WindowsXP-SP1/windows/appcompat/sdbapi/index.c
2020-09-30 16:53:49 +02:00

1463 lines
39 KiB
C

/*++
Copyright (c) 1989-2000 Microsoft Corporation
Module Name:
index.c
Abstract:
This module implements the APIs and internal functions used to access and build
indexes in the database.
Author:
dmunsil created sometime in 1999
Revision History:
several people contributed (vadimb, clupu, ...)
--*/
#include "sdbp.h"
#if defined(KERNEL_MODE) && defined(ALLOC_DATA_PRAGMA)
#pragma data_seg()
#endif // KERNEL_MODE && ALLOC_DATA_PRAGMA
#if defined(KERNEL_MODE) && defined(ALLOC_PRAGMA)
#pragma alloc_text(PAGE, SdbFindFirstGUIDIndexedTag)
#pragma alloc_text(PAGE, SdbFindNextGUIDIndexedTag)
#pragma alloc_text(PAGE, SdbFindFirstDWORDIndexedTag)
#pragma alloc_text(PAGE, SdbFindNextDWORDIndexedTag)
#pragma alloc_text(PAGE, SdbFindFirstStringIndexedTag)
#pragma alloc_text(PAGE, SdbFindNextStringIndexedTag)
#pragma alloc_text(PAGE, SdbpBinarySearchUnique)
#pragma alloc_text(PAGE, SdbpBinarySearchFirst)
#pragma alloc_text(PAGE, SdbpGetFirstIndexedRecord)
#pragma alloc_text(PAGE, SdbpGetNextIndexedRecord)
#pragma alloc_text(PAGE, SdbpPatternMatch)
#pragma alloc_text(PAGE, SdbpPatternMatchAnsi)
#pragma alloc_text(PAGE, SdbpKeyToAnsiString)
#pragma alloc_text(PAGE, SdbpFindFirstIndexedWildCardTag)
#pragma alloc_text(PAGE, SdbpFindNextIndexedWildCardTag)
#pragma alloc_text(PAGE, SdbGetIndex)
#pragma alloc_text(PAGE, SdbpScanIndexes)
#pragma alloc_text(PAGE, SdbpGetIndex)
#pragma alloc_text(PAGE, SdbMakeIndexKeyFromString)
#pragma alloc_text(PAGE, SdbpTagToKey)
#endif // KERNEL_MODE && ALLOC_PRAGMA
TAGID
SdbFindFirstGUIDIndexedTag(
IN PDB pdb,
IN TAG tWhich,
IN TAG tKey,
IN GUID* pguidName,
OUT FIND_INFO* pFindInfo
)
/*++
Return: void
Desc: This function locates the first matching entry indexed by GUID id
--*/
{
TAGID tiReturn;
DWORD dwFlags = 0;
pFindInfo->tiIndex = SdbGetIndex(pdb, tWhich, tKey, &dwFlags);
if (pFindInfo->tiIndex == TAGID_NULL) {
DBGPRINT((sdlError,
"SdbFindFirstGUIDIndexedTag",
"Failed to find index 0x%lx key 0x%lx\n",
tWhich, tKey));
return TAGID_NULL;
}
pFindInfo->tName = tKey;
pFindInfo->pguidName = pguidName;
pFindInfo->dwFlags = dwFlags;
pFindInfo->ullKey = MAKEKEYFROMGUID(pguidName);
tiReturn = SdbpGetFirstIndexedRecord(pdb, pFindInfo->tiIndex, pFindInfo->ullKey, pFindInfo);
if (tiReturn == TAGID_NULL) {
//
// While this is handled properly in FindMatchingGUID we return here since
// the record was not found in the index. It is not an abnormal condition.
// We have just failed to find the match. Likewise, DBGPRINT is not warranted
//
return tiReturn;
}
return SdbpFindMatchingGUID(pdb, tiReturn, pFindInfo);
}
TAGID
SdbFindNextGUIDIndexedTag(
IN PDB pdb,
OUT FIND_INFO* pFindInfo
)
/*++
Return: The TAGID of the next GUID-indexed tag.
