797 lines
21 KiB
C++
797 lines
21 KiB
C++
/* vmem.h
|
|
*
|
|
* (c) 1999 Microsoft Corporation. All rights reserved.
|
|
* Portions (c) 1999 ActiveState Tool Corp, http://www.ActiveState.com/
|
|
*
|
|
* You may distribute under the terms of either the GNU General Public
|
|
* License or the Artistic License, as specified in the README file.
|
|
*
|
|
* Knuth's boundary tag algorithm Vol #1, Page 440.
|
|
*
|
|
* Each block in the heap has tag words before and after it,
|
|
* TAG
|
|
* block
|
|
* TAG
|
|
* The size is stored in these tags as a long word, and includes the 8 bytes
|
|
* of overhead that the boundary tags consume. Blocks are allocated on long
|
|
* word boundaries, so the size is always multiples of long words. When the
|
|
* block is allocated, bit 0, (the tag bit), of the size is set to 1. When
|
|
* a block is freed, it is merged with adjacent free blocks, and the tag bit
|
|
* is set to 0.
|
|
*
|
|
* A linked list is used to manage the free list. The first two long words of
|
|
* the block contain double links. These links are only valid when the block
|
|
* is freed, therefore space needs to be reserved for them. Thus, the minimum
|
|
* block size (not counting the tags) is 8 bytes.
|
|
*
|
|
* Since memory allocation may occur on a single threaded, explict locks are
|
|
* provided.
|
|
*
|
|
*/
|
|
|
|
#ifndef ___VMEM_H_INC___
|
|
#define ___VMEM_H_INC___
|
|
|
|
const long lAllocStart = 0x00010000; /* start at 64K */
|
|
const long minBlockSize = sizeof(void*)*2;
|
|
const long sizeofTag = sizeof(long);
|
|
const long blockOverhead = sizeofTag*2;
|
|
const long minAllocSize = minBlockSize+blockOverhead;
|
|
|
|
typedef BYTE* PBLOCK; /* pointer to a memory block */
|
|
|
|
/*
|
|
* Macros for accessing hidden fields in a memory block:
|
|
*
|
|
* SIZE size of this block (tag bit 0 is 1 if block is allocated)
|
|
* PSIZE size of previous physical block
|
|
*/
|
|
|
|
#define SIZE(block) (*(ULONG*)(((PBLOCK)(block))-sizeofTag))
|
|
#define PSIZE(block) (*(ULONG*)(((PBLOCK)(block))-(sizeofTag*2)))
|
|
inline void SetTags(PBLOCK block, long size)
|
|
{
|
|
SIZE(block) = size;
|
|
PSIZE(block+(size&~1)) = size;
|
|
}
|
|
|
|
/*
|
|
* Free list pointers
|
|
* PREV pointer to previous block
|
|
* NEXT pointer to next block
|
|
*/
|
|
|
|
#define PREV(block) (*(PBLOCK*)(block))
|
|
#define NEXT(block) (*(PBLOCK*)((block)+sizeof(PBLOCK)))
|
|
inline void SetLink(PBLOCK block, PBLOCK prev, PBLOCK next)
|
|
{
|
|
PREV(block) = prev;
|
|
NEXT(block) = next;
|
|
}
|
|
inline void Unlink(PBLOCK p)
|
|
{
|
|
PBLOCK next = NEXT(p);
|
|
PBLOCK prev = PREV(p);
|
|
NEXT(prev) = next;
|
|
PREV(next) = prev;
|
|
}
|
|
inline void AddToFreeList(PBLOCK block, PBLOCK pInList)
|
|
{
|
|
PBLOCK next = NEXT(pInList);
|
|
NEXT(pInList) = block;
|
|
SetLink(block, pInList, next);
|
|
PREV(next) = block;
|
|
}
|
|
|
|
|
|
/* Macro for rounding up to the next sizeof(long) */
|
|
#define ROUND_UP(n) (((ULONG)(n)+sizeof(long)-1)&~(sizeof(long)-1))
|
|
#define ROUND_UP64K(n) (((ULONG)(n)+0x10000-1)&~(0x10000-1))
|
|
#define ROUND_DOWN(n) ((ULONG)(n)&~(sizeof(long)-1))
|
|
|
|
/*
|
|
* HeapRec - a list of all non-contiguous heap areas
|
|
*
|
|
* Each record in this array contains information about a non-contiguous heap area.
