2020-09-30 16:53:55 +02:00

1466 lines
34 KiB
C++

// FauxMFC.cpp
#include "stdafx.h"
#include "FauxMFC.h"
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
const TCHAR afxChNil = '\0';
const /*AFX_STATIC_DATA*/ int _afxInitData[] = { -1, 0, 0, 0 };
const /*AFX_STATIC_DATA*/ CStringData* _afxDataNil = (CStringData*)&_afxInitData;
const LPCTSTR _afxPchNil = (LPCTSTR)(((BYTE*)&_afxInitData)+sizeof(CStringData));
struct _AFX_DOUBLE { BYTE doubleBits[sizeof(double)]; };
#define TCHAR_ARG TCHAR
#define WCHAR_ARG WCHAR
#define CHAR_ARG char
#define DOUBLE_ARG _AFX_DOUBLE
#define FORCE_ANSI 0x10000
#define FORCE_UNICODE 0x20000
#define FORCE_INT64 0x40000
#define IS_DIGIT(c) ((UINT)(c) - (UINT)('0') <= 9)
//////////////////////////////////////////////////////////////////////////////
// Global MFC stuff
HINSTANCE AFXAPI AfxGetResourceHandle(void)
{
return GetModuleHandle(NULL);
}
BOOL AFXAPI AfxIsValidString(LPCSTR lpsz, int nLength = -1)
{
if (lpsz == NULL)
return FALSE;
return ::IsBadStringPtrA(lpsz, nLength) == 0;
}
//////////////////////////////////////////////////////////////////////////////
// CString
CString::CString(LPCTSTR lpsz)
{
Init();
if (lpsz != NULL && HIWORD(lpsz) == NULL)
{
ASSERT(FALSE);
//UINT nID = LOWORD((DWORD)lpsz);
//LoadString(nID);
}
else
{
int nLen = SafeStrlen(lpsz);
if (nLen != 0)
{
AllocBuffer(nLen);
memcpy(m_pchData, lpsz, nLen*sizeof(TCHAR));
}
}
}
CString::CString(const CString& stringSrc)
{
ASSERT(stringSrc.GetData()->nRefs != 0);
if (stringSrc.GetData()->nRefs >= 0)
{
ASSERT(stringSrc.GetData() != _afxDataNil);
m_pchData = stringSrc.m_pchData;
InterlockedIncrement(&GetData()->nRefs);
}
else
{
Init();
*this = stringSrc.m_pchData;
}
}
CString::CString(TCHAR ch, int nLength)
{
Init();
if (nLength >= 1)
{
AllocBuffer(nLength);
#ifdef _UNICODE
for (int i = 0; i < nLength; i++)
m_pchData[i] = ch;
#else
memset(m_pchData, ch, nLength);
#endif
}
}
CString::CString(LPCTSTR lpch, int nLength)
{
Init();
if (nLength != 0)
{
// ASSERT(AfxIsValidAddress(lpch, nLength, FALSE));
AllocBuffer(nLength);
memcpy(m_pchData, lpch, nLength*sizeof(TCHAR));
}
}
CString::~CString()
// free any attached data
{
if (GetData() != _afxDataNil)
{
ASSERT( 0 != GetData()->nRefs );
if (InterlockedDecrement(&GetData()->nRefs) == 0)
{
FreeData(GetData());
}
}
}
CString AFXAPI operator+(const CString& string1, const CString& string2)
{
CString s;
s.ConcatCopy(string1.GetData()->nDataLength, string1.m_pchData,
string2.GetData()->nDataLength, string2.m_pchData);
return s;
}
CString AFXAPI operator+(const CString& string, LPCTSTR lpsz)
{
ASSERT(lpsz == NULL || AfxIsValidString(lpsz));
CString s;
s.ConcatCopy(string.GetData()->nDataLength, string.m_pchData,
CString::SafeStrlen(lpsz), lpsz);
return s;
}
CString AFXAPI operator+(LPCTSTR lpsz, const CString& string)
{
ASSERT(lpsz == NULL || AfxIsValidString(lpsz));
CString s;
s.ConcatCopy(CString::SafeStrlen(lpsz), lpsz, string.GetData()->nDataLength,
string.m_pchData);
return s;
}
BOOL CString::LoadString(UINT nID)
{
HINSTANCE hInst = AfxGetResourceHandle();
int cch;
if (!FindResourceString(hInst, nID, &cch, 0))
return FALSE;
AllocBuffer(cch);
if (cch != 0)
::LoadString(hInst, nID, this->m_pchData, cch+1);
return TRUE;
}
void CString::FormatV(LPCTSTR lpszFormat, va_list argList)
{
// ASSERT(AfxIsValidString(lpszFormat));
va_list argListSave = argList;
int nMaxLen = 0;
// make a guess at the maximum length of the resulting string
for (LPCTSTR lpsz = lpszFormat; *lpsz != '\0'; ++lpsz)
{
// handle '%' character, but watch out for '%%'
if (*lpsz != '%' || *(++lpsz) == '%')
{
nMaxLen += 2; //_tclen(lpsz);
continue;
}
int nItemLen = 0;
// handle '%' character with format
int nWidth = 0;
for (; *lpsz != '\0'; lpsz = CharNext(lpsz))
{
// check for valid flags
if (*lpsz == '#')
nMaxLen += 2; // for '0x'
else if (*lpsz == '*')
nWidth = va_arg(argList, int);
else if (*lpsz == '-' || *lpsz == '+' || *lpsz == '0' ||
*lpsz == ' ')
;
else // hit non-flag character
break;
}
// get width and skip it
if (nWidth == 0)
{
// width indicated by
nWidth = MyAtoi(lpsz); //_ttoi(lpsz);
for (; *lpsz != '\0' && IS_DIGIT(*lpsz); lpsz = CharNext(lpsz))
;
}
ASSERT(nWidth >= 0);
int nPrecision = 0;
if (*lpsz == '.')