Desc: This function finds the next entry matching a guid provided in a
previous call to SdbFindNextGUIDIndexedTag
--*/
{
TAGID tiReturn;
//
// Get a preliminary match from the index.
//
tiReturn = SdbpGetNextIndexedRecord(pdb, pFindInfo->tiIndex, pFindInfo);
if (tiReturn == TAGID_NULL) {
//
// This case is handled properly in SdbpFindMatchingGUID
// we return here however for simplicity.
// DBGPRINT is not needed since it's not an abnormal condition
//
return tiReturn;
}
return SdbpFindMatchingGUID(pdb, tiReturn, pFindInfo);
}
TAGID
SdbFindFirstDWORDIndexedTag(
IN PDB pdb,
IN TAG tWhich,
IN TAG tKey,
IN DWORD dwName,
OUT FIND_INFO* pFindInfo
)
/*++
Return: BUGBUG: ?
Desc: BUGBUG: what does this do ?
--*/
{
TAGID tiReturn;
DWORD dwFlags = 0;
pFindInfo->tiIndex = SdbGetIndex(pdb, tWhich, tKey, &dwFlags);
if (pFindInfo->tiIndex == TAGID_NULL) {
DBGPRINT((sdlError,
"SdbFindFirstDWORDIndexedTag",
"Failed to find index 0x%lx key 0x%lx\n",
tWhich, tKey));
return TAGID_NULL;
}
pFindInfo->tName = tKey;
pFindInfo->dwName = dwName;
pFindInfo->dwFlags = dwFlags;
pFindInfo->ullKey = MAKEKEYFROMDWORD(dwName);
tiReturn = SdbpGetFirstIndexedRecord(pdb, pFindInfo->tiIndex, pFindInfo->ullKey, pFindInfo);
if (tiReturn == TAGID_NULL) {
//
// While this is handled properly in FindMatchingGUID we return here since
// the record was not found in the index. It is not an abnormal condition.
// We have just failed to find the match. Likewise, DBGPRINT is not warranted
//
return tiReturn;
}
return SdbpFindMatchingDWORD(pdb, tiReturn, pFindInfo);
}
TAGID
SdbFindNextDWORDIndexedTag(
IN PDB pdb,
OUT FIND_INFO* pFindInfo
)
/*++
Return: BUGBUG: ?
Desc: BUGBUG: ?
--*/
{
TAGID tiReturn;
//
// Get a preliminary match from the index.
//
tiReturn = SdbpGetNextIndexedRecord(pdb, pFindInfo->tiIndex, pFindInfo);
if (tiReturn == TAGID_NULL) {
//
// This case is handled properly in SdbpFindMatchingDWORD
// we return here however for simplicity.
// DBGPRINT is not needed since it's not an abnormal condition
//
return tiReturn;
}
return SdbpFindMatchingDWORD(pdb, tiReturn, pFindInfo);
}
TAGID
SdbFindFirstStringIndexedTag(
IN PDB pdb,
IN TAG tWhich,
IN TAG tKey,
IN LPCTSTR pszName,
OUT FIND_INFO* pFindInfo
)
/*++
Return: BUGBUG: ?
Desc: BUGBUG: ?
--*/
{
TAGID tiReturn;
DWORD dwFlags = 0;
pFindInfo->tiIndex = SdbGetIndex(pdb, tWhich, tKey, &dwFlags);
if (pFindInfo->tiIndex == TAGID_NULL) {
DBGPRINT((sdlError,
"SdbFindFirstStringIndexedTag",
"Index not found 0x%lx Key 0x%lx\n",
tWhich,
tKey));
return TAGID_NULL;
}
pFindInfo->tName = tKey;
pFindInfo->szName = (LPTSTR)pszName;
pFindInfo->dwFlags = dwFlags;
pFindInfo->ullKey = SdbMakeIndexKeyFromString(pszName);
//
// Get a preliminary match from the index.
