2020-09-30 16:53:55 +02:00

192 lines
4.0 KiB
C++

/**************************************************************************
*
* Copyright (c) 2000 Microsoft Corporation
*
* Module Name:
*
* Geometry: Some 2D geometry helper routines.
*
* Created:
*
* 08/26/2000 asecchia
* Created it.
*
**************************************************************************/
#ifndef _GEOMETRY_HPP
#define _GEOMETRY_HPP
// return the square of the distance between point 1 and point 2.
inline REAL distance_squared(const GpPointF &p1, const GpPointF &p2)
{
return ((p1.X-p2.X)*(p1.X-p2.X)+(p1.Y-p2.Y)*(p1.Y-p2.Y));
}
// return the dot product of two points treated as 2-vectors.
inline double dot_product(const GpPointF &a, const GpPointF &b)
{
return (a.X*b.X + a.Y*b.Y);
}
// Return the intersection of a line specified by p0-p1 along the
// y axis. Returns FALSE if p0-p1 is parallel to the yaxis.
// Only returns intersections between p0 and p1 (inclusive).
BOOL intersect_line_yaxis(
IN const GpPointF &p0,
IN const GpPointF &p1,
OUT REAL *length
);
// Return the intersection of a line p0-p1 with the line r0-r1
// The return value
BOOL IntersectLines(
IN const GpPointF &line1Start,
IN const GpPointF &line1End,
IN const GpPointF &line2Start,
IN const GpPointF &line2End,
OUT REAL *line1Length,
OUT REAL *line2Length,
OUT GpPointF *intersectionPoint
);
INT intersect_circle_line(
IN const GpPointF &C, // center
IN REAL radius2, // radius * radius (i.e. squared)
IN const GpPointF &P0, // line first point (origin)
IN const GpPointF &P1, // line last point (end)
OUT GpPointF *intersection // return intersection point.
);
// Return true if point is inside the polygon defined by poly and count.
// Use the FillModeAlternate (even-odd) rule.
BOOL PointInPolygonAlternate(
GpPointF point,
INT count,
GpPointF *poly
);
GpStatus GetFastAngle(REAL* angle, const GpPointF& vector);
class GpVector2D : public GpPointF
{
public:
GpVector2D()
{
X = Y = 0.0f;
}
GpVector2D(IN const PointF &point)
{
X = point.X;
Y = point.Y;
}
GpVector2D(IN const GpVector2D &vec)
{
X = vec.X;
Y = vec.Y;
}
GpVector2D(IN REAL x, IN REAL y)
{
X = x;
Y = y;
}
// Scale.
GpVector2D operator*(REAL k)
{
return GpVector2D(X*k, Y*k);
}
// Dot Product
REAL operator*(IN const GpVector2D &V)
{
return (X*V.X+Y*V.Y);
}
VOID operator+=(IN const GpVector2D &V)
{
X += V.X;
Y += V.Y;
}
VOID operator-=(IN const GpVector2D &V)
{
X -= V.X;
Y -= V.Y;
}
VOID operator*=(IN const REAL k)
{
X *= k;
Y *= k;
}
// Length or Vector Norm of the Vector.
REAL Norm()
{
double length = (double)X*X+(double)Y*Y;
length = sqrt(length);
if( fabs(length) < REAL_EPSILON )
{
return 0.0f;
}
else
{
return (REAL)length;
}
}
// Unitize the vector. If it is degenerate, return 0.0f
REAL Normalize()
{
double length = (double)X*X+(double)Y*Y;
if( length < 0.0 )
{
X = 0.0f;
Y = 0.0f;
return 0.0f;
}
length = sqrt(length);
if( fabs(length) < REAL_EPSILON )
{
X = 0.0f;
Y = 0.0f;
return 0.0f;
}
else
{
X /= (REAL)length;
Y /= (REAL)length;
return (REAL)length;
}
}
friend REAL Determinant(GpVector2D &a, GpVector2D &b);
};
inline REAL Determinant(GpVector2D &a, GpVector2D &b)
{
return (a.X*b.Y-a.Y*b.X);
}
#endif