|
|
*/
|
|
|
|
const int maxHeaps = 32; /* 64 was overkill */
|
|
const long lAllocMax = 0x80000000; /* max size of allocation */
|
|
|
|
#define USE_BIGBLOCK_ALLOC
|
|
/*
|
|
* performance tuning
|
|
* Use VirtualAlloc() for blocks bigger than nMaxHeapAllocSize since
|
|
* Windows 95/98/Me have heap managers that are designed for memory
|
|
* blocks smaller than four megabytes.
|
|
*/
|
|
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
const int nMaxHeapAllocSize = (1024*512); /* don't allocate anything larger than this from the heap */
|
|
#endif
|
|
|
|
typedef struct _HeapRec
|
|
{
|
|
PBLOCK base; /* base of heap area */
|
|
ULONG len; /* size of heap area */
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
BOOL bBigBlock; /* was allocate using VirtualAlloc */
|
|
#endif
|
|
} HeapRec;
|
|
|
|
|
|
class VMem
|
|
{
|
|
public:
|
|
VMem();
|
|
~VMem();
|
|
virtual void* Malloc(size_t size);
|
|
virtual void* Realloc(void* pMem, size_t size);
|
|
virtual void Free(void* pMem);
|
|
virtual void GetLock(void);
|
|
virtual void FreeLock(void);
|
|
virtual int IsLocked(void);
|
|
virtual long Release(void);
|
|
virtual long AddRef(void);
|
|
|
|
inline BOOL CreateOk(void)
|
|
{
|
|
return m_hHeap != NULL;
|
|
};
|
|
|
|
void ReInit(void);
|
|
|
|
protected:
|
|
void Init(void);
|
|
int Getmem(size_t size);
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
int HeapAdd(void* ptr, size_t size, BOOL bBigBlock);
|
|
#else
|
|
int HeapAdd(void* ptr, size_t size);
|
|
#endif
|
|
void* Expand(void* block, size_t size);
|
|
void WalkHeap(void);
|
|
|
|
HANDLE m_hHeap; // memory heap for this script
|
|
char m_FreeDummy[minAllocSize]; // dummy free block
|
|
PBLOCK m_pFreeList; // pointer to first block on free list
|
|
PBLOCK m_pRover; // roving pointer into the free list
|
|
HeapRec m_heaps[maxHeaps]; // list of all non-contiguous heap areas
|
|
int m_nHeaps; // no. of heaps in m_heaps
|
|
long m_lAllocSize; // current alloc size
|
|
long m_lRefCount; // number of current users
|
|
CRITICAL_SECTION m_cs; // access lock
|
|
#ifdef _DEBUG_MEM
|
|
FILE* m_pLog;
|
|
#endif
|
|
};
|
|
|
|
// #define _DEBUG_MEM
|
|
#ifdef _DEBUG_MEM
|
|
#define ASSERT(f) if(!(f)) DebugBreak();
|
|
|
|
inline void MEMODS(char *str)
|
|
{
|
|
OutputDebugString(str);
|
|
OutputDebugString("\n");
|
|
}
|
|
|
|
inline void MEMODSlx(char *str, long x)
|
|
{
|
|
char szBuffer[512];
|
|
sprintf(szBuffer, "%s %lx\n", str, x);
|
|
OutputDebugString(szBuffer);
|
|
}
|
|
|
|
#define WALKHEAP() WalkHeap()
|
|
#define WALKHEAPTRACE() m_pRover = NULL; WalkHeap()
|
|
|
|
#else
|
|
|
|
#define ASSERT(f)
|
|
#define MEMODS(x)
|
|
#define MEMODSlx(x, y)
|
|
#define WALKHEAP()
|
|
#define WALKHEAPTRACE()
|
|
|
|
#endif
|
|
|
|
|
|
VMem::VMem()
|
|
{
|
|
m_lRefCount = 1;
|
|
BOOL bRet = (NULL != (m_hHeap = HeapCreate(HEAP_NO_SERIALIZE,
|
|
lAllocStart, /* initial size of heap */
|
|
0))); /* no upper limit on size of heap */
|
|
ASSERT(bRet);
|
|
|
|
InitializeCriticalSection(&m_cs);
|
|