//
tiReturn = SdbpGetFirstIndexedRecord(pdb, pFindInfo->tiIndex, pFindInfo->ullKey, pFindInfo);
if (tiReturn == TAGID_NULL) {
//
// This is not a bug, tag was not found
//
return tiReturn;
}
DBGPRINT((sdlInfo, "SdbFindFirstStringIndexedTag", "Found tagid 0x%x\n", tiReturn));
return SdbpFindMatchingName(pdb, tiReturn, pFindInfo);
}
TAGID
SdbFindNextStringIndexedTag(
IN PDB pdb,
OUT FIND_INFO* pFindInfo
)
/*++
Return: BUGBUG: ?
Desc: BUGBUG: ?
--*/
{
TAGID tiReturn;
//
// Get a preliminary match from the index.
//
tiReturn = SdbpGetNextIndexedRecord(pdb, pFindInfo->tiIndex, pFindInfo);
if (tiReturn == TAGID_NULL) {
//
// This is not a bug, this item was not found
//
return tiReturn;
}
return SdbpFindMatchingName(pdb, tiReturn, pFindInfo);
}
BOOL
SdbpBinarySearchUnique(
IN PINDEX_RECORD pRecords, // index record ptr
IN DWORD nRecords, // number of records
IN ULONGLONG ullKey, // key to search for
OUT DWORD* pdwIndex // index to the item
)
/*++
Return: TRUE if the index to the item is found.
Desc: BUGBUG: comment ?
--*/
{
int iLeft = 0;
int iRight = (int)nRecords - 1;
int i = -1;
ULONGLONG ullKeyIndex;
BOOL bFound = FALSE;
if (iRight >= 0) {
do {
i = (iLeft + iRight) / 2; // middle
READ_INDEX_KEY(pRecords, i, &ullKeyIndex);
if (ullKey <= ullKeyIndex) {
iRight = i - 1;
}
if (ullKey >= ullKeyIndex) {
iLeft = i + 1;
}
} while (iRight >= iLeft);
}
bFound = (iLeft - iRight > 1);
if (bFound) {
*pdwIndex = (DWORD)i;
}
return bFound;
}
BOOL
SdbpBinarySearchFirst(
IN PINDEX_RECORD pRecords,
IN DWORD nRecords,
IN ULONGLONG ullKey,
OUT DWORD* pdwIndex
)
{
int iLeft = 0;
int iRight = (int)nRecords - 1;
int i = -1;
ULONGLONG ullKeyIndex = 0;
ULONGLONG ullKeyIndexPrev = 0;
BOOL bFound = FALSE;
if (iRight < 0) {
return FALSE;
}
do {
i= (iLeft + iRight) / 2; // middle
READ_INDEX_KEY(pRecords, i, &ullKeyIndex);
if (ullKey == ullKeyIndex) {
if (i == 0 || READ_INDEX_KEY_VAL(pRecords, i - 1, &ullKeyIndexPrev) != ullKey) {
//
// we are done, thank you
//
bFound = TRUE;
break;
} else {
//
// look in the previous record
//
iRight = i - 1;
}
} else {
if (ullKey < ullKeyIndex) {
iRight = i - 1;
} else {
iLeft = i + 1;
}
}
} while (iRight >= iLeft);
if (bFound) {
*pdwIndex = (DWORD)i;
}
return bFound;
}
TAGID
SdbpGetFirstIndexedRecord(
IN PDB pdb, // the DB to use
IN TAGID tiIndex, // the index to use
IN ULONGLONG ullKey, // the key to search for
OUT FIND_INFO* pFindInfo // search context
)
/*++
Return: the record found, or TAGID_NULL.
Desc: Looks through an index for the first record that matches the key. It
returns the index record position for subsequent calls to SdbpGetNextIndexedRecord.
