WindowsXP-SP1/enduser/netmeeting/ulsldap/sppqueue.cpp
2020-09-30 16:53:49 +02:00

1613 lines
32 KiB
C++
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ----------------------------------------------------------------------
Module: ULS.DLL (Service Provider)
File: sppqueue.cpp
Content: This file contains the pending item/queue objects.
History:
10/15/96 Chu, Lon-Chan [lonchanc]
Created.
Copyright (c) Microsoft Corporation 1996-1997
---------------------------------------------------------------------- */
#include "ulsp.h"
#include "spinc.h"
// #define MEASURE_ENUM_USER_INFO 1
ULONG g_uResponseTimeout = ILS_DEF_RESP_TIMEOUT;
ULONG g_uResponsePollPeriod = ILS_DEF_RESP_POLL_PERIOD;
SP_CResponseQueue *g_pRespQueue = NULL;
SP_CRequestQueue *g_pReqQueue = NULL;
SP_CRefreshScheduler *g_pRefreshScheduler = NULL;
typedef BOOL (RESPONSE_HANDLER) ( HRESULT, SP_CResponse * );
typedef LPARAM (REQUEST_HANDLER) ( MARSHAL_REQ * );
extern RESPONSE_HANDLER *GetResponseHandler ( ULONG uNotifyMsg );
extern REQUEST_HANDLER *GetRequestHandler ( ULONG uNotifyMsg );
/* ---------- REQUEST QUEUE ----------- */
MARSHAL_REQ *
MarshalReq_Alloc (
ULONG uNotifyMsg,
ULONG cbSize,
ULONG cParams )
{
// Align the chunk of data for each parameter on 4-byte boundary
//
cbSize += cParams * sizeof (DWORD);
// Calculate the total size of marshal buffer
//
ULONG cbTotalSize = sizeof (MARSHAL_REQ) +
cParams * sizeof (DWORD) +
cbSize;
// Allocate the marshal buffer
//
MARSHAL_REQ *p = (MARSHAL_REQ *) MemAlloc (cbTotalSize);
if (p != NULL)
{
// p->next = NULL;
p->cbTotalSize = cbTotalSize;
p->pb = (BYTE *) ((ULONG_PTR) p + (cbTotalSize - cbSize));
p->uRespID = GetUniqueNotifyID ();
p->uNotifyMsg = uNotifyMsg;
p->cParams = cParams;
}
return p;
}
HRESULT
MarshalReq_SetParam (
MARSHAL_REQ *p,
ULONG nIndex,
DWORD_PTR dwParam,
ULONG cbParamSize )
{
if (p != NULL && nIndex < p->cParams)
{
MyAssert (p->aParams[nIndex] == 0); // not used before
// If cbParamSize > 0, then
// this means uParam is a pointer to a structure or
// a pointer to a string
//
if (cbParamSize > 0)
{
// The pointer is now the one pointing to the new location
//
p->aParams[nIndex] = (DWORD_PTR) p->pb;
// Copy the data chunk
//
CopyMemory (p->pb, (VOID *) dwParam, cbParamSize);
// Make sure the data chunk is aligned on 4-byte boundary
//
if (cbParamSize & 0x3)
{
// Round it up
//
cbParamSize = (cbParamSize & (~0x3)) + 4;
}
// Adjust the running pointer
//
p->pb += cbParamSize;
}
else
{
// uParam can be an signed/unsigned integer,
//
p->aParams[nIndex] = dwParam;
}
}
else
{
MyAssert (FALSE);
}
return S_OK;
}
DWORD_PTR
MarshalReq_GetParam (
MARSHAL_REQ *p,
ULONG nIndex )
{
DWORD_PTR dwParam = 0;
if (p != NULL && nIndex < p->cParams)
{
dwParam = p->aParams[nIndex];
}
else
{
MyAssert (FALSE);
}
return dwParam;
}
HRESULT
MarshalReq_SetParamServer (
MARSHAL_REQ *p,
ULONG nIndex,
SERVER_INFO *pServer,
ULONG cbServer )
{
if (p != NULL && nIndex < p->cParams)
{
MyAssert (p->aParams[nIndex] == 0); // not used before
MyAssert (cbServer > sizeof (SERVER_INFO));
// The pointer is now the one pointing to the new location
//
p->aParams[nIndex] = (DWORD_PTR) p->pb;
// Linearize the server info
//
IlsLinearizeServerInfo (p->pb, pServer);
// Make sure the data chunk is aligned on 4-byte boundary
//
if (cbServer & 0x3)
{
// Round it up
//
cbServer = (cbServer & (~0x3)) + 4;
}
// Adjust the running pointer
//
p->pb += cbServer;
}
return S_OK;
}
SP_CRequestQueue::
SP_CRequestQueue ( VOID )
:
m_ItemList (NULL),
m_uCurrOpRespID (INVALID_RESP_ID)
{
// Create critical sections for thread safe access
//
::MyInitializeCriticalSection (&m_csReqQ);
::MyInitializeCriticalSection (&m_csCurrOp);
}
SP_CRequestQueue::
~SP_CRequestQueue ( VOID )
{
// when this is called, the hidden window thread exited already.
