Windows2003-3790/inetcore/wininet/debug/rprintf.cxx
2020-09-30 16:53:55 +02:00

803 lines
26 KiB
C++

/*++
Copyright (c) 1995 Microsoft Corporation
Module Name:
rprintf.cxx
Abstract:
Contains my own version of printf(), sprintf() and vprintf(). Useful since
adding new printf escape sequences becomes easy
Contents:
rprintf limited re-entrant version of printf
rsprintf limited re-entrant version of sprintf
_sprintf routine which does the work
Author:
Richard L Firth (rfirth) 20-Jun-1995
Revision History:
29-Aug-1989 rfirth
Created
--*/
#include <wininetp.h>
#include "rprintf.h"
//
// defines for flags word
//
#define F_SPACES 0x00000001 // prefix field with spaces
#define F_ZEROES 0x00000002 // prefix field with zeroes
#define F_MINUS 0x00000004 // field is left justified
#define F_HASH 0x00000008 // hex field is prefixed with 0x/0X
#define F_XUPPER 0x00000010 // hex field has upper case letters
#define F_LONG 0x00000020 // long int/hex/oct prefix
#define F_PLUS 0x00000040 // prefix +'ve signed number with +
#define F_DOT 0x00000080 // separator for field and precision
#define F_NEAR 0x00000100 // far pointer has near prefix
#define F_FAR 0x00000200 // near pointer has far prefix
#define F_SREPLICATE 0x00000400 // this field replicated
#define F_EREPLICATE 0x00000800 // end of replications
#define F_UNICODE 0x00001000 // string is wide character (%ws/%wq)
#define F_QUOTING 0x00002000 // strings enclosed in double quotes
#define F_ELLIPSE 0x00004000 // a sized, quoted string ends in "..."
#define BUFFER_SIZE 1024
//
// minimum field widths for various ASCII representations of numbers
//
#define MIN_BIN_WIDTH 16 // minimum field width in btoa
#define MIN_HEX_WIDTH 8 // minimum field width in xtoa
#define MIN_INT_WIDTH 10 // minimum field width in itoa
#define MIN_LHEX_WIDTH 8 // minimum field width in long xtoa
#define MIN_LINT_WIDTH 10 // minimum field width in long itoa
#define MIN_LOCT_WIDTH 11 // minimum field width in long otoa
#define MIN_OCT_WIDTH 11 // minimum field width in otoa
#define MIN_UINT_WIDTH 10 // minimum field width in utoa
//
// character defines
//
#define EOSTR '\0'
#define CR '\x0d'
#define LF '\x0a'
#if !defined(min)
#define min(a, b) ((a)<(b)) ? (a) : (b)
#endif
PRIVATE int _atoi(char**);
PRIVATE void convert(char**, ULONG_PTR, int, int, unsigned, char(*)(ULONG_PTR*));
PRIVATE char btoa(ULONG_PTR *);
PRIVATE char otoa(ULONG_PTR *);
PRIVATE char utoa(ULONG_PTR *);
PRIVATE char xtoa(ULONG_PTR *);
PRIVATE char Xasc(ULONG_PTR *);
/*** rprintf - a re-entrant cut-down version of printf. Understands usual
* printf format characters introduced by '%' plus one or
* two additions
*
* ENTRY format - pointer to buffer containing format string defining
* the output. As per usual printf the arguments to
* fill in the blanks in the format string are on the
* the stack after the format string
*
* <args> - arguments on stack, size and type determined from
* the format string
*
* EXIT format string used to convert arguments (if any) and print
* the results to stdout.
* The number of character copied is the value returned
*/
#ifdef UNUSED
int cdecl rprintf(char* format, ...) {
int charsPrinted = 0;
char buffer[BUFFER_SIZE];
DWORD nwritten;
va_list args;
/* print the output into buffer then print the formatted buffer to the
* screen
*/
va_start(args, format);
charsPrinted = _sprintf(buffer, format, args);
va_end(args);
WriteConsole(GetStdHandle(STD_OUTPUT_HANDLE),
buffer,
charsPrinted,
&nwritten,
0
);
return nwritten;
}
#endif
/*** rsprintf - a re-entrant cut-down version of sprintf. See rprintf for
* details
*
* ENTRY buffer - pointer to the buffer which will receive the
* formatted output
*
* format - pointer to buffer which defines the formatted
* output. Consists of normal printing characters
* and printf-style format characters (see rprintf)
*
* EXIT characters from format string and arguments converted to
* character format based on format string are copied into the
* buffer
* The number of character copied is the value returned
*/
int cdecl rsprintf(char* buffer, char* format, ...) {
va_list args;
int n;
va_start(args, format);
n = _sprintf(buffer, format, args);
va_end(args);
return n;
}
/*** _sprintf - performs the sprintf function. Receives an extra parameter
* on the stack which is the pointer to the variable argument
* list of rprintf and rsprintf
*
* ENTRY buffer - pointer to buffer which will receive the output
*
* format - pointer to the format string
*
* args - variable argument list which will be used to fill in
* the escape sequences in the format string
*
* EXIT The characters in the format string are used to convert the
* arguments and copy them to the buffer.