--*/
{
PINDEX_RECORD pIndexRecords;
DWORD dwRecords;
BOOL bFound;
if (SdbGetTagFromTagID(pdb, tiIndex) != TAG_INDEX_BITS) {
DBGPRINT((sdlError,
"SdbpGetFirstIndexedRecord",
"The tag 0x%lx is not an index tag\n",
tiIndex));
return TAGID_NULL;
}
dwRecords = SdbGetTagDataSize(pdb, tiIndex) / sizeof(INDEX_RECORD);
pIndexRecords = (INDEX_RECORD*)SdbpGetMappedTagData(pdb, tiIndex);
if (pIndexRecords == NULL) {
DBGPRINT((sdlError,
"SdbpGetFirstIndexedRecord",
"Failed to get the pointer to index data, index tagid 0x%lx\n",
tiIndex));
return TAGID_NULL;
}
//
// Check to see whether our index is "unique", if so use our search proc.
//
if (pFindInfo->dwFlags & SHIMDB_INDEX_UNIQUE_KEY) {
bFound = SdbpBinarySearchUnique(pIndexRecords,
dwRecords,
ullKey,
&pFindInfo->dwIndexRec);
if (bFound && pFindInfo->dwIndexRec < (dwRecords - 1)) {
//
// We have the next rec -- retrieve the next tagid.
//
pFindInfo->tiEndIndex = pIndexRecords[pFindInfo->dwIndexRec + 1].tiRef;
} else {
//
// We will have to search until eof.
//
pFindInfo->tiEndIndex = TAGID_NULL;
}
pFindInfo->tiCurrent = TAGID_NULL;
} else {
bFound = SdbpBinarySearchFirst(pIndexRecords,
dwRecords,
ullKey,
&pFindInfo->dwIndexRec);
}
return bFound ? pIndexRecords[pFindInfo->dwIndexRec].tiRef : TAGID_NULL;
}
TAGID
SdbpGetNextIndexedRecord(
IN PDB pdb, // the DB to use
IN TAGID tiIndex, // the index to use
OUT FIND_INFO* pFindInfo // the find context
)
/*++
Return: the record found, or TAGID_NULL.
Desc: Gets the next record that matches the one found by a previous call to
SdbpGetFirstIndexedRecord.
--*/
{
ULONGLONG ullKey;
ULONGLONG ullKeyNext;
PINDEX_RECORD pIndexRecords;
DWORD dwRecords;
TAGID tiRef = TAGID_NULL;
TAGID tiThis;
TAG tag, tagThis;
if (SdbGetTagFromTagID(pdb, tiIndex) != TAG_INDEX_BITS) {
DBGPRINT((sdlError,
"SdbpGetNextIndexedRecord",
"The tag 0x%lx is not an index tag\n",
tiIndex));
return TAGID_NULL;
}
pIndexRecords = (PINDEX_RECORD)SdbpGetMappedTagData(pdb, tiIndex);
if (pIndexRecords == NULL) {
DBGPRINT((sdlError,
"SdbpGetNextIndexedRecord",
"Failed to get pointer to the index data tagid x%lx\n",
tiIndex));
return TAGID_NULL;
}
if (pFindInfo->dwFlags & SHIMDB_INDEX_UNIQUE_KEY) {
//
// There are 2 cases:
// - this is the very first call to SdbpGetNextIndexedrecord
// - this is one of the subsequent calls
//
// In the first case, we will have tiCurrent member of the FIND_INFO
// structure set to TAGID_NULL. We use then the reference to the
// index table contained in pFindInfo->dwIndexRec to obtain the reference
// to the next eligible entry in the database.
// In the second case we use the stored tiCurrent to obtain the current tag
//
if (pFindInfo->tiCurrent == TAGID_NULL) {
tiThis = pIndexRecords[pFindInfo->dwIndexRec].tiRef;
} else {
tiThis = pFindInfo->tiCurrent;
}
//
// The tag tiThis which we just obtained was the one we previously looked at
// we need to step to the next tag, the call below does that. Entries are sorted
// since we're using "unique" index
//
tiRef = SdbpGetNextTagId(pdb, tiThis);
//
// Now check the tag for corruption, eof and other calamities.