#ifdef _DEBUG_MEM
|
|
m_pLog = 0;
|
|
#endif
|
|
|
|
Init();
|
|
}
|
|
|
|
VMem::~VMem(void)
|
|
{
|
|
ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, NULL));
|
|
WALKHEAPTRACE();
|
|
#ifdef _DEBUG_MEM
|
|
MemoryUsageMessage(NULL, 0, 0, 0);
|
|
#endif
|
|
DeleteCriticalSection(&m_cs);
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
for(int index = 0; index < m_nHeaps; ++index) {
|
|
if (m_heaps[index].bBigBlock) {
|
|
VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
|
|
}
|
|
}
|
|
#endif
|
|
BOOL bRet = HeapDestroy(m_hHeap);
|
|
ASSERT(bRet);
|
|
}
|
|
|
|
void VMem::ReInit(void)
|
|
{
|
|
for(int index = 0; index < m_nHeaps; ++index) {
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
if (m_heaps[index].bBigBlock) {
|
|
VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
|
|
}
|
|
else
|
|
#endif
|
|
HeapFree(m_hHeap, HEAP_NO_SERIALIZE, m_heaps[index].base);
|
|
}
|
|
|
|
Init();
|
|
}
|
|
|
|
void VMem::Init(void)
|
|
{ /*
|
|
* Initialize the free list by placing a dummy zero-length block on it.
|
|
* Set the number of non-contiguous heaps to zero.
|
|
*/
|
|
m_pFreeList = m_pRover = (PBLOCK)(&m_FreeDummy[minBlockSize]);
|
|
PSIZE(m_pFreeList) = SIZE(m_pFreeList) = 0;
|
|
PREV(m_pFreeList) = NEXT(m_pFreeList) = m_pFreeList;
|
|
|
|
m_nHeaps = 0;
|
|
m_lAllocSize = lAllocStart;
|
|
}
|
|
|
|
void* VMem::Malloc(size_t size)
|
|
{
|
|
WALKHEAP();
|
|
|
|
/*
|
|
* Adjust the real size of the block to be a multiple of sizeof(long), and add
|
|
* the overhead for the boundary tags. Disallow negative or zero sizes.
|
|
*/
|
|
size_t realsize = (size < blockOverhead) ? minAllocSize : (size_t)ROUND_UP(size) + minBlockSize;
|
|
if((int)realsize < minAllocSize || size == 0)
|
|
return NULL;
|
|
|
|
/*
|
|
* Start searching the free list at the rover. If we arrive back at rover without
|
|
* finding anything, allocate some memory from the heap and try again.
|
|
*/
|
|
PBLOCK ptr = m_pRover; /* start searching at rover */
|
|
int loops = 2; /* allow two times through the loop */
|
|
for(;;) {
|
|
size_t lsize = SIZE(ptr);
|
|
ASSERT((lsize&1)==0);
|
|
/* is block big enough? */
|
|
if(lsize >= realsize) {
|
|
/* if the remainder is too small, don't bother splitting the block. */
|
|
size_t rem = lsize - realsize;
|
|
if(rem < minAllocSize) {
|
|
if(m_pRover == ptr)
|
|
m_pRover = NEXT(ptr);
|
|
|
|
/* Unlink the block from the free list. */
|
|
Unlink(ptr);
|
|
}
|
|
else {
|
|
/*
|
|
* split the block
|
|
* The remainder is big enough to split off into a new block.
|
|
* Use the end of the block, resize the beginning of the block
|
|
* no need to change the free list.
|
|
*/
|
|
SetTags(ptr, rem);
|
|
ptr += SIZE(ptr);
|
|
lsize = realsize;
|
|
}
|
|
/* Set the boundary tags to mark it as allocated. */
|
|
SetTags(ptr, lsize | 1);
|
|
return ((void *)ptr);
|
|
}
|
|
|
|
/*
|
|
* This block was unsuitable. If we've gone through this list once already without
|
|
* finding anything, allocate some new memory from the heap and try again.