{
// skip past '.' separator (width.precision)
lpsz = CharNext(lpsz);
// get precision and skip it
if (*lpsz == '*')
{
nPrecision = va_arg(argList, int);
lpsz = CharNext(lpsz);
}
else
{
nPrecision = MyAtoi(lpsz); //_ttoi(lpsz);
for (; *lpsz != '\0' && IS_DIGIT(*lpsz); lpsz = CharNext(lpsz))
;
}
ASSERT(nPrecision >= 0);
}
// should be on type modifier or specifier
int nModifier = 0;
#if 0 // we don't need this code -ks 7/26/1999
if (_tcsncmp(lpsz, _T("I64"), 3) == 0)
{
lpsz += 3;
nModifier = FORCE_INT64;
#if !defined(_X86_) && !defined(_ALPHA_)
// __int64 is only available on X86 and ALPHA platforms
ASSERT(FALSE);
#endif
}
else
#endif
{
switch (*lpsz)
{
// modifiers that affect size
case 'h':
nModifier = FORCE_ANSI;
lpsz = CharNext(lpsz);
break;
case 'l':
nModifier = FORCE_UNICODE;
lpsz = CharNext(lpsz);
break;
// modifiers that do not affect size
case 'F':
case 'N':
case 'L':
lpsz = CharNext(lpsz);
break;
}
}
// now should be on specifier
switch (*lpsz | nModifier)
{
// single characters
case 'c':
case 'C':
nItemLen = 2;
va_arg(argList, TCHAR_ARG);
break;
case 'c'|FORCE_ANSI:
case 'C'|FORCE_ANSI:
nItemLen = 2;
va_arg(argList, CHAR_ARG);
break;
case 'c'|FORCE_UNICODE:
case 'C'|FORCE_UNICODE:
nItemLen = 2;
va_arg(argList, WCHAR_ARG);
break;
// strings
case 's':
{
LPCTSTR pstrNextArg = va_arg(argList, LPCTSTR);
if (pstrNextArg == NULL)
nItemLen = 6; // "(null)"
else
{
nItemLen = lstrlen(pstrNextArg);
nItemLen = max(1, nItemLen);
}
}
break;
case 'S':
{
#ifndef _UNICODE
LPWSTR pstrNextArg = va_arg(argList, LPWSTR);
if (pstrNextArg == NULL)
nItemLen = 6; // "(null)"
else
{
nItemLen = wcslen(pstrNextArg);
nItemLen = max(1, nItemLen);
}
#else
LPCSTR pstrNextArg = va_arg(argList, LPCSTR);
if (pstrNextArg == NULL)
nItemLen = 6; // "(null)"
else
{
nItemLen = lstrlenA(pstrNextArg);
nItemLen = max(1, nItemLen);
}
#endif
}
break;
case 's'|FORCE_ANSI:
case 'S'|FORCE_ANSI:
{
LPCSTR pstrNextArg = va_arg(argList, LPCSTR);
if (pstrNextArg == NULL)
nItemLen = 6; // "(null)"
else
{
nItemLen = lstrlenA(pstrNextArg);
nItemLen = max(1, nItemLen);
}
}
break;
case 's'|FORCE_UNICODE:
case 'S'|FORCE_UNICODE:
{
LPWSTR pstrNextArg = va_arg(argList, LPWSTR);
if (pstrNextArg == NULL)
nItemLen = 6; // "(null)"
else
{
nItemLen = wcslen(pstrNextArg);
nItemLen = max(1, nItemLen);
}
}
break;
}
// adjust nItemLen for strings
if (nItemLen != 0)
{
if (nPrecision != 0)
nItemLen = min(nItemLen, nPrecision);
nItemLen = max(nItemLen, nWidth);
}
else
{
switch (*lpsz)
{
// integers
case 'd':
case 'i':
case 'u':
case 'x':
case 'X':
case 'o':
if (nModifier & FORCE_INT64)
va_arg(argList, __int64);
else
va_arg(argList, int);
nItemLen = 32;
nItemLen = max(nItemLen, nWidth+nPrecision);
break;
case 'e':
case 'g':
case 'G':
va_arg(argList, DOUBLE_ARG);
nItemLen = 128;
nItemLen = max(nItemLen, nWidth+nPrecision);
break;
case 'f':
va_arg(argList, DOUBLE_ARG);
nItemLen = 128; // width isn't truncated
// 312 == strlen("-1+(309 zeroes).")
