2020-09-30 16:53:55 +02:00

445 lines
11 KiB
C++

/**************************************************************************\
*
* Copyright (c) 1998 Microsoft Corporation
*
* Module Name:
*
* Matrix.hpp
*
* Abstract:
*
* Matrix used by GDI+ implementation
*
* Revision History:
*
* 12/01/1998 davidx
* Created it.
*
\**************************************************************************/
#ifndef __MATRIX_HPP
#define __MATRIX_HPP
// Common constants used for conversions.
#define DEGREESPERRADIAN 57.2957795130823
//--------------------------------------------------------------------------
// Represents a 2D affine transformation matrix
//--------------------------------------------------------------------------
enum MatrixRotate
{
MatrixRotateBy0,
MatrixRotateBy90,
MatrixRotateBy180,
MatrixRotateBy270,
MatrixRotateByOther
};
class GpMatrix
{
private:
// We now use an ObjectTag to determine if the object is valid
// instead of using a BOOL. This is much more robust and helps
// with debugging. It also enables us to version our objects
// more easily with a version number in the ObjectTag.
ObjectTag Tag; // Keep this as the 1st value in the object!
protected:
VOID SetValid(BOOL valid)
{
Tag = valid ? ObjectTagMatrix : ObjectTagInvalid;
}
// This method is here so that we have a virtual function table so
// that we can add virtual methods in V2 without shifting the position
// of the Tag value within the data structure.
virtual VOID DontCallThis()
{
DontCallThis();
}
public:
// Default constructor - set to identity matrix
GpMatrix()
{
Reset();
}
~GpMatrix()
{
SetValid(FALSE); // so we don't use a deleted object
}
// Reset the matrix object to identity
VOID Reset()
{
M11 = M22 = 1;
M12 = M21 = Dx = Dy = 0;
Complexity = IdentityMask;
SetValid(TRUE);
}
// Construct a GpMatrix object with the specified elements
GpMatrix(REAL m11, REAL m12,
REAL m21, REAL m22,
REAL dx, REAL dy)
{
SetValid(TRUE);
M11 = m11;
M12 = m12;
M21 = m21;
M22 = m22;
Dx = dx;
Dy = dy;
Complexity = ComputeComplexity();
}
GpMatrix(REAL *elems)
{
SetValid(TRUE);
M11 = elems[0];
M12 = elems[1];
M21 = elems[2];
M22 = elems[3];
Dx = elems[4];
Dy = elems[5];
Complexity = ComputeComplexity();
}
GpMatrix(const GpMatrix &matrix)
{
SetValid(TRUE);
M11 = matrix.M11;
M12 = matrix.M12;
M21 = matrix.M21;
M22 = matrix.M22;
Dx = matrix.Dx;
Dy = matrix.Dy;
Complexity = matrix.Complexity;
}
GpLockable *GetObjectLock() const
{
return &Lockable;
}
// If the matrix came from a different version of GDI+, its tag
// will not match, and it won't be considered valid.
BOOL IsValid() const
{
#ifdef _X86_
// We have to guarantee that the Tag field doesn't move for
// versioning to work between releases of GDI+.
ASSERT(offsetof(GpMatrix, Tag) == 4);
#endif
ASSERT((Tag == ObjectTagMatrix) || (Tag == ObjectTagInvalid));
#if DBG
if (Tag == ObjectTagInvalid)
{
WARNING1("Invalid Matrix");
}
#endif
return (Tag == ObjectTagMatrix);
}
// Construct a GpMatrix object by inferring from a rectangle-to-
// parallelogram mapping:
GpMatrix(const GpPointF* destPoints, const GpRectF& srcRect);
GpStatus InferAffineMatrix(const GpPointF* destPoints, const GpRectF& srcRect);
GpStatus InferAffineMatrix(const GpRectF& destRect, const GpRectF& srcRect);
GpMatrix* Clone()
{
return new GpMatrix(*this);
}
// Transform an array of points using the matrix v' = v M:
//
// ( M11 M12 0 )
// (vx', vy', 1) = (vx, vy, 1) ( M21 M22 0 )
// ( dx dy 1 )
VOID Transform(GpPointF* points, INT count = 1) const;
VOID Transform(
const GpPointF* srcPoints,
GpPointF* destPoints,
INT count = 1
) const;
VOID Transform(
const GpPointF* srcPoints,
POINT * destPoints,
INT count = 1
) const;
VOID TransformRect(GpRectF & rect) const;
VOID VectorTransform(GpPointF* points, INT count = 1) const;
// XTransform returns only the x-component result of a vector
// transformation:
REAL XTransform(REAL x, REAL y)
{
return(x*M11 + y*M21 + Dx);
}
BOOL IsEqual(const GpMatrix * m) const
{
// Note that we can't assert here that the two cached
// complexity's are equal, since it's perfectly legal to
// have a cache complexity that indicates more complexity
// than is actually there (such as the case of a sequence
// of rotations that ends up back in an identity transform):
// !!![andrewgo] This should probably be using an epsilon compare
return((M11 == m->M11) &&
(M12 == m->M12) &&
(M21 == m->M21) &&
(M22 == m->M22) &&
(Dx == m->Dx) &&
(Dy == m->Dy));
}
REAL GetDeterminant() const
{
return (M11*M22 - M12*M21);
}
// Compare to a scaled value of epsilon used for matrix complexity
// calculations. Must scale maximum value of matrix members to be
// in the right range for comparison.