|
|
*/
|
|
ptr = NEXT(ptr);
|
|
if(ptr == m_pRover) {
|
|
if(!(loops-- && Getmem(realsize))) {
|
|
return NULL;
|
|
}
|
|
ptr = m_pRover;
|
|
}
|
|
}
|
|
}
|
|
|
|
void* VMem::Realloc(void* block, size_t size)
|
|
{
|
|
WALKHEAP();
|
|
|
|
/* if size is zero, free the block. */
|
|
if(size == 0) {
|
|
Free(block);
|
|
return (NULL);
|
|
}
|
|
|
|
/* if block pointer is NULL, do a Malloc(). */
|
|
if(block == NULL)
|
|
return Malloc(size);
|
|
|
|
/*
|
|
* Grow or shrink the block in place.
|
|
* if the block grows then the next block will be used if free
|
|
*/
|
|
if(Expand(block, size) != NULL)
|
|
return block;
|
|
|
|
/*
|
|
* adjust the real size of the block to be a multiple of sizeof(long), and add the
|
|
* overhead for the boundary tags. Disallow negative or zero sizes.
|
|
*/
|
|
size_t realsize = (size < blockOverhead) ? minAllocSize : (size_t)ROUND_UP(size) + minBlockSize;
|
|
if((int)realsize < minAllocSize)
|
|
return NULL;
|
|
|
|
/*
|
|
* see if the previous block is free, and is it big enough to cover the new size
|
|
* if merged with the current block.
|
|
*/
|
|
PBLOCK ptr = (PBLOCK)block;
|
|
size_t cursize = SIZE(ptr) & ~1;
|
|
size_t psize = PSIZE(ptr);
|
|
if((psize&1) == 0 && (psize + cursize) >= realsize) {
|
|
PBLOCK prev = ptr - psize;
|
|
if(m_pRover == prev)
|
|
m_pRover = NEXT(prev);
|
|
|
|
/* Unlink the next block from the free list. */
|
|
Unlink(prev);
|
|
|
|
/* Copy contents of old block to new location, make it the current block. */
|
|
memmove(prev, ptr, cursize);
|
|
cursize += psize; /* combine sizes */
|
|
ptr = prev;
|
|
|
|
size_t rem = cursize - realsize;
|
|
if(rem >= minAllocSize) {
|
|
/*
|
|
* The remainder is big enough to be a new block. Set boundary
|
|
* tags for the resized block and the new block.
|
|
*/
|
|
prev = ptr + realsize;
|
|
/*
|
|
* add the new block to the free list.
|
|
* next block cannot be free
|
|
*/
|
|
SetTags(prev, rem);
|
|
AddToFreeList(prev, m_pFreeList);
|
|
cursize = realsize;
|
|
}
|
|
/* Set the boundary tags to mark it as allocated. */
|
|
SetTags(ptr, cursize | 1);
|
|
return ((void *)ptr);
|
|
}
|
|
|
|
/* Allocate a new block, copy the old to the new, and free the old. */
|
|
if((ptr = (PBLOCK)Malloc(size)) != NULL) {
|
|
memmove(ptr, block, cursize-minBlockSize);
|
|
Free(block);
|
|
}
|
|
return ((void *)ptr);
|
|
}
|
|
|
|
void VMem::Free(void* p)
|
|
{
|
|
WALKHEAP();
|
|
|
|
/* Ignore null pointer. */
|
|
if(p == NULL)
|
|
return;
|
|
|
|
PBLOCK ptr = (PBLOCK)p;
|
|
|
|
/* Check for attempt to free a block that's already free. */
|
|
size_t size = SIZE(ptr);
|
|
if((size&1) == 0) {
|
|
MEMODSlx("Attempt to free previously freed block", (long)p);
|
|
return;
|
|
}
|
|
size &= ~1; /* remove allocated tag */
|
|
|
|
/* if previous block is free, add this block to it. */
|
|
int linked = FALSE;
|
|
size_t psize = PSIZE(ptr);
|
|
if((psize&1) == 0) {
|
|
ptr -= psize; /* point to previous block */
|
|
size += psize; /* merge the sizes of the two blocks */
|
|
linked = TRUE; /* it's already on the free list */
|
|
}
|
|
|
|
/* if the next physical block is free, merge it with this block. */
|
|
PBLOCK next = ptr + size; /* point to next physical block */
|
|
size_t nsize = SIZE(next);
|
|
if((nsize&1) == 0) {
|
|
/* block is free move rover if needed */
|
|
if(m_pRover == next)
|
|
m_pRover = NEXT(next);
|
|
|
|
/* unlink the next block from the free list. */
|
|
Unlink(next);
|
|
|
|
/* merge the sizes of this block and the next block. */
|
|
size += nsize;
|
|
}
|
|
|
|
/* Set the boundary tags for the block; */
|
|
SetTags(ptr, size);
|
|
|
|
/* Link the block to the head of the free list. */