// 309 zeroes == max precision of a double
nItemLen = max(nItemLen, 312+nPrecision);
break;
case 'p':
va_arg(argList, void*);
nItemLen = 32;
nItemLen = max(nItemLen, nWidth+nPrecision);
break;
// no output
case 'n':
va_arg(argList, int*);
break;
default:
ASSERT(FALSE); // unknown formatting option
}
}
// adjust nMaxLen for output nItemLen
nMaxLen += nItemLen;
}
GetBuffer(nMaxLen);
#ifdef UNICODE
wvnsprintf(m_pchData, ARRAYSIZE(m_pchData), lpszFormat, argListSave);
#else
wvsprintf(m_pchData, lpszFormat, argListSave);
#endif
ReleaseBuffer();
va_end(argListSave);
}
void AFX_CDECL CString::Format(UINT nFormatID, ...)
{
CString strFormat;
strFormat.LoadString(nFormatID);
va_list argList;
va_start(argList, nFormatID);
FormatV(strFormat, argList);
va_end(argList);
}
// formatting (using wsprintf style formatting)
void AFX_CDECL CString::Format(LPCTSTR lpszFormat, ...)
{
ASSERT(AfxIsValidString(lpszFormat));
va_list argList;
va_start(argList, lpszFormat);
FormatV(lpszFormat, argList);
va_end(argList);
}
void CString::Empty()
{
if (GetData()->nDataLength == 0)
return;
if (GetData()->nRefs >= 0)
Release();
else
*this = &afxChNil;
ASSERT(GetData()->nDataLength == 0);
ASSERT(GetData()->nRefs < 0 || GetData()->nAllocLength == 0);
}
const CString& CString::operator=(const CString& stringSrc)
{
if (m_pchData != stringSrc.m_pchData)
{
if ((GetData()->nRefs < 0 && GetData() != _afxDataNil) ||
stringSrc.GetData()->nRefs < 0)
{
// actual copy necessary since one of the strings is locked
AssignCopy(stringSrc.GetData()->nDataLength, stringSrc.m_pchData);
}
else
{
// can just copy references around
Release();
ASSERT(stringSrc.GetData() != _afxDataNil);
m_pchData = stringSrc.m_pchData;
InterlockedIncrement(&GetData()->nRefs);
}
}
return *this;
}
const CString& CString::operator=(LPCTSTR lpsz)
{
ASSERT(lpsz == NULL || AfxIsValidString(lpsz));
AssignCopy(SafeStrlen(lpsz), lpsz);
return *this;
}
int AFX_CDECL _wcstombsz(char* mbstr, const wchar_t* wcstr, size_t count)
{
if (count == 0 && mbstr != NULL)
return 0;
int result = ::WideCharToMultiByte(CP_ACP, 0, wcstr, -1,
mbstr, count, NULL, NULL);
ASSERT(mbstr == NULL || result <= (int)count);
if (result > 0)
mbstr[result-1] = 0;
return result;
}
const CString& CString::operator=(LPCWSTR lpsz)
{
int nSrcLen = lpsz != NULL ? wcslen(lpsz) : 0;
AllocBeforeWrite(nSrcLen*2);
_wcstombsz(m_pchData, lpsz, (nSrcLen*2)+1);
ReleaseBuffer();
return *this;
}
CString CString::Left(int nCount) const
{
if (nCount < 0)
nCount = 0;
if (nCount >= GetData()->nDataLength)
return *this;
CString dest;
AllocCopy(dest, nCount, 0, 0);
return dest;
}
CString CString::Right(int nCount) const
{
if (nCount < 0)
nCount = 0;
if (nCount >= GetData()->nDataLength)
return *this;
CString dest;
AllocCopy(dest, nCount, GetData()->nDataLength-nCount, 0);
return dest;
}
// find a sub-string (like strstr)
int CString::Find(LPCTSTR lpszSub) const
{
return Find(lpszSub, 0);
}
int CString::Find(LPCTSTR lpszSub, int nStart) const
{
ASSERT(AfxIsValidString(lpszSub));
int nLength = GetData()->nDataLength;
if (nStart > nLength)
return -1;
// find first matching substring
// LPTSTR lpsz = _tcsstr(m_pchData + nStart, lpszSub);
LPTSTR lpsz = strstr(m_pchData + nStart, lpszSub);
// return -1 for not found, distance from beginning otherwise
return (lpsz == NULL) ? -1 : (int)(lpsz - m_pchData);
}
LPTSTR CString::GetBuffer(int nMinBufLength)
{
ASSERT(nMinBufLength >= 0);
if (GetData()->nRefs > 1 || nMinBufLength > GetData()->nAllocLength)
{
// we have to grow the buffer
CStringData* pOldData = GetData();
int nOldLen = GetData()->nDataLength; // AllocBuffer will tromp it
if (nMinBufLength < nOldLen)
nMinBufLength = nOldLen;
AllocBuffer(nMinBufLength);