// this is assured in UlsLdap_Deinitialize().
//
WriteLock ();
// Free all the items in this list
//
MARSHAL_REQ *p, *next;
for (p = m_ItemList; p != NULL; p = next)
{
next = p->next;
MemFree (p);
}
m_ItemList = NULL;
WriteUnlock ();
// Delete critical sections
//
::MyDeleteCriticalSection (&m_csReqQ);
::MyDeleteCriticalSection (&m_csCurrOp);
}
HRESULT SP_CRequestQueue::
Enter ( MARSHAL_REQ *p )
{
// Make sure we have valid pointers
//
if (p == NULL)
{
MyAssert (FALSE);
return ILS_E_POINTER;
}
MyAssert (! MyIsBadWritePtr (p, p->cbTotalSize));
MyAssert (p->next == NULL);
MyAssert (p->uRespID != 0);
WriteLock ();
// Append the new request
//
p->next = NULL;
if (m_ItemList == NULL)
{
m_ItemList = p;
}
else
{
for ( MARSHAL_REQ *prev = m_ItemList;
prev->next != NULL;
prev = prev->next)
;
MyAssert (prev != NULL);
prev->next = p;
}
WriteUnlock ();
// Signal the internal request thread to pick up this request
//
SetEvent (g_hevNewRequest);
return S_OK;
}
VOID SP_CRequestQueue::
Schedule ( VOID )
{
MARSHAL_REQ *p;
while (IsAnyReqInQueue () && ! g_fExitNow)
{
// Reset to null, we will use this as an indicator
// to see if we need to process the request
//
p = NULL;
// Lock request queue
//
WriteLock ();
// Get a request to process
//
if (IsAnyReqInQueue ())
{
p = m_ItemList;
m_ItemList = m_ItemList->next;
}
// We want to lock both request queue and CurrOp at the same time
// because we cannot have a temporal window that either one can change.
// Set CurrOp
//
if (p != NULL)
{
// Lock CurrOp
//
LockCurrOp ();
// Set CurrOp
//
m_uCurrOpRespID = p->uRespID;
// Unlock CurrOp
//
UnlockCurrOp ();
}
// Unlock request queue
//
WriteUnlock ();
// Make sure we have something to process
//
if (p == NULL)
{
// Nothing to do any more
//
MyAssert (FALSE);
break;
}
// Let's process the request
//
Dispatch (p);
MemFree(p);
}
}
HRESULT SP_CRequestQueue::
Cancel ( ULONG uRespID )
{
HRESULT hr;
MARSHAL_REQ *p, *next, *prev;
// The locking order is always in
// Lock(PendingOpQueue), Lock(RequestQueue), Lock (CurrOp)
//
WriteLock ();
LockCurrOp ();
if (m_uCurrOpRespID == uRespID)
{
// Invalidate the curr op.
// When the curr op is done, then the request thread will remove it
// from the pending op queue.
//
m_uCurrOpRespID = INVALID_RESP_ID;
hr = S_OK;
}
else
{
// Look for the item with a matching response id
//
for (prev = NULL, p = m_ItemList; p != NULL; prev = p, p = next)
{
// Cache the next pointer
//
next = p->next;
// See if the response id matches
//
if (p->uRespID == uRespID)
{
// It is a match
//
MyDebugMsg ((ZONE_REQ, "ULS: cancelled request(0x%lX) in ReqQ\r\n", p->uNotifyMsg));
// Let's destroy this item
//
if (p == m_ItemList)
{
m_ItemList = next;
}
else
{
MyAssert (prev != NULL);
prev->next = next;
}
// Free this structure
//
MemFree (p);
// Get out of the loop
//
break;
}
} // for
hr = (p == NULL) ? ILS_E_NOTIFY_ID : S_OK;
} // else
UnlockCurrOp ();
WriteUnlock ();
return hr;
}
VOID SP_CRequestQueue::
Dispatch ( MARSHAL_REQ *p )
{
// Make sure we have a valid pointer
//
if (p == NULL)
{
MyAssert (FALSE);
return;
}
// If it is keep alive, then do it
//
HRESULT hr;
if (p->uNotifyMsg == WM_ILS_REFRESH)
{
// Keep alive handler
//
if (g_pRefreshScheduler != NULL)
{
ULONG uTTL = (ULONG) MarshalReq_GetParam (p, 0);
hr = g_pRefreshScheduler->SendRefreshMessages (uTTL);
}
else
{
MyAssert (FALSE);
}
return;
}
// Locate the appropriate handler
//
REQUEST_HANDLER *pfn = ::GetRequestHandler (p->uNotifyMsg);
if (pfn == NULL)
{
MyAssert (FALSE);
return;
}
// Send the request to the server
//
MyDebugMsg ((ZONE_REQ, "ULS: sending request(0x%lX)\r\n", p->uNotifyMsg));
ULONG uRespID = p->uRespID;
LPARAM lParam = (*pfn) (p);
MyDebugMsg ((ZONE_REQ, "ULS: sent request(0x%lX), lParam=0x%lX\r\n", p->uNotifyMsg, lParam));
if (lParam != 0)
{
::PostMessage (g_hWndNotify, p->uNotifyMsg, p->uRespID, lParam);
return;
}
// BUGBUG: this is a workaround for a server bug which results in lost requests if several
// are sent very quickly. Remove this Sleep() as soon as the bug is fixed!!!