|
|
if(!linked) {
|
|
AddToFreeList(ptr, m_pFreeList);
|
|
}
|
|
}
|
|
|
|
void VMem::GetLock(void)
|
|
{
|
|
EnterCriticalSection(&m_cs);
|
|
}
|
|
|
|
void VMem::FreeLock(void)
|
|
{
|
|
LeaveCriticalSection(&m_cs);
|
|
}
|
|
|
|
int VMem::IsLocked(void)
|
|
{
|
|
#if 0
|
|
/* XXX TryEnterCriticalSection() is not available in some versions
|
|
* of Windows 95. Since this code is not used anywhere yet, we
|
|
* skirt the issue for now. */
|
|
BOOL bAccessed = TryEnterCriticalSection(&m_cs);
|
|
if(bAccessed) {
|
|
LeaveCriticalSection(&m_cs);
|
|
}
|
|
return !bAccessed;
|
|
#else
|
|
ASSERT(0); /* alarm bells for when somebody calls this */
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
long VMem::Release(void)
|
|
{
|
|
long lCount = InterlockedDecrement(&m_lRefCount);
|
|
if(!lCount)
|
|
delete this;
|
|
return lCount;
|
|
}
|
|
|
|
long VMem::AddRef(void)
|
|
{
|
|
long lCount = InterlockedIncrement(&m_lRefCount);
|
|
return lCount;
|
|
}
|
|
|
|
|
|
int VMem::Getmem(size_t requestSize)
|
|
{ /* returns -1 is successful 0 if not */
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
BOOL bBigBlock;
|
|
#endif
|
|
void *ptr;
|
|
|
|
/* Round up size to next multiple of 64K. */
|
|
size_t size = (size_t)ROUND_UP64K(requestSize);
|
|
|
|
/*
|
|
* if the size requested is smaller than our current allocation size
|
|
* adjust up
|
|
*/
|
|
if(size < (unsigned long)m_lAllocSize)
|
|
size = m_lAllocSize;
|
|
|
|
/* Update the size to allocate on the next request */
|
|
if(m_lAllocSize != lAllocMax)
|
|
m_lAllocSize <<= 1;
|
|
|
|
if(m_nHeaps != 0
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
&& !m_heaps[m_nHeaps-1].bBigBlock
|
|
#endif
|
|
) {
|
|
/* Expand the last allocated heap */
|
|
ptr = HeapReAlloc(m_hHeap, HEAP_REALLOC_IN_PLACE_ONLY|HEAP_NO_SERIALIZE,
|
|
m_heaps[m_nHeaps-1].base,
|
|
m_heaps[m_nHeaps-1].len + size);
|
|
if(ptr != 0) {
|
|
HeapAdd(((char*)ptr) + m_heaps[m_nHeaps-1].len, size
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
, FALSE
|
|
#endif
|
|
);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if we didn't expand a block to cover the requested size
|
|
* allocate a new Heap
|
|
* the size of this block must include the additional dummy tags at either end
|
|
* the above ROUND_UP64K may not have added any memory to include this.
|
|
*/
|
|
if(size == requestSize)
|
|
size = (size_t)ROUND_UP64K(requestSize+(sizeofTag*2));
|
|
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
bBigBlock = FALSE;
|
|
if (size >= nMaxHeapAllocSize) {
|
|
bBigBlock = TRUE;
|
|
ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
|
|
}
|
|
else
|
|
#endif
|
|
ptr = HeapAlloc(m_hHeap, HEAP_NO_SERIALIZE, size);
|
|
|
|
if(ptr == 0) {
|
|
MEMODSlx("HeapAlloc failed on size!!!", size);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
if (HeapAdd(ptr, size, bBigBlock)) {
|
|
if (bBigBlock) {
|
|
VirtualFree(ptr, 0, MEM_RELEASE);
|
|
}
|
|
}
|
|
#else
|
|
HeapAdd(ptr, size);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
int VMem::HeapAdd(void* p, size_t size, BOOL bBigBlock)
|
|
#else
|
|
int VMem::HeapAdd(void* p, size_t size)
|
|
#endif
|
|
{ /* if the block can be succesfully added to the heap, returns 0; otherwise -1. */
|
|
int index;
|
|
|
|
/* Check size, then round size down to next long word boundary. */
|
|
if(size < minAllocSize)
|
|
return -1;
|
|
|
|
size = (size_t)ROUND_DOWN(size);
|
|
PBLOCK ptr = (PBLOCK)p;
|
|
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
if (!bBigBlock) {
|
|
#endif
|
|
/*
|
|
* Search for another heap area that's contiguous with the bottom of this new area.