memcpy(m_pchData, pOldData->data(), (nOldLen+1)*sizeof(TCHAR));
GetData()->nDataLength = nOldLen;
CString::Release(pOldData);
}
ASSERT(GetData()->nRefs <= 1);
// return a pointer to the character storage for this string
ASSERT(m_pchData != NULL);
return m_pchData;
}
LPTSTR CString::GetBufferSetLength(int nNewLength)
{
ASSERT(nNewLength >= 0);
GetBuffer(nNewLength);
GetData()->nDataLength = nNewLength;
m_pchData[nNewLength] = '\0';
return m_pchData;
}
void CString::Release()
{
if (GetData() != _afxDataNil)
{
ASSERT( 0 != GetData()->nRefs );
if (InterlockedDecrement(&GetData()->nRefs) == 0)
{
FreeData(GetData());
}
Init();
}
}
void CString::AssignCopy(int nSrcLen, LPCTSTR lpszSrcData)
{
if (nSrcLen)
{
AllocBeforeWrite(nSrcLen);
memcpy(m_pchData, lpszSrcData, nSrcLen*sizeof(TCHAR));
GetData()->nDataLength = nSrcLen;
m_pchData[nSrcLen] = '\0';
}
}
void CString::AllocCopy(CString& dest, int nCopyLen, int nCopyIndex,
int nExtraLen) const
{
// will clone the data attached to this string
// allocating 'nExtraLen' characters
// Places results in uninitialized string 'dest'
// Will copy the part or all of original data to start of new string
int nNewLen = nCopyLen + nExtraLen;
if (nNewLen == 0)
{
dest.Init();
}
else
{
dest.AllocBuffer(nNewLen);
memcpy(dest.m_pchData, m_pchData+nCopyIndex, nCopyLen*sizeof(TCHAR));
}
}
void CString::AllocBuffer(int nLen)
// always allocate one extra character for '\0' termination
// assumes [optimistically] that data length will equal allocation length
{
ASSERT(nLen >= 0);
ASSERT(nLen <= INT_MAX-1); // max size (enough room for 1 extra)
if (nLen == 0)
Init();
else
{
CStringData* pData;
pData = (CStringData*)new BYTE[sizeof(CStringData) + (nLen+1)*sizeof(TCHAR)];
if (pData)
{
pData->nAllocLength = nLen;
pData->nRefs = 1;
pData->data()[nLen] = '\0';
pData->nDataLength = nLen;
m_pchData = pData->data();
}
}
}
void CString::CopyBeforeWrite()
{
if (GetData()->nRefs > 1)
{
CStringData* pData = GetData();
Release();
AllocBuffer(pData->nDataLength);
memcpy(m_pchData, pData->data(), (pData->nDataLength+1)*sizeof(TCHAR));
}
ASSERT(GetData()->nRefs <= 1);
}
void CString::AllocBeforeWrite(int nLen)
{
if (GetData()->nRefs > 1 || nLen > GetData()->nAllocLength)
{
Release();
AllocBuffer(nLen);
}
ASSERT(GetData()->nRefs <= 1);
}
void PASCAL CString::Release(CStringData* pData)
{
if (pData != _afxDataNil)
{
ASSERT(pData->nRefs != 0);
if (InterlockedDecrement(&pData->nRefs) == 0)
{
FreeData(pData);
}
}
}
void CString::ReleaseBuffer(int nNewLength)
{
CopyBeforeWrite(); // just in case GetBuffer was not called
if (nNewLength == -1)
nNewLength = lstrlen(m_pchData); // zero terminated
ASSERT(nNewLength <= GetData()->nAllocLength);
GetData()->nDataLength = nNewLength;
m_pchData[nNewLength] = '\0';
}
void FASTCALL CString::FreeData(CStringData* pData)
{
//#ifndef _DEBUG
#ifdef TEST
int nLen = pData->nAllocLength;
if (nLen == 64)
_afxAlloc64.Free(pData);
else if (nLen == 128)
_afxAlloc128.Free(pData);
else if (nLen == 256)
_afxAlloc256.Free(pData);
else if (nLen == 512)
_afxAlloc512.Free(pData);
else
{
ASSERT(nLen > 512);
delete[] (BYTE*)pData;
}
#else
delete[] (BYTE*)pData;
#endif
}
void CString::ConcatCopy(int nSrc1Len, LPCTSTR lpszSrc1Data,
int nSrc2Len, LPCTSTR lpszSrc2Data)
{
// -- master concatenation routine
// Concatenate two sources
// -- assume that 'this' is a new CString object
int nNewLen = nSrc1Len + nSrc2Len;
if (nNewLen != 0)
{
AllocBuffer(nNewLen);
memcpy(m_pchData, lpszSrc1Data, nSrc1Len*sizeof(TCHAR));
memcpy(m_pchData+nSrc1Len, lpszSrc2Data, nSrc2Len*sizeof(TCHAR));
}
}
void CString::ConcatInPlace(int nSrcLen, LPCTSTR lpszSrcData)
{
// -- the main routine for += operators
// concatenating an empty string is a no-op!