* The number of character copied is the value returned
*/
int cdecl _sprintf(char* buffer, char* format, va_list args) {
char* original = buffer;
int FieldWidth;
int FieldPrecision;
int FieldLen;
BOOL SubDone;
int StrLen;
int i;
DWORD flags;
int replications;
while (*format) {
switch ((unsigned)*format) {
case '\n':
//
// convert line-feed to carriage-return, line-feed. But only if the
// format string doesn't already contain a carriage-return directly
// before the line-feed! This way we can make multiple calls into
// this function, with the same buffer, and only once expand the
// line-feed
//
if (*(buffer - 1) != CR) {
*buffer++ = CR;
}
*buffer++ = LF;
break;
case '%':
SubDone = FALSE;
flags = 0;
FieldWidth = 0;
FieldPrecision = 0;
replications = 1; /* default replication is 1 */
while (!SubDone) {
switch ((unsigned)*++format) {
case '%':
*buffer++ = '%';
SubDone = TRUE;
break;
case ' ':
flags |= F_SPACES;
break;
case '#':
flags |= F_HASH;
break;
case '-':
flags |= F_MINUS;
break;
case '+':
flags |= F_PLUS;
break;
case '.':
flags |= F_DOT;
break;
case '*':
if (flags & F_DOT) {
FieldPrecision = va_arg(args, int);
} else {
FieldWidth = va_arg(args, int);
}
break;
case '@':
replications = _atoi(&format);
break;
case '[':
flags |= F_SREPLICATE;
break;
case ']':
flags |= F_EREPLICATE;
break;
case '0':
/* if this is leading zero then caller wants
* zero prefixed number of given width (%04x)
*/
if (!(flags & F_ZEROES)) {
flags |= F_ZEROES;
break;
}
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (flags & F_DOT) {
FieldPrecision = _atoi(&format);
} else {
FieldWidth = _atoi(&format);
}
break;
case 'b':
//
// Binary representation
//
while (replications--) {
convert(&buffer,
va_arg(args, unsigned int),
(FieldWidth) ? FieldWidth : MIN_BIN_WIDTH,
MIN_BIN_WIDTH,
flags,
btoa
);
}
SubDone = TRUE;
break;
case 'B':
//
// Boolean representation
//
if (va_arg(args, BOOL)) {
*buffer++ = 'T';
*buffer++ = 'R';
*buffer++ = 'U';
*buffer++ = 'E';
} else {
*buffer++ = 'F';
*buffer++ = 'A';
*buffer++ = 'L';
*buffer++ = 'S';
*buffer++ = 'E';
}
SubDone = TRUE;
break;
case 'c':
//
// assume that a character is the size of the
// width of the stack which in turn has the same
// width as an integer
//
--FieldWidth;
while (replications--) {
for (i = 0; i < FieldWidth; i++) {
*buffer++ = ' ';
}
*buffer++ = (char) va_arg(args, int);
}
SubDone = TRUE;
break;
case 'd':
case 'i':
while (replications--) {
long l;
l = (flags & F_LONG) ? va_arg(args, long) : (long)va_arg(args, int);
if (l < 0) {
*buffer++ = '-';
if (flags & F_LONG) {
l = -(long)l;
} else {
l = -(int)l;
}
} else if (flags & F_PLUS) {
*buffer++ = '+';
}
convert(&buffer,
l,
FieldWidth,
(flags & F_LONG) ? MIN_LINT_WIDTH : MIN_INT_WIDTH,
flags,
utoa
);
}
SubDone = TRUE;
break;
case 'e':
/* not currently handled */
break;
case 'f':
/* not currently handled */
break;
case 'F':
flags |= F_FAR;
break;
case 'g':
case 'G':
/* not currently handled */
break;
case 'h':
/* not currently handled */
break;
case 'l':
flags |= F_LONG;
break;
case 'L':
/* not currently handled */
break;
case 'n':
*(va_arg(args, int*)) = (int)(buffer - original);
SubDone = TRUE;
break;
case 'N':
flags |= F_NEAR;
break;
case 'o':
while (replications--) {
convert(&buffer,