//
tagThis = SdbGetTagFromTagID(pdb, tiThis);
tag = SdbGetTagFromTagID(pdb, tiRef);
if (tag == TAG_NULL || GETTAGTYPE(tag) != TAG_TYPE_LIST || tag != tagThis) {
//
// This is NOT a bug, but a special condition when the tag happened to be
// the very last tag in the index, thus we have to walk until we hit either
// the end of the file - or a tag of a different type
return TAGID_NULL;
}
//
// Also check for the endtag. It will be a check for TAGID_NULL if we're
// looking for eof but this condition has already been caught by the code above.
//
if (tiRef == pFindInfo->tiEndIndex) {
//
// This is not an error condition. We have walked all the matching entries until
// we hit the very last entry, as denoted by tiEndIndex
//
return TAGID_NULL;
}
//
// Also here check whether the key still has the same
// value for this entry as it did for the previous entry.
// This would have been easy but keys are not immediately available
// for this entry therefore we just return the tiRef. The caller will
// verify whether the entry is valid and whether the search should continue.
//
pFindInfo->tiCurrent = tiRef;
} else {
dwRecords = SdbGetTagDataSize(pdb, tiIndex) / sizeof(INDEX_RECORD);
//
// Get out if this is the last record.
//
if (pFindInfo->dwIndexRec == dwRecords - 1) {
//
// This is not a bug, record not found
//
return TAGID_NULL;
}
//
// we check the next index record to see if it has the same key
//
READ_INDEX_KEY(pIndexRecords, pFindInfo->dwIndexRec, &ullKey);
READ_INDEX_KEY(pIndexRecords, pFindInfo->dwIndexRec + 1, &ullKeyNext);
if (ullKey != ullKeyNext) {
//
// This is not a bug, record not found
//
return TAGID_NULL;
}
++pFindInfo->dwIndexRec;
tiRef = pIndexRecords[pFindInfo->dwIndexRec].tiRef;
}
return tiRef;
}
BOOL
SdbpPatternMatch(
IN LPCTSTR pszPattern,
IN LPCTSTR pszTestString)
/*++
Return: TRUE if pszTestString matches pszPattern
FALSE if not
Desc: This function does a case-insensitive comparison of
pszTestString against pszPattern. pszPattern can
include asterisks to do wildcard matches.
Any complaints about this function should be directed
toward MarkDer.
--*/
{
//
// March through pszTestString. Each time through the loop,
// pszTestString is advanced one character.
//
while (TRUE) {
//
// If pszPattern and pszTestString are both sitting on a NULL,
// then they reached the end at the same time and the strings
// must be equal.
//
if (*pszPattern == TEXT('\0') && *pszTestString == TEXT('\0')) {
return TRUE;
}
if (*pszPattern != TEXT('*')) {
//
// Non-asterisk mode. Look for a match on this character.
// If equal, continue traversing. Otherwise, the strings
// cannot be equal so return FALSE.
//
if (UPCASE_CHAR(*pszPattern) == UPCASE_CHAR(*pszTestString)) {
pszPattern++;
} else {
return FALSE;
}
} else {
//
// Asterisk mode. Look for a match on the character directly
// after the asterisk.
//
if (*(pszPattern + 1) == TEXT('*')) {
//
// Asterisks exist side by side. Advance the pattern pointer
// and go through loop again.
//
pszPattern++;
continue;
}
if (*(pszPattern + 1) == TEXT('\0')) {
//
// Asterisk exists at the end of the pattern string. Any
// remaining part of pszTestString matches so we can
// immediately return TRUE.
//
return TRUE;
}
if (UPCASE_CHAR(*(pszPattern + 1)) == UPCASE_CHAR(*pszTestString)) {
//
// Characters match. If the remaining parts of
// pszPattern and pszTestString match, then the entire
// string matches. Otherwise, keep advancing the
// pszTestString pointer.
//
if (SdbpPatternMatch(pszPattern + 1, pszTestString)) {
return TRUE;
}
}
}
//
// No more pszTestString left. Must not be a match.