if (nSrcLen == 0)
return;
// if the buffer is too small, or we have a width mis-match, just
// allocate a new buffer (slow but sure)
if (GetData()->nRefs > 1 || GetData()->nDataLength + nSrcLen > GetData()->nAllocLength)
{
// we have to grow the buffer, use the ConcatCopy routine
CStringData* pOldData = GetData();
ConcatCopy(GetData()->nDataLength, m_pchData, nSrcLen, lpszSrcData);
ASSERT(pOldData != NULL);
CString::Release(pOldData);
}
else
{
// fast concatenation when buffer big enough
memcpy(m_pchData+GetData()->nDataLength, lpszSrcData, nSrcLen*sizeof(TCHAR));
GetData()->nDataLength += nSrcLen;
ASSERT(GetData()->nDataLength <= GetData()->nAllocLength);
m_pchData[GetData()->nDataLength] = '\0';
}
}
const CString& CString::operator+=(LPCTSTR lpsz)
{
ASSERT(lpsz == NULL || AfxIsValidString(lpsz));
ConcatInPlace(SafeStrlen(lpsz), lpsz);
return *this;
}
const CString& CString::operator+=(TCHAR ch)
{
ConcatInPlace(1, &ch);
return *this;
}
const CString& CString::operator+=(const CString& string)
{
ConcatInPlace(string.GetData()->nDataLength, string.m_pchData);
return *this;
}
CString CString::Mid(int nFirst) const
{
return Mid(nFirst, GetData()->nDataLength - nFirst);
}
CString CString::Mid(int nFirst, int nCount) const
{
// out-of-bounds requests return sensible things
if (nFirst < 0)
nFirst = 0;
if (nCount < 0)
nCount = 0;
if (nFirst + nCount > GetData()->nDataLength)
nCount = GetData()->nDataLength - nFirst;
if (nFirst > GetData()->nDataLength)
nCount = 0;
ASSERT(nFirst >= 0);
ASSERT(nFirst + nCount <= GetData()->nDataLength);
// optimize case of returning entire string
if (nFirst == 0 && nFirst + nCount == GetData()->nDataLength)
return *this;
CString dest;
AllocCopy(dest, nCount, nFirst, 0);
return dest;
}
//////////////////////////////////////////////////////////////////////////////
// CWinThread
CWinThread::CWinThread(AFX_THREADPROC pfnThreadProc, LPVOID pParam)
{
m_pfnThreadProc = pfnThreadProc;
m_pThreadParams = pParam;
CommonConstruct();
}
CWinThread::CWinThread()
{
m_pThreadParams = NULL;
m_pfnThreadProc = NULL;
CommonConstruct();
}
void CWinThread::CommonConstruct()
{
// no HTHREAD until it is created
m_hThread = NULL;
m_nThreadID = 0;
}
CWinThread::~CWinThread()
{
// free thread object
if (m_hThread != NULL)
CloseHandle(m_hThread);
//TODO:fix
// cleanup module state
// AFX_MODULE_THREAD_STATE* pState = AfxGetModuleThreadState();
// if (pState->m_pCurrentWinThread == this)
// pState->m_pCurrentWinThread = NULL;
}
CWinThread* AFXAPI AfxBeginThread(AFX_THREADPROC pfnThreadProc, LPVOID pParam,
int nPriority, UINT nStackSize, DWORD dwCreateFlags,
LPSECURITY_ATTRIBUTES lpSecurityAttrs)
{
ASSERT(pfnThreadProc != NULL);
CWinThread* pThread = new CWinThread(pfnThreadProc, pParam);
if (pThread)
{
if (!pThread->CreateThread(dwCreateFlags|CREATE_SUSPENDED, nStackSize, lpSecurityAttrs))
{
pThread->Delete();
return NULL;
}
pThread->SetThreadPriority(nPriority);
if (!(dwCreateFlags & CREATE_SUSPENDED))
pThread->ResumeThread();
}
return pThread;
}
BOOL CWinThread::SetThreadPriority(int nPriority)
{ ASSERT(m_hThread != NULL); return ::SetThreadPriority(m_hThread, nPriority); }
BOOL CWinThread::CreateThread(DWORD dwCreateFlags, UINT nStackSize,
LPSECURITY_ATTRIBUTES lpSecurityAttrs)
{
ASSERT(m_hThread == NULL); // already created?