// Sleep(100);
// Lock CurrOp again
//
LockCurrOp ();
// Is this request cancelled
//
BOOL fCancelled = (m_uCurrOpRespID == INVALID_RESP_ID) ? TRUE : FALSE;
// Clean up CurrOp
//
m_uCurrOpRespID = INVALID_RESP_ID;
// Unlock CurrOp
//
UnlockCurrOp ();
// If this request was cancelled, then remove it from the pending op queue
//
if (fCancelled)
{
// Redirect the call to the pending op queue object
//
if (g_pRespQueue != NULL)
{
g_pRespQueue->Cancel (uRespID);
}
else
{
MyAssert (FALSE);
}
}
}
/* ---------- RESPONSE ITEM ----------- */
/* ---------- public methods ----------- */
SP_CResponse::
SP_CResponse ( VOID )
:
m_pSession (NULL), // Clean up session pointer
m_pLdapMsg (NULL), // Clean up ldap msg pointer
m_next (NULL) // Clean up the pointer to the next pending item
{
// Clean up pending info structure
//
::ZeroMemory (&m_ri, sizeof (m_ri));
// Fill in creation time
//
UpdateLastModifiedTime ();
m_tcTimeout = g_uResponseTimeout;
}
SP_CResponse::
~SP_CResponse ( VOID )
{
// Release the session if needed
//
if (m_pSession != NULL)
m_pSession->Disconnect ();
// Free the ldap msg if needed
//
if (m_pLdapMsg != NULL)
::ldap_msgfree (m_pLdapMsg);
// Free extended attribute name list
//
::MemFree (m_ri.pszAnyAttrNameList);
// Free protocol names to resolve
//
::MemFree (m_ri.pszProtNameToResolve);
}
/* ---------- protected methods ----------- */
VOID SP_CResponse::
EnterResult ( LDAPMessage *pLdapMsg )
{
// Free the old ldap msg if needed
//
if (m_pLdapMsg != NULL)
::ldap_msgfree (m_pLdapMsg);
// Keep the new ldap msg
//
m_pLdapMsg = pLdapMsg;
}
/* ---------- private methods ----------- */
/* ---------- RESPONSE QUEUE ----------- */
/* ---------- public methods ----------- */
SP_CResponseQueue::
SP_CResponseQueue ( VOID )
:
m_ItemList (NULL) // Clean up the item list
{
// Create a critical section for thread safe access
//
::MyInitializeCriticalSection (&m_csRespQ);
}
SP_CResponseQueue::
~SP_CResponseQueue ( VOID )
{
// when this is called, the hidden window thread exited already.
// this is assured in UlsLdap_Deinitialize().
//
WriteLock ();
// Free all the items in this list
//
SP_CResponse *pItem, *next;
for (pItem = m_ItemList; pItem != NULL; pItem = next)
{
next = pItem->GetNext ();
delete pItem;
}
m_ItemList = NULL;
WriteUnlock ();
// Delete the critical section
//
::MyDeleteCriticalSection (&m_csRespQ);
}
HRESULT SP_CResponseQueue::
EnterRequest (
SP_CSession *pSession,
RESP_INFO *pInfo )
{
// Make sure we have valid pointers
//
if (pSession == NULL || pInfo == NULL)
{
MyAssert (FALSE);
return ILS_E_POINTER;
}
// Sanity checks
//
MyAssert (! MyIsBadWritePtr (pInfo, sizeof (*pInfo)));
MyAssert (! MyIsBadWritePtr (pSession, sizeof (*pSession)));
MyAssert (pInfo->ld != NULL && pInfo->uMsgID[0] != INVALID_MSG_ID);
MyAssert (pInfo->uRespID != 0);
// Create a new pending item
//
SP_CResponse *pItem = new SP_CResponse;
if (pItem == NULL)
return ILS_E_MEMORY;
// Remember the contents of pending info
//
pItem->EnterRequest (pSession, pInfo);
WriteLock ();
// If this is the first item on the list, then
// let's start the timer
//
if (m_ItemList == NULL)
::SetTimer (g_hWndHidden, ID_TIMER_POLL_RESULT, g_uResponsePollPeriod, NULL);
// Append the new pending op
//
pItem->SetNext (NULL);
if (m_ItemList == NULL)
{
m_ItemList = pItem;
}
else
{
for ( SP_CResponse *prev = m_ItemList;
prev->GetNext () != NULL;
