystemSid,
&WsConfigInfoMapping,
&ConfigurationInfoSd
);
Arguments:
AceData - Supplies the structure of information that describes the DACL.
AceCount - Supplies the number of entries in AceData structure.
OwnerSid - Supplies the pointer to the SID of the security descriptor
owner.
GroupSid - Supplies the pointer to the SID of the security descriptor
primary group.
GenericMapping - Supplies the pointer to a generic mapping array denoting
the mapping between each generic right to specific rights.
NewDescriptor - Returns a pointer to the self-relative security descriptor
which represents the user-mode object.
Return Value:
STATUS_SUCCESS - if successful
STATUS_NO_MEMORY - if cannot allocate memory for DACL, ACEs, and
security descriptor.
Any other status codes returned from the security Rtl routines.
NOTE : the security object created by calling this function may be
freed up by calling NetpDeleteSecurityObject().
--*/
{
NTSTATUS ntstatus;
PSECURITY_DESCRIPTOR AbsoluteSd;
HANDLE TokenHandle;
ntstatus = NetpCreateSecurityDescriptor(
AceData,
AceCount,
OwnerSid,
GroupSid,
&AbsoluteSd
);
if (! NT_SUCCESS(ntstatus)) {
NetpKdPrint(("[Netlib] NetpCreateSecurityDescriptor returned %08lx\n",
ntstatus));
return ntstatus;
}
ntstatus = NtOpenProcessToken(
NtCurrentProcess(),
TOKEN_QUERY,
&TokenHandle
);
if (! NT_SUCCESS(ntstatus)) {
NetpKdPrint(("[Netlib] NtOpenProcessToken returned %08lx\n", ntstatus));
NetpMemoryFree(AbsoluteSd);
return ntstatus;
}
//
// Create the security object (a user-mode object is really a pseudo-
// object represented by a security descriptor that have relative
// pointers to SIDs and ACLs). This routine allocates the memory to
// hold the relative security descriptor so the memory allocated for the
// DACL, ACEs, and the absolute descriptor can be freed.
//
ntstatus = RtlNewSecurityObject(
NULL, // Parent descriptor
AbsoluteSd, // Creator descriptor
NewDescriptor, // Pointer to new descriptor
FALSE, // Is directory object
TokenHandle, // Token
GenericMapping // Generic mapping
);
NtClose(TokenHandle);
if (! NT_SUCCESS(ntstatus)) {
NetpKdPrint(("[Netlib] RtlNewSecurityObject returned %08lx\n",
ntstatus));
}
//
// Free dynamic memory before returning
//
NetpMemoryFree(AbsoluteSd);
return ntstatus;
}
NTSTATUS
NetpDeleteSecurityObject(
IN PSECURITY_DESCRIPTOR *Descriptor
)
/*++
Routine Description:
This function deletes a security object that was created by calling
NetpCreateSecurityObject() function.
Arguments:
Descriptor - Returns a pointer to the self-relative security descriptor
which represents the user-mode object.
Return Value:
STATUS_SUCCESS - if successful
--*/
{
return( RtlDeleteSecurityObject( Descriptor ) );
}
STATIC
NTSTATUS
NetpInitializeAllowedAce(
IN PACCESS_ALLOWED_ACE AllowedAce,
IN USHORT AceSize,
IN UCHAR InheritFlags,
IN UCHAR AceFlags,
IN ACCESS_MASK Mask,
IN PSID AllowedSid
)
/*++
Routine Description:
This function assigns the specified ACE values into an allowed type ACE.
Arguments:
AllowedAce - Supplies a pointer to the ACE that is initialized.
AceSize - Supplies the size of the ACE in bytes.
InheritFlags - Supplies ACE inherit flags.
AceFlags - Supplies ACE type specific control flags.
Mask - Supplies the allowed access masks.
AllowedSid - Supplies the pointer to the SID of user/group which is allowed
the specified access.
Return Value:
Returns status from RtlCopySid.
--*/
{
AllowedAce->Header.AceType = ACCESS_ALLOWED_ACE_TYPE;
AllowedAce->Header.AceSize = AceSize;
AllowedAce->Header.AceFlags = AceFlags | InheritFlags;
AllowedAce->Mask = Mask;
return RtlCopySid(
RtlLengthSid(AllowedSid),
&(AllowedAce->SidStart),
AllowedSid
);
}
STATIC
NTSTATUS
NetpInitializeDeniedAce(
IN PACCESS_DENIED_ACE DeniedAce,
IN USHORT AceSize,
IN UCHAR InheritFlags,
IN UCHAR AceFlags,
IN ACCESS_MASK Mask,
IN PSID DeniedSid
)
/*++
Routine Description:
This function assigns the specified ACE values into a denied type ACE.
Arguments:
DeniedAce - Supplies a pointer to the ACE that is initialized.
AceSize - Supplies the size of the ACE in bytes.
InheritFlags - Supplies ACE inherit flags.
AceFlags - Supplies ACE type specific control flags.
Mask - Supplies the denied access masks.
AllowedSid - Supplies the pointer to the SID of user/group which is denied
the specified access.