|
|
* (It should be extremely unusual to find one that's contiguous with the top).
|
|
*/
|
|
for(index = 0; index < m_nHeaps; ++index) {
|
|
if(ptr == m_heaps[index].base + (int)m_heaps[index].len) {
|
|
/*
|
|
* The new block is contiguous with a previously allocated heap area. Add its
|
|
* length to that of the previous heap. Merge it with the the dummy end-of-heap
|
|
* area marker of the previous heap.
|
|
*/
|
|
m_heaps[index].len += size;
|
|
break;
|
|
}
|
|
}
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
}
|
|
else {
|
|
index = m_nHeaps;
|
|
}
|
|
#endif
|
|
|
|
if(index == m_nHeaps) {
|
|
/* The new block is not contiguous, or is BigBlock. Add it to the heap list. */
|
|
if(m_nHeaps == maxHeaps) {
|
|
return -1; /* too many non-contiguous heaps */
|
|
}
|
|
m_heaps[m_nHeaps].base = ptr;
|
|
m_heaps[m_nHeaps].len = size;
|
|
#ifdef USE_BIGBLOCK_ALLOC
|
|
m_heaps[m_nHeaps].bBigBlock = bBigBlock;
|
|
#endif
|
|
m_nHeaps++;
|
|
|
|
/*
|
|
* Reserve the first LONG in the block for the ending boundary tag of a dummy
|
|
* block at the start of the heap area.
|
|
*/
|
|
size -= minBlockSize;
|
|
ptr += minBlockSize;
|
|
PSIZE(ptr) = 1; /* mark the dummy previous block as allocated */
|
|
}
|
|
|
|
/*
|
|
* Convert the heap to one large block. Set up its boundary tags, and those of
|
|
* marker block after it. The marker block before the heap will already have
|
|
* been set up if this heap is not contiguous with the end of another heap.
|
|
*/
|
|
SetTags(ptr, size | 1);
|
|
PBLOCK next = ptr + size; /* point to dummy end block */
|
|
SIZE(next) = 1; /* mark the dummy end block as allocated */
|
|
|
|
/*
|
|
* Link the block to the start of the free list by calling free().
|
|
* This will merge the block with any adjacent free blocks.
|
|
*/
|
|
Free(ptr);
|
|
return 0;
|
|
}
|
|
|
|
|
|
void* VMem::Expand(void* block, size_t size)
|
|
{
|
|
/*
|
|
* Adjust the size of the block to be a multiple of sizeof(long), and add the
|
|
* overhead for the boundary tags. Disallow negative or zero sizes.
|
|
*/
|
|
size_t realsize = (size < blockOverhead) ? minAllocSize : (size_t)ROUND_UP(size) + minBlockSize;
|
|
if((int)realsize < minAllocSize || size == 0)
|
|
return NULL;
|
|
|
|
PBLOCK ptr = (PBLOCK)block;
|
|
|
|
/* if the current size is the same as requested, do nothing. */
|
|
size_t cursize = SIZE(ptr) & ~1;
|
|
if(cursize == realsize) {
|
|
return block;
|
|
}
|
|
|
|
/* if the block is being shrunk, convert the remainder of the block into a new free block. */
|
|
if(realsize <= cursize) {
|
|
size_t nextsize = cursize - realsize; /* size of new remainder block */
|
|
if(nextsize >= minAllocSize) {
|
|
/*
|
|
* Split the block
|
|
* Set boundary tags for the resized block and the new block.
|
|
*/
|
|
SetTags(ptr, realsize | 1);
|
|
ptr += realsize;
|
|
|
|
/*
|
|
* add the new block to the free list.