prev = prev->GetNext ())
;
MyAssert (prev != NULL);
prev->SetNext (pItem);
}
WriteUnlock ();
return S_OK;
}
HRESULT SP_CResponseQueue::
PollLdapResults ( LDAP_TIMEVAL *pTimeout )
{
MyAssert (pTimeout != NULL);
SP_CResponse *pItem, *next, *prev;
INT RetCode;
RESP_INFO *pInfo;
LDAPMessage *pLdapMsg;
HRESULT hr;
RESPONSE_HANDLER *pfn;
ULONG uResultSetType;
::KillTimer (g_hWndHidden, ID_TIMER_POLL_RESULT); // avoid overrun
WriteLock ();
// Enumerate all the items to get available results for them
//
for (prev = NULL, pItem = m_ItemList; pItem != NULL; pItem = next)
{
// Cache the next pointer
//
next = pItem->GetNext ();
// Get the pinding info structure
//
pInfo = pItem->GetRespInfo ();
// Clean up ldap msg pointer
//
pLdapMsg = NULL;
// Make sure ew have valid ld and msg id
//
MyAssert (pInfo->ld != NULL);
MyAssert (pInfo->uMsgID[0] != INVALID_MSG_ID ||
pInfo->uMsgID[1] != INVALID_MSG_ID);
// Check integrity in pending info
//
MyAssert (pInfo->uRespID != 0);
// Set the result set type
//
switch (pInfo->uNotifyMsg)
{
case WM_ILS_ENUM_CLIENTS:
case WM_ILS_ENUM_CLIENTINFOS:
#ifdef ENABLE_MEETING_PLACE
case WM_ILS_ENUM_MEETINGS:
case WM_ILS_ENUM_MEETINGINFOS:
#endif
uResultSetType = LDAP_MSG_RECEIVED; // partial result set
break;
default:
uResultSetType = LDAP_MSG_ALL; // complete result set
break;
}
#ifdef _DEBUG
if (MyIsBadWritePtr (pInfo->ld, sizeof (*(pInfo->ld))))
{
MyDebugMsg ((ZONE_CONN, "ILS:: poll result, bad ld=0x%p\r\n", pInfo->ld));
MyAssert (FALSE);
}
if (pInfo->ld != pItem->GetSession()->GetLd())
{
MyDebugMsg ((ZONE_CONN, "ILS:: poll result, inconsistent pInfo->ld=0x%p, pItem->pSession->ld=0x%p\r\n", pInfo->ld, pItem->GetSession()->GetLd()));
MyAssert (FALSE);
}
#endif // _DEBUG
// If primary msg id is valid
//
if (pInfo->uMsgID[0] != INVALID_MSG_ID)
RetCode = ::ldap_result (pInfo->ld,
pInfo->uMsgID[0],
uResultSetType,
pTimeout,
&pLdapMsg);
else
// If secondary msg id is valid
//
if (pInfo->uMsgID[1] != INVALID_MSG_ID)
RetCode = ::ldap_result (pInfo->ld,
pInfo->uMsgID[1],
uResultSetType,
pTimeout,
&pLdapMsg);
// If timeout, ignore this item
//
if (RetCode == 0)
{
// Let's see if this item is expired
//
if (! pItem->IsExpired ())
{
// Not timed out, next please!
//
prev = pItem;
continue;
}
// Timed out
//
hr = ILS_E_TIMEOUT;
}
// If error, delete this request item
//
if (RetCode == -1)
{
// Convert the error
//
hr = ::LdapError2Hresult (pInfo->ld->ld_errno);
}
else
// If not timed out
//
if (RetCode != 0)
{
// It appears to be successful!
//
MyAssert (pLdapMsg != NULL);
// Cache the ldap msg pointer
pItem->EnterResult (pLdapMsg);
// Get the ldap error code
//
hr = (pLdapMsg != NULL) ? ::LdapError2Hresult (pLdapMsg->lm_returncode) :
S_OK;
}
// Get the result handler based on uNotifyMsg
//
pfn = ::GetResponseHandler (pInfo->uNotifyMsg);
if (pfn == NULL)
{
prev = pItem;
continue;
}
// Check integrity in pending info
//
MyAssert (pInfo->uRespID != 0);
// Deal with the result or error
//
MyDebugMsg ((ZONE_RESP, "ULS: response(0x%lX), hr=0x%lX\r\n", pInfo->uNotifyMsg, hr));
if ((*pfn) (hr, pItem))
{
// Let's destroy this item
//
if (pItem == m_ItemList)
{
m_ItemList = next;
}
else
{
MyAssert (prev != NULL);
prev->SetNext (next);
}
delete pItem; // SP_CSession::Disconnect() and ldap_msgfree() will be called in destructor
}
else
{
// Let's keep this item around.
// There are pending results coming in.