m_hThread = ::CreateThread(lpSecurityAttrs, nStackSize, m_pfnThreadProc,
m_pThreadParams, dwCreateFlags, &m_nThreadID);
if (m_hThread == NULL)
return FALSE;
return TRUE;
}
DWORD CWinThread::ResumeThread()
{ ASSERT(m_hThread != NULL); return ::ResumeThread(m_hThread); }
void CWinThread::Delete()
{
delete this;
}
/////////////////////////////////////////////////////////////////////////////
// CWinThread default implementation
BOOL CWinThread::InitInstance()
{
// ASSERT_VALID(this);
return FALSE; // by default don't enter run loop
}
int CWinThread::ExitInstance()
{
// ASSERT_VALID(this);
// ASSERT(AfxGetApp() != this);
// int nResult = m_msgCur.wParam; // returns the value from PostQuitMessage
return 0;
}
//////////////////////////////////////////////////////////////////////////////
// CStringArray
static inline void ConstructElement(CString* pNewData)
{
memcpy(pNewData, &afxEmptyString, sizeof(CString));
}
static inline void DestructElement(CString* pOldData)
{
pOldData->~CString();
}
static inline void CopyElement(CString* pSrc, CString* pDest)
{
*pSrc = *pDest;
}
static void ConstructElements(CString* pNewData, int nCount)
{
ASSERT(nCount >= 0);
while (nCount--)
{
ConstructElement(pNewData);
pNewData++;
}
}
static void DestructElements(CString* pOldData, int nCount)
{
ASSERT(nCount >= 0);
while (nCount--)
{
DestructElement(pOldData);
pOldData++;
}
}
static void CopyElements(CString* pDest, CString* pSrc, int nCount)
{
ASSERT(nCount >= 0);
while (nCount--)
{
*pDest = *pSrc;
++pDest;
++pSrc;
}
}
/////////////////////////////////////////////////////////////////////////////
CStringArray::CStringArray()
{
m_pData = NULL;
m_nSize = m_nMaxSize = m_nGrowBy = 0;
}
CStringArray::~CStringArray()
{
// ASSERT_VALID(this);
DestructElements(m_pData, m_nSize);
delete[] (BYTE*)m_pData;
}
void CStringArray::SetSize(int nNewSize, int nGrowBy)
{
// ASSERT_VALID(this);
ASSERT(nNewSize >= 0);
if (nGrowBy != -1)
m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0)
{
// shrink to nothing
DestructElements(m_pData, m_nSize);
delete[] (BYTE*)m_pData;
m_pData = NULL;
m_nSize = m_nMaxSize = 0;
}
else if (m_pData == NULL)
{
// create one with exact size
#ifdef SIZE_T_MAX
ASSERT(nNewSize <= SIZE_T_MAX/sizeof(CString)); // no overflow
#endif
m_pData = (CString*) new BYTE[nNewSize * sizeof(CString)];
if (m_pData)
{
ConstructElements(m_pData, nNewSize);
m_nSize = m_nMaxSize = nNewSize;
}
}
else if (nNewSize <= m_nMaxSize)
{
// it fits
if (nNewSize > m_nSize)
{
// initialize the new elements
ConstructElements(&m_pData[m_nSize], nNewSize-m_nSize);
}
else if (m_nSize > nNewSize) // destroy the old elements
DestructElements(&m_pData[nNewSize], m_nSize-nNewSize);
m_nSize = nNewSize;
}
else
{
// otherwise, grow array
int nGrowBy = m_nGrowBy;
if (nGrowBy == 0)
{
// heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8));
}
int nNewMax;
if (nNewSize < m_nMaxSize + nGrowBy)
nNewMax = m_nMaxSize + nGrowBy; // granularity
else
nNewMax = nNewSize; // no slush
ASSERT(nNewMax >= m_nMaxSize); // no wrap around
#ifdef SIZE_T_MAX
ASSERT(nNewMax <= SIZE_T_MAX/sizeof(CString)); // no overflow
#endif
CString* pNewData = (CString*) new BYTE[nNewMax * sizeof(CString)];
if (pNewData)
{
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(CString));
// construct remaining elements
ASSERT(nNewSize > m_nSize);
ConstructElements(&pNewData[m_nSize], nNewSize-m_nSize);
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}
}
int CStringArray::Append(const CStringArray& src)
{
// ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
int nOldSize = m_nSize;
SetSize(m_nSize + src.m_nSize);
CopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize);
return nOldSize;
}
void CStringArray::Copy(const CStringArray& src)