BOOL IsInvertible() const
{
return !IsCloseReal(0.0f, GetDeterminant());
}
GpStatus Invert();
VOID Scale(REAL scaleX, REAL scaleY, GpMatrixOrder order = MatrixOrderPrepend);
VOID Rotate(REAL angle, GpMatrixOrder order = MatrixOrderPrepend);
VOID Translate(REAL offsetX, REAL offsetY, GpMatrixOrder order = MatrixOrderPrepend);
VOID Shear(REAL shearX, REAL shearY, GpMatrixOrder order = MatrixOrderPrepend);
VOID AppendScale(REAL scaleX, REAL scaleY)
{
M11 *= scaleX;
M21 *= scaleX;
M12 *= scaleY;
M22 *= scaleY;
Dx *= scaleX;
Dy *= scaleY;
Complexity = ComputeComplexity();
}
VOID AppendTranslate(REAL offsetX, REAL offsetY)
{
Dx += offsetX;
Dy += offsetY;
Complexity |= TranslationMask;
AssertComplexity();
}
// Scale the entire matrix by the scale value
static VOID ScaleMatrix(GpMatrix& m, const GpMatrix& m1,
REAL scaleX, REAL scaleY);
static VOID MultiplyMatrix(GpMatrix& m, const GpMatrix& m1, const GpMatrix& m2);
VOID Append(const GpMatrix& m)
{
MultiplyMatrix(*this, *this, m);
}
VOID Prepend(const GpMatrix& m)
{
MultiplyMatrix(*this, m, *this);
}
// Get/set matrix elements
VOID GetMatrix(REAL* m) const
{
m[0] = M11;
m[1] = M12;
m[2] = M21;
m[3] = M22;
m[4] = Dx;
m[5] = Dy;
}
// This is for metafiles -- we don't save the complexity in the metafile
VOID WriteMatrix(IStream * stream) const
{
REAL m[6];
GetMatrix(m);
stream->Write(m, 6 * sizeof(REAL), NULL);
}
VOID SetMatrix(const REAL* m)
{
M11 = m[0];
M12 = m[1];
M21 = m[2];
M22 = m[3];
Dx = m[4];
Dy = m[5];
Complexity = ComputeComplexity();
}
VOID SetMatrix(REAL m11, REAL m12,
REAL m21, REAL m22,
REAL dx, REAL dy)
{
M11 = m11;
M12 = m12;
M21 = m21;
M22 = m22;
Dx = dx;
Dy = dy;
Complexity = ComputeComplexity();
}
VOID RemoveTranslation()
{
Dx = 0;
Dy = 0;
Complexity &= ~TranslationMask;
AssertComplexity();
}
// Determine matrix complexity
enum
{
IdentityMask = 0x0000,
TranslationMask = 0x0001,
ScaleMask = 0x0002,
RotationMask = 0x0004,
ShearMask = 0x0008,
ComplexMask = 0x000f
};
INT GetComplexity() const
{
return Complexity;
}
MatrixRotate GetRotation() const;
RotateFlipType AnalyzeRotateFlip() const;
// Returns TRUE if the matrix does not have anything other than
// translation and/or scale (and/or identity). i.e. there is no rotation
// or shear in the matrix. Returns FALSE if there is a rotation or shear.
BOOL IsTranslateScale() const
{
return (!(Complexity &
~(GpMatrix::TranslationMask | GpMatrix::ScaleMask)));
}
BOOL IsIdentity() const
{
return (Complexity == IdentityMask);
}
BOOL IsTranslate() const
{
return ((Complexity & ~TranslationMask) == 0);
}
// Returns true if the matrix is a translate-only transform by an
// integer number of pixels.
BOOL IsIntegerTranslate() const
{
return (IsTranslate() &&
(REALABS(static_cast<REAL>(GpRound(Dx)) - Dx) <= PIXEL_EPSILON) &&
(REALABS(static_cast<REAL>(GpRound(Dy)) - Dy) <= PIXEL_EPSILON));
}
BOOL IsMinification() const
{
return (IsTranslateScale() &&
((M11-1.0f < -REAL_EPSILON) ||
(M22-1.0f < -REAL_EPSILON)));
}
// Returns true if there is any minification or if the transform involves
// rotation/shear.
BOOL IsRotateOrMinification() const
{
return ( ((Complexity & ~(ScaleMask | TranslationMask))!= 0) ||
IsMinification() );
}
BOOL IsRotateOrShear() const
{
return ( (Complexity & ~(ScaleMask | TranslationMask))!= 0);
}
BOOL IsShear() const
{
return ((Complexity & ShearMask) != 0);
}
REAL GetM11() const { return M11; }
REAL GetM12() const { return M12; }
REAL GetM21() const { return M21; }
REAL GetM22() const { return M22; }
REAL GetDx() const { return Dx; }
REAL GetDy() const { return Dy; }
// On checked builds, verify that the Matrix flags are correct.
#if DBG
VOID AssertComplexity() const;
#else
VOID AssertComplexity() const {}
#endif
protected:
mutable GpLockable Lockable;
REAL M11;
REAL M12;
REAL M21;
REAL M22;
REAL Dx;
REAL Dy;
INT Complexity; // Bit-mask short-cut
INT ComputeComplexity() const;
};
#endif