//
pItem->UpdateLastModifiedTime ();
// Update the pointer
//
prev = pItem;
}
} // for
// If there is no more items on the list, then stop the timer
//
if (m_ItemList != NULL)
::SetTimer (g_hWndHidden, ID_TIMER_POLL_RESULT, g_uResponsePollPeriod, NULL);
WriteUnlock ();
return S_OK;
}
HRESULT SP_CResponseQueue::
Cancel ( ULONG uRespID )
{
SP_CResponse *pItem, *next, *prev;
RESP_INFO *pInfo;
BOOL fNeedCleanup = FALSE;
WriteLock ();
// Look for the item with a matching response id
//
for (prev = NULL, pItem = m_ItemList; pItem != NULL; prev = pItem, pItem = next)
{
// Cache the next pointer
//
next = pItem->GetNext ();
// Get the pinding info structure
//
pInfo = pItem->GetRespInfo ();
MyAssert (pInfo != NULL);
// See if the response id matches
//
if (pInfo->uRespID == uRespID)
{
// It is a match
//
SP_CSession *pSession = pItem->GetSession ();
MyAssert (pSession != NULL);
// Make sure we have a valid ldap session
//
MyAssert (pInfo->ld != NULL);
// If we are NOT in the request thread, then we need to marshal it
// to the request thread!!! Exit and report success!!!
//
if (GetCurrentThreadId () != g_dwReqThreadID)
{
MyDebugMsg ((ZONE_RESP, "ULS: marshalling request(0x%lX) in RespQ\r\n", pInfo->uNotifyMsg));
MARSHAL_REQ *pReq = MarshalReq_Alloc (WM_ILS_CANCEL, 0, 1);
if (pReq != NULL)
{
MarshalReq_SetParam (pReq, 0, (DWORD) uRespID, 0);
if (g_pReqQueue != NULL)
{
// This means that the locking order is
// Lock(PendingOpQueue), Lock(RequestQueue)
//
g_pReqQueue->Enter (pReq);
}
else
{
MyAssert (FALSE);
}
}
// Exit this loop
//
break;
}
// Indicate that we need to clean up item. Why?
// because we should not have any network operation inside critical section.
// this is to avoid any possible network blocking.
//
fNeedCleanup = TRUE;
// Let's destroy this item
//
if (pItem == m_ItemList)
{
m_ItemList = next;
}
else
{
MyAssert (prev != NULL);
prev->SetNext (next);
}
// Get out of the loop
//
break;
} // if matched
} // for
// If there is no more items on the list, then stop the timer
//
if (m_ItemList == NULL)
::KillTimer (g_hWndHidden, ID_TIMER_POLL_RESULT);
WriteUnlock ();
if (fNeedCleanup && pItem != NULL)
{
MyDebugMsg ((ZONE_RESP, "ULS: cancelled request(0x%lX) in RespQ\r\n", pInfo->uNotifyMsg));
// Get resp info pointer
//
pInfo = pItem->GetRespInfo ();
MyAssert (pInfo != NULL);
// Abandon the primary response if needed
//
if (pInfo->uMsgID[1] != INVALID_MSG_ID)
::ldap_abandon (pInfo->ld, pInfo->uMsgID[1]);
// Abandon the secondary response if needed
//
if (pInfo->uMsgID[0] != INVALID_MSG_ID)
::ldap_abandon (pInfo->ld, pInfo->uMsgID[0]);
// SP_CSession::Disconnect() and ldap_msgfree() will be called in destructor
//
delete pItem;
}
return ((pItem == NULL) ? ILS_E_NOTIFY_ID : S_OK);
}
/* ---------- protected methods ----------- */
/* ---------- private methods ----------- */
/* ==================== utilities ====================== */
VOID
FillDefRespInfo (
RESP_INFO *pInfo,
ULONG uRespID,
LDAP *ld,
ULONG uMsgID,
ULONG u2ndMsgID )
{
// Clean up
//
ZeroMemory (pInfo, sizeof (*pInfo));
// Cache the ldap session
//
pInfo->ld = ld;
// Generate a unique notify id
//
pInfo->uRespID = uRespID;
// Store the primary and seconary msg ids
//
pInfo->uMsgID[0] = uMsgID;
pInfo->uMsgID[1] = u2ndMsgID;
}
/* ---------- REFRESH SCHEDULER ----------- */
/* ---------- public methods ----------- */
SP_CRefreshScheduler::
SP_CRefreshScheduler ( VOID )
:
m_ListHead (NULL) // Initialize the item list
{
// Create a critical section for thread safe access
//
::MyInitializeCriticalSection (&m_csRefreshScheduler);
}
SP_CRefreshScheduler::
~SP_CRefreshScheduler ( VOID )
{
WriteLock ();
// Clean up the item list
//
REFRESH_ITEM *p, *next;
for (p = m_ListHead; p != NULL; p = next)
{
next = p->next;
MemFree (p);
}
m_ListHead = NULL;
WriteUnlock ();
// Delete the critical section
//
::MyDeleteCriticalSection (&m_csRefreshScheduler);
}
HRESULT SP_CRefreshScheduler::
SendRefreshMessages ( UINT uTimerID )
{
SP_CClient *pClient;
#ifdef ENABLE_MEETING_PLACE
SP_CMeeting *pMtg;
#endif
REFRESH_ITEM *prev, *curr;
INT nIndex;
// Lock the lists
//