//
if (!*pszTestString) {
return FALSE;
}
pszTestString++;
}
}
BOOL
SdbpPatternMatchAnsi(
IN LPCSTR pszPattern,
IN LPCSTR pszTestString)
{
//
// March through pszTestString. Each time through the loop,
// pszTestString is advanced one character.
//
while (TRUE) {
//
// If pszPattern and pszTestString are both sitting on a NULL,
// then they reached the end at the same time and the strings
// must be equal.
//
if (*pszPattern == '\0' && *pszTestString == '\0') {
return TRUE;
}
if (*pszPattern != '*') {
//
// Non-asterisk mode. Look for a match on this character.
// If equal, continue traversing. Otherwise, the strings
// cannot be equal so return FALSE.
//
if (toupper(*pszPattern) == toupper(*pszTestString)) {
pszPattern++;
} else {
return FALSE;
}
} else {
//
// Asterisk mode. Look for a match on the character directly
// after the asterisk.
//
if (*(pszPattern + 1) == '*') {
//
// Asterisks exist side by side. Advance the pattern pointer
// and go through loop again.
//
pszPattern++;
continue;
}
if (*(pszPattern + 1) == '\0') {
//
// Asterisk exists at the end of the pattern string. Any
// remaining part of pszTestString matches so we can
// immediately return TRUE.
//
return TRUE;
}
if (toupper(*(pszPattern + 1)) == toupper(*pszTestString)) {
//
// Characters match. If the remaining parts of
// pszPattern and pszTestString match, then the entire
// string matches. Otherwise, keep advancing the
// pszTestString pointer.
//
if (SdbpPatternMatchAnsi(pszPattern + 1, pszTestString)) {
return TRUE;
}
}
}
//
// No more pszTestString left. Must not be a match.
//
if (!*pszTestString) {
return FALSE;
}
pszTestString++;
}
}
char*
SdbpKeyToAnsiString(
ULONGLONG ullKey,
char* szString
)
/*++
Return: ?
Desc: ?
--*/
{
char* szRevString = (char*)&ullKey;
int i;
for (i = 0; i < 8; ++i) {
szString[i] = szRevString[7 - i];
}
szString[8] = 0;
return szString;
}
TAGID
SdbpFindFirstIndexedWildCardTag(
PDB pdb,
TAG tWhich,
TAG tKey,
LPCTSTR szName,
FIND_INFO* pFindInfo
)
/*++
Return: ?
Desc: ?
--*/
{
char szAnsiName[MAX_PATH];
char szAnsiKey[10];
PINDEX_RECORD pIndex = NULL;
DWORD dwRecs;
NTSTATUS status;
DWORD dwFlags = 0;
DWORD i, j;
pFindInfo->tiIndex = SdbGetIndex(pdb, tWhich, tKey, &dwFlags);
if (pFindInfo->tiIndex == TAGID_NULL) {
DBGPRINT((sdlError,
"SdbpFindFirstIndexedWilCardTag",
"Failed to get an index for tag 0x%lx key 0x%lx\n",
(DWORD)tWhich,
(DWORD)tKey));
return TAGID_NULL;
}
pFindInfo->tName = tKey;
pFindInfo->szName = szName;
pFindInfo->dwFlags = dwFlags;
RtlZeroMemory(szAnsiName, MAX_PATH);
RtlZeroMemory(szAnsiKey, 10);
//
// Get the uppercase ANSI version of this search string so
// it will match the keys in the index.
//
status = UPCASE_UNICODETOMULTIBYTEN(szAnsiName,
CHARCOUNT(szAnsiName), // this is size in characters
pFindInfo->szName);
if (!NT_SUCCESS(status)) {
DBGPRINT((sdlError,
"SdbpFindFirstIndexedWildCardTag",
"Failed to convert name to multi-byte\n"));
return TAGID_NULL;
}
//
// Get the index.