(flags & F_LONG) ? va_arg(args, unsigned long) : (unsigned long)va_arg(args, unsigned),
FieldWidth,
(flags & F_LONG) ? MIN_LOCT_WIDTH : MIN_OCT_WIDTH,
flags,
otoa
);
}
SubDone = TRUE;
break;
case 'p':
while (replications--) {
void* p;
if (!(flags & F_NEAR)) {
convert(&buffer,
(ULONG_PTR) va_arg(args, char near *),
MIN_HEX_WIDTH,
MIN_HEX_WIDTH,
flags | F_XUPPER,
Xasc
);
*buffer++ = ':';
}
convert(&buffer,
(ULONG_PTR)va_arg(args, unsigned),
MIN_HEX_WIDTH,
MIN_HEX_WIDTH,
flags | F_XUPPER,
Xasc
);
}
SubDone = TRUE;
break;
case 'Q': // quoted unicode string
flags |= F_UNICODE;
// *** FALL THROUGH ***
case 'q':
*buffer++ = '"';
flags |= F_QUOTING;
//
// *** FALL THROUGH ***
//
case 's':
while (replications--) {
char* s;
s = va_arg(args, char*);
if (s != NULL) {
// darrenmi 2/24/00 Note that if the string has a field precision,
// it's not always null terminated!! Don't depend on it being psz
// and stop when we hit our max length.
StrLen = 0;
if (flags & F_UNICODE) {
WCHAR *pWork = (LPWSTR)s;
while((!FieldPrecision || StrLen < FieldPrecision) && *pWork)
{
pWork++;
StrLen++;
}
} else {
CHAR *pWork = s;
while((!FieldPrecision || StrLen < FieldPrecision) && *pWork)
{
pWork++;
StrLen++;
}
}
FieldLen = (FieldPrecision)
? min(StrLen, FieldPrecision)
: StrLen
;
if ((flags & F_QUOTING) && (FieldPrecision > 3) && (FieldLen == FieldPrecision)) {
FieldLen -= 3;
flags |= F_ELLIPSE;
}
for (i = 0; i < (FieldWidth - FieldLen); i++) {
*buffer++ = ' ';
}
if (flags & F_UNICODE) {
char wbuf[4096];
int wi;
WideCharToMultiByte(CP_ACP, 0,
(LPWSTR)s, -1,
wbuf, 4096,
NULL, NULL);
for (wi = 0; wbuf[wi] && FieldLen; ++wi) {
*buffer = wbuf[wi];
//
// if this is a quoted string, and it contains
// \r and/or \n, then we reverse-convert these
// characters, since we don't want then to
// break the string. Do the same for \t
//
if (flags & F_QUOTING) {
char ch;
ch = *buffer;
if ((ch == '\r') || (ch == '\n') || (ch == '\t')) {
*buffer++ = '\\';
*buffer = (ch == '\r')
? 'r'
: (ch == '\n')
? 'n'
: 't'
;
}
}
++buffer;
--FieldLen;
}
} else {
while (*s && FieldLen) {
*buffer = *s++;
//
// if this is a quoted string, and it contains
// \r and/or \n, then we reverse-convert these
// characters, since we don't want then to
// break the string. Do the same for \t
//
if (flags & F_QUOTING) {
char ch;
ch = *buffer;
if ((ch == '\r') || (ch == '\n') || (ch == '\t')) {
*buffer++ = '\\';
*buffer = (ch == '\r')
? 'r'
: (ch == '\n')
? 'n'
: 't'
;
}
}
++buffer;
--FieldLen;
}
}
if (flags & F_ELLIPSE) {
*buffer++ = '.';
*buffer++ = '.';
*buffer++ = '.';
}
} else if (!(flags & F_QUOTING)) {
*buffer++ = '(';
*buffer++ = 'n';
*buffer++ = 'u';
*buffer++ = 'l';
*buffer++ = 'l';
*buffer++ = ')';
}
}
if (flags & F_QUOTING) {
*buffer++ = '"';
}
SubDone = TRUE;
break;
case 'S':
break;
case 'u':
while (replications--) {
convert(&buffer,
va_arg(args, unsigned),
FieldWidth,
MIN_UINT_WIDTH,
flags,
utoa
);
}
SubDone = TRUE;
break;
case 'w':
flags |= F_UNICODE;
break;
case 'X':
flags |= F_XUPPER;
//
// *** FALL THROUGH ***
//
case 'x':
while (replications--) {
if (flags & F_HASH) {
*buffer++ = '0';
*buffer++ = (flags & F_XUPPER) ? (char)'X' : (char)'x';
}
convert(&buffer,
(flags & F_LONG) ? va_arg(args, unsigned long) : va_arg(args, unsigned),
FieldWidth,