ReadLock ();
// Locate this object in the list
//
nIndex = TimerID2Index (uTimerID);
for (prev = NULL, curr = m_ListHead;
curr != NULL;
curr = (prev = curr)->next)
{
if (curr->nIndex == nIndex)
{
// Find it. Let's send a refresh message for this object
//
switch (curr->ObjectType)
{
case CLIENT_OBJ:
pClient = (SP_CClient *) curr->pObject;
// Make sure this object is not deleted already
//
if (! MyIsBadWritePtr (pClient, sizeof (*pClient)) &&
pClient->IsValidObject ())
{
// Make sure this object is valid and registered
//
if (pClient->IsRegistered ())
{
MyDebugMsg ((ZONE_KA, "KA: send refresh msg for client\r\n"));
// Let's send a refresh message for this client object
// and update the new ttl value
//
pClient->AddRef ();
pClient->SendRefreshMsg ();
curr->uTTL = pClient->GetTTL ();
pClient->Release ();
}
}
else
{
MyAssert (FALSE);
}
break;
#ifdef ENABLE_MEETING_PLACE
case MTG_OBJ:
pMtg = (SP_CMeeting *) curr->pObject;
// Make sure this object is not deleted already
//
if (! MyIsBadWritePtr (pMtg, sizeof (*pMtg)) &&
pMtg->IsValidObject ())
{
// Make sure this object is valid and registered
//
if (pMtg->IsRegistered ())
{
MyDebugMsg ((ZONE_KA, "KA: send refresh msg for mtg\r\n"));
// Let's send a refresh message for this user object
// and update the new ttl value
//
pMtg->AddRef ();
pMtg->SendRefreshMsg ();
curr->uTTL = pMtg->GetTTL ();
pMtg->Release ();
}
}
else
{
MyAssert (FALSE);
}
break;
#endif
default:
MyAssert (FALSE);
break;
}
// Start the timer again and exit
// Note that curr->uTTL is the new TTL value from the server
// Also note that uTTL is in unit of minute
//
MyDebugMsg ((ZONE_KA, "KA: new ttl=%lu\r\n", curr->uTTL));
::SetTimer (g_hWndHidden, uTimerID, Minute2TickCount (curr->uTTL), NULL);
break;
} // if
} // for
ReadUnlock ();
return S_OK;
}
HRESULT SP_CRefreshScheduler::
EnterClientObject ( SP_CClient *pClient )
{
if (pClient == NULL)
return ILS_E_POINTER;
return EnterObject (CLIENT_OBJ, (VOID *) pClient, pClient->GetTTL ());
}
#ifdef ENABLE_MEETING_PLACE
HRESULT SP_CRefreshScheduler::
EnterMtgObject ( SP_CMeeting *pMtg )
{
if (pMtg == NULL)
return ILS_E_POINTER;
return EnterObject (MTG_OBJ, (VOID *) pMtg, pMtg->GetTTL ());
}
#endif
VOID *SP_CRefreshScheduler::
AllocItem ( BOOL fNeedLock )
{
REFRESH_ITEM *p, *curr, *prev;
INT nIndex, nLargestIndex;
BOOL fGotTheNewIndex;
// Allocate the structure
//
p = (REFRESH_ITEM *) MemAlloc (sizeof (REFRESH_ITEM));
if (p != NULL)
{
if (fNeedLock)
WriteLock ();
// Find out what should be the index for the new item
//
nLargestIndex = -1; // Yes, it is -1 for the case m_ListHead==NULL
fGotTheNewIndex = FALSE;
for (nIndex = 0, prev = NULL, curr = m_ListHead;
curr != NULL;
nIndex++, curr = (prev = curr)->next)
{
if (curr->nIndex > nIndex)
{
p->nIndex = nIndex;
fGotTheNewIndex = TRUE;
break;
}
nLargestIndex = curr->nIndex;
}
// Put the new item in the list in its appropriate position
//
if (fGotTheNewIndex)
{
if (prev == NULL)
{
// The new one must be the first one
//
MyAssert (p->nIndex == 0);
p->next = m_ListHead;
m_ListHead = p;
}
else
{
// The new one in the middle of the list
//
MyAssert (prev->nIndex < p->nIndex && p->nIndex < curr->nIndex);
MyAssert (prev->next == curr);
(prev->next = p)->next = curr;
}
}
else
{
MyAssert (m_ListHead == NULL || prev != NULL);
if (m_ListHead == NULL)
{
// The new one will be the only one in the list
//
p->nIndex = 0;
(m_ListHead = p)->next = NULL;
}
else
{
// The new one is at the end of the list
//
MyAssert (prev != NULL && prev->next == NULL && curr == NULL);
p->nIndex = nLargestIndex + 1;
(prev->next = p)->next = curr;
}
}
if (fNeedLock)
WriteUnlock ();
} // if (p != NULL)
return p;
}
HRESULT SP_CRefreshScheduler::
EnterObject ( PrivateObjType ObjectType, VOID *pObject, ULONG uInitialTTL )
{
HRESULT hr = S_OK;
WriteLock ();
// Enter this object to the list
//
REFRESH_ITEM *p = (REFRESH_ITEM *) AllocItem (FALSE);
if (p == NULL)
{
hr = ILS_E_MEMORY;
goto MyExit;
}
// Fill in fields
//
p->ObjectType = ObjectType;
p->pObject = pObject;
p->uTTL = uInitialTTL;
// Turn on the timer
// Note that uTTL is in unit of minutes...