{
// ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
SetSize(src.m_nSize);
CopyElements(m_pData, src.m_pData, src.m_nSize);
}
void CStringArray::FreeExtra()
{
// ASSERT_VALID(this);
if (m_nSize != m_nMaxSize)
{
// shrink to desired size
#ifdef SIZE_T_MAX
ASSERT(m_nSize <= SIZE_T_MAX/sizeof(CString)); // no overflow
#endif
CString* pNewData = NULL;
if (m_nSize != 0)
{
pNewData = (CString*) new BYTE[m_nSize * sizeof(CString)];
if (pNewData)
{
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(CString));
}
}
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nMaxSize = m_nSize;
}
}
void CStringArray::SetAtGrow(int nIndex, LPCTSTR newElement)
{
// ASSERT_VALID(this);
ASSERT(nIndex >= 0);
if (nIndex >= m_nSize)
SetSize(nIndex+1);
m_pData[nIndex] = newElement;
}
void CStringArray::SetAtGrow(int nIndex, const CString& newElement)
{
// ASSERT_VALID(this);
ASSERT(nIndex >= 0);
if (nIndex >= m_nSize)
SetSize(nIndex+1);
m_pData[nIndex] = newElement;
}
void CStringArray::InsertEmpty(int nIndex, int nCount)
{
// ASSERT_VALID(this);
ASSERT(nIndex >= 0); // will expand to meet need
ASSERT(nCount > 0); // zero or negative size not allowed
if (nIndex >= m_nSize)
{
// adding after the end of the array
SetSize(nIndex + nCount); // grow so nIndex is valid
}
else
{
// inserting in the middle of the array
int nOldSize = m_nSize;
SetSize(m_nSize + nCount); // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
(nOldSize-nIndex) * sizeof(CString));
// re-init slots we copied from
ConstructElements(&m_pData[nIndex], nCount);
}
// insert new value in the gap
ASSERT(nIndex + nCount <= m_nSize);
}
void CStringArray::InsertAt(int nIndex, LPCTSTR newElement, int nCount)
{
// make room for new elements
InsertEmpty(nIndex, nCount);
// copy elements into the empty space
CString temp = newElement;
while (nCount--)
m_pData[nIndex++] = temp;
}
void CStringArray::InsertAt(int nIndex, const CString& newElement, int nCount)
{
// make room for new elements
InsertEmpty(nIndex, nCount);
// copy elements into the empty space
while (nCount--)
m_pData[nIndex++] = newElement;
}
void CStringArray::RemoveAt(int nIndex, int nCount)
{
// ASSERT_VALID(this);
ASSERT(nIndex >= 0);
ASSERT(nCount >= 0);
ASSERT(nIndex + nCount <= m_nSize);
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount);
DestructElements(&m_pData[nIndex], nCount);
if (nMoveCount)
memmove(&m_pData[nIndex], &m_pData[nIndex + nCount],
nMoveCount * sizeof(CString));
m_nSize -= nCount;
}
void CStringArray::InsertAt(int nStartIndex, CStringArray* pNewArray)
{
// ASSERT_VALID(this);
ASSERT(pNewArray != NULL);
// ASSERT_KINDOF(CStringArray, pNewArray);
// ASSERT_VALID(pNewArray);
ASSERT(nStartIndex >= 0);
if (pNewArray->GetSize() > 0)
{
InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize());
for (int i = 0; i < pNewArray->GetSize(); i++)
SetAt(nStartIndex + i, pNewArray->GetAt(i));
}
}
//////////////////////////////////////////////////////////////////////////////
// CPtrArray
/////////////////////////////////////////////////////////////////////////////
CPtrArray::CPtrArray()
{
m_pData = NULL;
m_nSize = m_nMaxSize = m_nGrowBy = 0;
}
CPtrArray::~CPtrArray()
{
// ASSERT_VALID(this);
delete[] (BYTE*)m_pData;
}
void CPtrArray::SetSize(int nNewSize, int nGrowBy)
{
// ASSERT_VALID(this);
ASSERT(nNewSize >= 0);
if (nGrowBy != -1)
m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0)
{
// shrink to nothing
delete[] (BYTE*)m_pData;
m_pData = NULL;
m_nSize = m_nMaxSize = 0;
}
else if (m_pData == NULL)
{
// create one with exact size
#ifdef SIZE_T_MAX
ASSERT(nNewSize <= SIZE_T_MAX/sizeof(void*)); // no overflow
#endif
m_pData = (void**) new BYTE[nNewSize * sizeof(void*)];
if (m_pData)
{