//
pIndex = SdbpGetIndex(pdb, pFindInfo->tiIndex, &dwRecs);
if (pIndex == NULL) {
DBGPRINT((sdlError,
"SdbpFindFirstIndexedWildCardTag",
"Failed to get index by tag id 0x%lx\n",
pFindInfo->tiIndex));
return TAGID_NULL;
}
//
// Walk through the whole index sequentially, doing a first pass check of the key
// so we can avoid getting the whole record if the name clearly isn't a match.
//
for (i = 0; i < dwRecs; ++i) {
TAGID tiMatch;
TAGID tiKey;
LPTSTR szDBName;
ULONGLONG ullKey;
READ_INDEX_KEY(pIndex, i, &ullKey);
//
// the call below never fails, so we don't check return value
//
SdbpKeyToAnsiString(pIndex[i].ullKey, szAnsiKey);
//
// If the original pattern match is more than eight characters, we have
// to plant an asterisk at the eighth character so that proper wildcard
// matching occurs.
//
szAnsiKey[8] = '*';
//
// Quick check of the string that's in the key.
//
if (!SdbpPatternMatchAnsi(szAnsiKey, szAnsiName)) {
continue;
}
//
// We found a tentative match, now pull the full record and
// see if it's real.
//
tiMatch = pIndex[i].tiRef;
//
// Get the key field.
//
tiKey = SdbFindFirstTag(pdb, tiMatch, pFindInfo->tName);
if (tiKey == TAGID_NULL) {
//
// This is not a bug, but rather continue searching
//
continue;
}
szDBName = SdbGetStringTagPtr(pdb, tiKey);
if (szDBName == NULL) {
// BUGBUG: what if this fails ?
continue;
}
//
// Is this really a match?
//
if (SdbpPatternMatch(szDBName, pFindInfo->szName)) {
pFindInfo->dwIndexRec = i;
return tiMatch;
}
}
// BUGBUG: DPF
return TAGID_NULL;
}
TAGID
SdbpFindNextIndexedWildCardTag(
PDB pdb,
FIND_INFO* pFindInfo
)
/*++
Return: ?
Desc: ?
--*/
{
char szAnsiName[MAX_PATH];
char szAnsiKey[10];
PINDEX_RECORD pIndex = NULL;
DWORD dwRecs;
NTSTATUS status;
DWORD i, j;
RtlZeroMemory(szAnsiName, MAX_PATH);
RtlZeroMemory(szAnsiKey, 10);
//
// Get the uppercase ANSI version of this search string so
// it will match the keys in the index.
//
status = UPCASE_UNICODETOMULTIBYTEN(szAnsiName,
CHARCOUNT(szAnsiName),
pFindInfo->szName);
if (!NT_SUCCESS(status)) {
// BUGBUG: DPF
return TAGID_NULL;
}
//
// Get the index.
//
pIndex = SdbpGetIndex(pdb, pFindInfo->tiIndex, &dwRecs);
if (pIndex == NULL) {
// BUGBUG: DPF
return TAGID_NULL;
}
//
// Walk through the rest of the index sequentially, doing a first pass
// check of the key so we can avoid getting the whole record if the
// name clearly isn't a match.
//
for (i = pFindInfo->dwIndexRec + 1; i < dwRecs; ++i) {
TAGID tiMatch;
TAGID tiKey;
LPTSTR pszDBName;
ULONGLONG ullKey;
READ_INDEX_KEY(pIndex, i, &ullKey);
SdbpKeyToAnsiString(ullKey, szAnsiKey);
//
// If the original pattern match is more than eight characters, we have
// to plant an asterisk at the eighth character so that proper wildcard
// matching occurs.
//
szAnsiKey[8] = '*';
//
// Quick check of the string that's in the key.
//
if (!SdbpPatternMatchAnsi(szAnsiKey, szAnsiName)) {
// BUGBUG: DPF
continue;
}
//
// We found a tentative match, now pull the full record and
// see if it's real.
//
tiMatch = pIndex[i].tiRef;
//
// Get the key field.