//
::SetTimer (g_hWndHidden, Index2TimerID (p->nIndex), Minute2TickCount (p->uTTL), NULL);
MyExit:
WriteUnlock ();
return hr;
}
HRESULT SP_CRefreshScheduler::
RemoveObject ( VOID *pObject )
{
REFRESH_ITEM *prev, *curr;
WriteLock ();
// Locate this object in the list
//
for (prev = NULL, curr = m_ListHead;
curr != NULL;
curr = (prev = curr)->next)
{
if (curr->pObject == pObject)
{
// Find it, let's kill the timer first
//
KillTimer (g_hWndHidden, Index2TimerID (curr->nIndex));
// Remove it from the list
//
if (prev == NULL)
{
// This one is the first one on the list
//
MyAssert (m_ListHead == curr);
m_ListHead = curr->next;
}
else
{
// This one is in the middle of the list
//
MyAssert (prev->next == curr);
prev->next = curr->next;
}
::MemFree(curr);
// Exit the loop
//
break;
}
}
WriteUnlock ();
return (curr != NULL ? S_OK : S_FALSE);
}
extern BOOL NotifyGeneric ( HRESULT, SP_CResponse * );
extern BOOL NotifyRegister ( HRESULT, SP_CResponse * );
extern BOOL NotifyResolveClient ( HRESULT, SP_CResponse * );
extern BOOL NotifyEnumClients ( HRESULT, SP_CResponse * );
extern BOOL NotifyEnumClientInfos ( HRESULT, SP_CResponse * );
extern BOOL NotifyResolveProt ( HRESULT, SP_CResponse * );
extern BOOL NotifyEnumProts ( HRESULT, SP_CResponse * );
extern BOOL NotifyResolveMtg ( HRESULT, SP_CResponse * );
extern BOOL NotifyEnumMtgInfos ( HRESULT, SP_CResponse * );
extern BOOL NotifyEnumMtgs ( HRESULT, SP_CResponse * );
extern BOOL NotifyEnumAttendees ( HRESULT, SP_CResponse * );
extern LPARAM AsynReq_RegisterClient ( MARSHAL_REQ * );
extern LPARAM AsynReq_RegisterProtocol ( MARSHAL_REQ * );
extern LPARAM AsynReq_RegisterMeeting ( MARSHAL_REQ * );
extern LPARAM AsynReq_UnRegisterClient ( MARSHAL_REQ * );
extern LPARAM AsynReq_UnRegisterProt ( MARSHAL_REQ * );
extern LPARAM AsynReq_UnRegisterMeeting ( MARSHAL_REQ * );
extern LPARAM AsynReq_SetClientInfo ( MARSHAL_REQ * );
extern LPARAM AsynReq_SetProtocolInfo ( MARSHAL_REQ * );
extern LPARAM AsynReq_SetMeetingInfo ( MARSHAL_REQ * );
extern LPARAM AsynReq_EnumClientsEx ( MARSHAL_REQ * );
extern LPARAM AsynReq_EnumProtocols ( MARSHAL_REQ * );
extern LPARAM AsynReq_EnumMtgsEx ( MARSHAL_REQ * );
extern LPARAM AsynReq_EnumAttendees ( MARSHAL_REQ * );
extern LPARAM AsynReq_ResolveClient ( MARSHAL_REQ * );
extern LPARAM AsynReq_ResolveProtocol ( MARSHAL_REQ * );
extern LPARAM AsynReq_ResolveMeeting ( MARSHAL_REQ * );
extern LPARAM AsynReq_UpdateAttendees ( MARSHAL_REQ * );
extern LPARAM AsynReq_Cancel ( MARSHAL_REQ * );
typedef struct
{
#ifdef DEBUG
LONG nMsg;
#endif
RESPONSE_HANDLER *pfnRespHdl;
REQUEST_HANDLER *pfnReqHdl;
}
RES_HDL_TBL;
RES_HDL_TBL g_ResHdlTbl[] =
{
{
#ifdef DEBUG
WM_ILS_REGISTER_CLIENT,