memset(m_pData, 0, nNewSize * sizeof(void*)); // zero fill
m_nSize = m_nMaxSize = nNewSize;
}
}
else if (nNewSize <= m_nMaxSize)
{
// it fits
if (nNewSize > m_nSize)
{
// initialize the new elements
memset(&m_pData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*));
}
m_nSize = nNewSize;
}
else
{
// otherwise, grow array
int nGrowBy = m_nGrowBy;
if (nGrowBy == 0)
{
// heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8));
}
int nNewMax;
if (nNewSize < m_nMaxSize + nGrowBy)
nNewMax = m_nMaxSize + nGrowBy; // granularity
else
nNewMax = nNewSize; // no slush
ASSERT(nNewMax >= m_nMaxSize); // no wrap around
#ifdef SIZE_T_MAX
ASSERT(nNewMax <= SIZE_T_MAX/sizeof(void*)); // no overflow
#endif
void** pNewData = (void**) new BYTE[nNewMax * sizeof(void*)];
if (pNewData)
{
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(void*));
// construct remaining elements
ASSERT(nNewSize > m_nSize);
memset(&pNewData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*));
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}
}
int CPtrArray::Append(const CPtrArray& src)
{
// ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
int nOldSize = m_nSize;
SetSize(m_nSize + src.m_nSize);
memcpy(m_pData + nOldSize, src.m_pData, src.m_nSize * sizeof(void*));
return nOldSize;
}
void CPtrArray::Copy(const CPtrArray& src)
{
// ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
SetSize(src.m_nSize);
memcpy(m_pData, src.m_pData, src.m_nSize * sizeof(void*));
}
void CPtrArray::FreeExtra()
{
// ASSERT_VALID(this);
if (m_nSize != m_nMaxSize)
{
// shrink to desired size
#ifdef SIZE_T_MAX
ASSERT(m_nSize <= SIZE_T_MAX/sizeof(void*)); // no overflow
#endif
void** pNewData = NULL;
if (m_nSize != 0)
{
pNewData = (void**) new BYTE[m_nSize * sizeof(void*)];
if (pNewData)
{
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(void*));
}
}
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nMaxSize = m_nSize;
}
}
/////////////////////////////////////////////////////////////////////////////
void CPtrArray::SetAtGrow(int nIndex, void* newElement)
{
// ASSERT_VALID(this);
ASSERT(nIndex >= 0);
if (nIndex >= m_nSize)
SetSize(nIndex+1);
m_pData[nIndex] = newElement;
}
void CPtrArray::InsertAt(int nIndex, void* newElement, int nCount)
{
// ASSERT_VALID(this);
ASSERT(nIndex >= 0); // will expand to meet need
ASSERT(nCount > 0); // zero or negative size not allowed
if (nIndex >= m_nSize)
{
// adding after the end of the array
SetSize(nIndex + nCount); // grow so nIndex is valid
}
else
{
// inserting in the middle of the array
int nOldSize = m_nSize;
SetSize(m_nSize + nCount); // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
(nOldSize-nIndex) * sizeof(void*));
// re-init slots we copied from
memset(&m_pData[nIndex], 0, nCount * sizeof(void*));
}
// insert new value in the gap
ASSERT(nIndex + nCount <= m_nSize);
// copy elements into the empty space
while (nCount--)
m_pData[nIndex++] = newElement;
}
void CPtrArray::RemoveAt(int nIndex, int nCount)
{
// ASSERT_VALID(this);
ASSERT(nIndex >= 0);
ASSERT(nCount >= 0);
ASSERT(nIndex + nCount <= m_nSize);
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount);
if (nMoveCount)
memmove(&m_pData[nIndex], &m_pData[nIndex + nCount],
nMoveCount * sizeof(void*));
m_nSize -= nCount;
}
void CPtrArray::InsertAt(int nStartIndex, CPtrArray* pNewArray)
{
// ASSERT_VALID(this);
ASSERT(pNewArray != NULL);
// ASSERT_KINDOF(CPtrArray, pNewArray);
// ASSERT_VALID(pNewArray);
ASSERT(nStartIndex >= 0);
if (pNewArray->GetSize() > 0)
{
InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize());
for (int i = 0; i < pNewArray->GetSize(); i++)
SetAt(nStartIndex + i, pNewArray->GetAt(i));
}
}
/////////////////////////////////////////////////////////////////////////////