|
|
* call Free to merge this block with next block if free
|
|
*/
|
|
SetTags(ptr, nextsize | 1);
|
|
Free(ptr);
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
PBLOCK next = ptr + cursize;
|
|
size_t nextsize = SIZE(next);
|
|
|
|
/* Check the next block for consistency.*/
|
|
if((nextsize&1) == 0 && (nextsize + cursize) >= realsize) {
|
|
/*
|
|
* The next block is free and big enough. Add the part that's needed
|
|
* to our block, and split the remainder off into a new block.
|
|
*/
|
|
if(m_pRover == next)
|
|
m_pRover = NEXT(next);
|
|
|
|
/* Unlink the next block from the free list. */
|
|
Unlink(next);
|
|
cursize += nextsize; /* combine sizes */
|
|
|
|
size_t rem = cursize - realsize; /* size of remainder */
|
|
if(rem >= minAllocSize) {
|
|
/*
|
|
* The remainder is big enough to be a new block.
|
|
* Set boundary tags for the resized block and the new block.
|
|
*/
|
|
next = ptr + realsize;
|
|
/*
|
|
* add the new block to the free list.
|
|
* next block cannot be free
|
|
*/
|
|
SetTags(next, rem);
|
|
AddToFreeList(next, m_pFreeList);
|
|
cursize = realsize;
|
|
}
|
|
/* Set the boundary tags to mark it as allocated. */
|
|
SetTags(ptr, cursize | 1);
|
|
return ((void *)ptr);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef _DEBUG_MEM
|
|
#define LOG_FILENAME ".\\MemLog.txt"
|
|
|
|
void MemoryUsageMessage(char *str, long x, long y, int c)
|
|
{
|
|
char szBuffer[512];
|
|
if(str) {
|
|
if(!m_pLog)
|
|
m_pLog = fopen(LOG_FILENAME, "w");
|
|
sprintf(szBuffer, str, x, y, c);
|
|
fputs(szBuffer, m_pLog);
|
|
}
|
|
else {
|
|
fflush(m_pLog);
|
|
fclose(m_pLog);
|
|
m_pLog = 0;
|
|
}
|
|
}
|
|
|
|
void VMem::WalkHeap(void)
|
|
{
|
|
if(!m_pRover) {
|
|
MemoryUsageMessage("VMem heaps used %d\n", m_nHeaps, 0, 0);
|
|
}
|
|
|
|
/* Walk all the heaps - verify structures */
|
|
for(int index = 0; index < m_nHeaps; ++index) {
|
|
PBLOCK ptr = m_heaps[index].base;
|
|
size_t size = m_heaps[index].len;
|
|
ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, p));
|
|
|
|
/* set over reserved header block */
|
|
size -= minBlockSize;
|
|
ptr += minBlockSize;
|
|
PBLOCK pLast = ptr + size;
|
|
ASSERT(PSIZE(ptr) == 1); /* dummy previous block is allocated */
|
|
ASSERT(SIZE(pLast) == 1); /* dummy next block is allocated */
|
|
while(ptr < pLast) {
|
|
ASSERT(ptr > m_heaps[index].base);
|
|
size_t cursize = SIZE(ptr) & ~1;
|
|
ASSERT((PSIZE(ptr+cursize) & ~1) == cursize);
|
|
if(!m_pRover) {
|
|
MemoryUsageMessage("Memory Block %08x: Size %08x %c\n", (long)ptr, cursize, (SIZE(p)&1) ? 'x' : ' ');
|
|
}
|
|
if(!(SIZE(ptr)&1)) {
|
|
/* this block is on the free list */
|
|
PBLOCK tmp = NEXT(ptr);
|
|
while(tmp != ptr) {
|
|
ASSERT((SIZE(tmp)&1)==0);
|
|
if(tmp == m_pFreeList)
|
|
break;
|
|
ASSERT(NEXT(tmp));
|
|
tmp = NEXT(tmp);
|
|
}
|
|
if(tmp == ptr) {
|
|
MemoryUsageMessage("Memory Block %08x: Size %08x free but not in free list\n", (long)ptr, cursize, 0);
|
|
}
|
|
}
|
|
ptr += cursize;
|
|
}
|
|
}
|
|
if(!m_pRover) {
|
|
MemoryUsageMessage(NULL, 0, 0, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif /* ___VMEM_H_INC___ */
|