#endif
NotifyRegister,
AsynReq_RegisterClient
},
{
#ifdef DEBUG
WM_ILS_UNREGISTER_CLIENT,
#endif
NotifyGeneric,
AsynReq_UnRegisterClient
},
{
#ifdef DEBUG
WM_ILS_SET_CLIENT_INFO,
#endif
NotifyGeneric,
AsynReq_SetClientInfo
},
{
#ifdef DEBUG
WM_ILS_RESOLVE_CLIENT,
#endif
NotifyResolveClient,
AsynReq_ResolveClient
},
{
#ifdef DEBUG
WM_ILS_ENUM_CLIENTS,
#endif
NotifyEnumClients,
AsynReq_EnumClientsEx
},
{
#ifdef DEBUG
WM_ILS_ENUM_CLIENTINFOS,
#endif
NotifyEnumClientInfos,
AsynReq_EnumClientsEx
},
{
#ifdef DEBUG
WM_ILS_REGISTER_PROTOCOL,
#endif
NotifyRegister,
AsynReq_RegisterProtocol
},
{
#ifdef DEBUG
WM_ILS_UNREGISTER_PROTOCOL,
#endif
NotifyGeneric,
AsynReq_UnRegisterProt
},
{
#ifdef DEBUG
WM_ILS_SET_PROTOCOL_INFO,
#endif
NotifyGeneric,
AsynReq_SetProtocolInfo
},
{
#ifdef DEBUG
WM_ILS_RESOLVE_PROTOCOL,
#endif
NotifyResolveProt,
AsynReq_ResolveProtocol
},
{
#ifdef DEBUG
WM_ILS_ENUM_PROTOCOLS,
#endif
NotifyEnumProts,
AsynReq_EnumProtocols
},
#ifdef ENABLE_MEETING_PLACE
{
#ifdef DEBUG
WM_ILS_REGISTER_MEETING,
#endif
NotifyRegister,
AsynReq_RegisterMeeting
},
{
#ifdef DEBUG
WM_ILS_UNREGISTER_MEETING,
#endif
NotifyGeneric,
AsynReq_UnRegisterMeeting
},
{
#ifdef DEBUG
WM_ILS_SET_MEETING_INFO,
#endif
NotifyGeneric,
AsynReq_SetMeetingInfo
},
{
#ifdef DEBUG
WM_ILS_RESOLVE_MEETING,
#endif
NotifyResolveMtg,
AsynReq_ResolveMeeting
},
{
#ifdef DEBUG
WM_ILS_ENUM_MEETINGINFOS,
#endif
NotifyEnumMtgInfos,
AsynReq_EnumMtgsEx
},
{
#ifdef DEBUG
WM_ILS_ENUM_MEETINGS,
#endif
NotifyEnumMtgs,
AsynReq_EnumMtgsEx
},
{
#ifdef DEBUG
WM_ILS_ADD_ATTENDEE,
#endif
NotifyGeneric,
AsynReq_UpdateAttendees
},
{
#ifdef DEBUG
WM_ILS_REMOVE_ATTENDEE,
#endif
NotifyGeneric,
AsynReq_UpdateAttendees
},
{
#ifdef DEBUG
WM_ILS_ENUM_ATTENDEES,
#endif
NotifyEnumAttendees,
AsynReq_EnumAttendees
},
#endif // ENABLE_MEETING_PLACE
{
#ifdef DEBUG
WM_ILS_CANCEL,
#endif
NULL,
AsynReq_Cancel
}
};
#ifdef DEBUG
VOID DbgValidateHandlerTable ( VOID )
{
MyAssert (ARRAY_ELEMENTS (g_ResHdlTbl) == WM_ILS_LAST_ONE - WM_ILS_ASYNC_RES + 1);
for (LONG i = 0; i < ARRAY_ELEMENTS (g_ResHdlTbl); i++)
{
if (g_ResHdlTbl[i].nMsg - WM_ILS_ASYNC_RES != i)
{
MyAssert (FALSE);
break;
}
}
}
#endif
RES_HDL_TBL *
GetHandlerTableEntry ( ULONG uNotifyMsg )
{
ULONG nIndex = uNotifyMsg - WM_ILS_ASYNC_RES;
if (nIndex > WM_ILS_LAST_ONE)
{
MyAssert (FALSE);
return NULL;
}
return &g_ResHdlTbl[nIndex];
}
RESPONSE_HANDLER *
GetResponseHandler ( ULONG uNotifyMsg )
{
RES_HDL_TBL *p = GetHandlerTableEntry (uNotifyMsg);
return ((p != NULL) ? p->pfnRespHdl : NULL);
}
REQUEST_HANDLER *
GetRequestHandler ( ULONG uNotifyMsg )
{
RES_HDL_TBL *p = GetHandlerTableEntry (uNotifyMsg);
return ((p != NULL) ? p->pfnReqHdl : NULL);
}