Return Value:
Returns status from RtlCopySid.
--*/
{
DeniedAce->Header.AceType = ACCESS_DENIED_ACE_TYPE;
DeniedAce->Header.AceSize = AceSize;
DeniedAce->Header.AceFlags = AceFlags | InheritFlags;
DeniedAce->Mask = Mask;
return RtlCopySid(
RtlLengthSid(DeniedSid),
&(DeniedAce->SidStart),
DeniedSid
);
}
STATIC
NTSTATUS
NetpInitializeAuditAce(
IN PACCESS_ALLOWED_ACE AuditAce,
IN USHORT AceSize,
IN UCHAR InheritFlags,
IN UCHAR AceFlags,
IN ACCESS_MASK Mask,
IN PSID AuditSid
)
/*++
Routine Description:
This function assigns the specified ACE values into an audit type ACE.
Arguments:
AuditAce - Supplies a pointer to the ACE that is initialized.
AceSize - Supplies the size of the ACE in bytes.
InheritFlags - Supplies ACE inherit flags.
AceFlags - Supplies ACE type specific control flags.
Mask - Supplies the allowed access masks.
AuditSid - Supplies the pointer to the SID of user/group which is to be
audited.
Return Value:
Returns status from RtlCopySid.
--*/
{
AuditAce->Header.AceType = SYSTEM_AUDIT_ACE_TYPE;
AuditAce->Header.AceSize = AceSize;
AuditAce->Header.AceFlags = AceFlags | InheritFlags;
AuditAce->Mask = Mask;
return RtlCopySid(
RtlLengthSid(AuditSid),
&(AuditAce->SidStart),
AuditSid
);
}
#if DBG
STATIC
VOID
DumpAcl(
IN PACL Acl
)
/*++
Routine Description:
This routine dumps via (NetpKdPrint) an Acl for debug purposes. It is
specialized to dump standard aces.
Arguments:
Acl - Supplies the Acl to dump
Return Value:
None
--*/
{
ULONG i;
PSTANDARD_ACE Ace;
IF_DEBUG(SECURITY) {
NetpKdPrint(("DumpAcl @%08lx\n", Acl));
//
// Check if the Acl is null
//
if (Acl == NULL) {
return;
}
//
// Dump the Acl header
//
NetpKdPrint((" Revision: %02x", Acl->AclRevision));
NetpKdPrint((" Size: %04x", Acl->AclSize));
NetpKdPrint((" AceCount: %04x\n", Acl->AceCount));
//
// Now for each Ace we want do dump it
//
for (i = 0, Ace = FirstAce(Acl);
i < Acl->AceCount;
i++, Ace = NextAce(Ace) ) {
//
// print out the ace header
//
NetpKdPrint((" AceHeader: %08lx ", *(PULONG)Ace));
//
// special case on the standard ace types
//
if ((Ace->Header.AceType == ACCESS_ALLOWED_ACE_TYPE) ||
(Ace->Header.AceType == ACCESS_DENIED_ACE_TYPE) ||
(Ace->Header.AceType == SYSTEM_AUDIT_ACE_TYPE) ||
(Ace->Header.AceType == SYSTEM_ALARM_ACE_TYPE)) {
//
// The following array is indexed by ace types and must
// follow the allowed, denied, audit, alarm seqeuence
//
static PCHAR AceTypes[] = { "Access Allowed",
"Access Denied ",
"System Audit ",
"System Alarm "
};
NetpKdPrint((AceTypes[Ace->Header.AceType]));
NetpKdPrint(("\nAccess Mask: %08lx ", Ace->Mask));
} else {
NetpKdPrint(("Unknown Ace Type\n"));
}
NetpKdPrint(("\n"));
NetpKdPrint(("AceSize = %d\n",Ace->Header.AceSize));
NetpKdPrint(("Ace Flags = "));
if (Ace->Header.AceFlags & OBJECT_INHERIT_ACE) {
NetpKdPrint(("OBJECT_INHERIT_ACE\n"));
NetpKdPrint((" "));
}
if (Ace->Header.AceFlags & CONTAINER_INHERIT_ACE) {
NetpKdPrint(("CONTAINER_INHERIT_ACE\n"));
NetpKdPrint((" "));
}
if (Ace->Header.AceFlags & NO_PROPAGATE_INHERIT_ACE) {
NetpKdPrint(("NO_PROPAGATE_INHERIT_ACE\n"));
NetpKdPrint((" "));
}
if (Ace->Header.AceFlags & INHERIT_ONLY_ACE) {
NetpKdPrint(("INHERIT_ONLY_ACE\n"));
NetpKdPrint((" "));
}
if (Ace->Header.AceFlags & SUCCESSFUL_ACCESS_ACE_FLAG) {
NetpKdPrint(("SUCCESSFUL_ACCESS_ACE_FLAG\n"));
NetpKdPrint((" "));
}
if (Ace->Header.AceFlags & FAILED_ACCESS_ACE_FLAG) {
NetpKdPrint(("FAILED_ACCESS_ACE_FLAG\n"));
NetpKdPrint((" "));
}
NetpKdPrint(("\n"));
}
}
}
#endif // if DBG