(flags & F_LONG) ? MIN_LHEX_WIDTH : MIN_HEX_WIDTH,
flags,
(flags & F_XUPPER) ? Xasc : xtoa
);
}
SubDone = TRUE;
break;
} /* switch <%-specifier> */
}
break;
default:
*buffer++ = *format;
} /* switch <character> */
++format;
} /* while */
*buffer = EOSTR;
return (int)(buffer - original);
}
/*** _atoi - ascii to integer conversion used to get the field width out
* of the format string
*
* ENTRY p - pointer to pointer to format string
*
* EXIT returns the number found in the prefix string as a (16-bit)
* int format string pointer is updated past the field width
*/
PRIVATE
int _atoi(char** p) {
int n = 0;
int i = 5;
while ((**p >= '0' && **p <= '9') && i--) {
n = n*10+((int)(*(*p)++)-(int)'0');
}
/* put the format pointer back one since the major loop tests *++format */
--*p;
return n;
}
/*** convert - convert number to representation defined by procedure
*
* ENTRY buffer - pointer to buffer to receive conversion
* n - number to convert
* width - user defined field width
* mwidth - minimum width for representation
* flags - flags controlling conversion
* proc - pointer to conversion routine
*
* EXIT buffer is updated to point past the number representation
* just put into it
*/
PRIVATE
void
convert(
char** buffer,
ULONG_PTR n,
int width,
int mwidth,
unsigned flags,
char (*proc)(ULONG_PTR*)
)
{
char numarray[33];
int MinWidth;
int i;
MinWidth = (width < mwidth) ? mwidth : width;
i = MinWidth;
do {
numarray[--i] = (*proc)(&n);
} while (n);
while (width > MinWidth-i) {
numarray[--i] = (char)((flags & F_SPACES) ? ' ' : '0');
}
while (i < MinWidth) {
*(*buffer)++ = numarray[i++];
}
}
/*** btoa - return next (least significant) char in a binary to ASCII
* conversion
*
* ENTRY pn - pointer to number to convert
*
* EXIT returns next (LS) character, updates original number
*/
PRIVATE
char btoa(ULONG_PTR *pn) {
char rch;
rch = (char)(*pn&1)+'0';
*pn >>= 1;
return rch;
}
/*** otoa - return next (least significant) char in an octal to ASCII
* conversion
*
* ENTRY pn - pointer to number to convert
*
* EXIT returns next (LS) character, updates original number
*/
PRIVATE
char otoa(ULONG_PTR *pn) {
char rch;
rch = (char)'0'+(char)(*pn&7);
*pn >>= 3;
return rch;
}
/*** utoa - return next (least significant) char in an unsigned int to
* ASCII conversion
*
* ENTRY pn - pointer to number to convert
*
* EXIT returns next (LS) character, updates original number
*/
PRIVATE
char utoa(ULONG_PTR *pn) {
char rch;
rch = (char)'0'+(char)(*pn%10);
*pn /= 10;
return rch;
}
/*** xtoa - return next (least significant) char in a hexadecimal to
* ASCII conversion. Returns lower case hex characters
*
* ENTRY pn - pointer to number to convert
*
* EXIT returns next (LS) character, updates original number
*/
PRIVATE
char xtoa(ULONG_PTR *pn) {
ULONG_PTR n = *pn & 0x000f;
char rch = (n <= 9)
? (char)n+'0'
: (char)n+'0'+('a'-'9'-1);
*pn >>= 4;
return rch;
}
/*** Xasc - return next (least significant) char in a hexadecimal to
* ASCII conversion. Returns upper case hex characters
*
* ENTRY pn - pointer to number to convert
*
* EXIT returns next (LS) character, updates original number
*/
PRIVATE
char Xasc(ULONG_PTR *pn) {
ULONG_PTR n = *pn & 0x000f;
char rch = (n <= 9)
? (char)n+'0'
: (char)n+'0'+('A'-'9'-1);
*pn >>= 4;
return rch;
}