//
tiKey = SdbFindFirstTag(pdb, tiMatch, pFindInfo->tName);
if (tiKey == TAGID_NULL) {
// BUGBUG: DPF
continue;
}
pszDBName = SdbGetStringTagPtr(pdb, tiKey);
if (pszDBName == NULL) {
// BUGBUG: DPF
continue;
}
//
// Is this really a match?
//
if (SdbpPatternMatch(pszDBName, pFindInfo->szName)) {
pFindInfo->dwIndexRec = i;
return tiMatch;
}
}
// BUGBUG: DPF
return TAGID_NULL;
}
//
// Index access functions (for reading) -- better to use tiFindFirstIndexedTag, above
//
TAGID
SdbGetIndex(
IN PDB pdb, // db to use
IN TAG tWhich, // tag we'd like an index for
IN TAG tKey, // the kind of tag used as a key for this index
OUT LPDWORD lpdwFlags // index record flags (e.g. indicator whether the index
// is "unique" style
)
/*++
Return: TAGID of index, or TAGID_NULL.
Desc: Retrieves a TAGID ptr to the index bits for a specific
tag, if one exists.
--*/
{
TAGID tiReturn = TAGID_NULL;
int i;
//
// Scan the indexes if not done already.
//
if (!pdb->bIndexesScanned) {
SdbpScanIndexes(pdb);
}
for (i = 0; i < MAX_INDEXES; ++i) {
if (!pdb->aIndexes[i].tWhich) {
DBGPRINT((sdlInfo,
"SdbGetIndex",
"index 0x%x(0x%x) was not found in the index table\n",
tWhich,
tKey));
return TAGID_NULL;
}
if (pdb->aIndexes[i].tWhich == tWhich && pdb->aIndexes[i].tKey == tKey) {
tiReturn = pdb->aIndexes[i].tiIndex;
if (lpdwFlags != NULL) {
*lpdwFlags = pdb->aIndexes[i].dwFlags;
}
break;
}
}
return tiReturn;
}
void
SdbpScanIndexes(
IN PDB pdb // db to use
)
/*++
Params: described above.
Return: void. No failure case.
Desc: Scans the initial tags in the DB and gets the index pointer info.
--*/
{
TAGID tiFirst;
TAGID tiIndex;
if (pdb->bIndexesScanned && !pdb->bWrite) {
//
// This is not an error condition
//
return;
}
RtlZeroMemory(pdb->aIndexes, sizeof(pdb->aIndexes));
pdb->bIndexesScanned = TRUE;
//
// The indexes must be the first tag.
//
tiFirst = SdbGetFirstChild(pdb, TAGID_ROOT);
if (tiFirst == TAGID_NULL) {
DBGPRINT((sdlError,
"SdbpScanIndexes",
"Failed to get the child index from root\n"));
return;
}
if (SdbGetTagFromTagID(pdb, tiFirst) != TAG_INDEXES) {
DBGPRINT((sdlError,
"SdbpScanIndexes",
"Root child tag is not index tagid 0x%lx\n",
tiFirst));
return;
}
pdb->dwIndexes = 0;
tiIndex = SdbFindFirstTag(pdb, tiFirst, TAG_INDEX);
while (tiIndex != TAGID_NULL) {
TAGID tiIndexTag;
TAGID tiIndexKey;
TAGID tiIndexBits;
TAGID tiIndexFlags;
if (pdb->dwIndexes == MAX_INDEXES) {
DBGPRINT((sdlError,
"SdbpScanIndexes",
"Too many indexes in file. Recompile and increase MAX_INDEXES.\n"));
return;
}
tiIndexTag = SdbFindFirstTag(pdb, tiIndex, TAG_INDEX_TAG);
if (tiIndexTag == TAGID_NULL) {
DBGPRINT((sdlError,
"SdbpScanIndexes",
"Index missing TAG_INDEX_TAG.\n"));
return;
}
pdb->aIndexes[pdb->dwIndexes].tWhich = SdbReadWORDTag(pdb, tiIndexTag, TAG_NULL);
tiIndexKey = SdbFindFirstTag(pdb, tiIndex, TAG_INDEX_KEY);
if (tiIndexKey == TAGID_NULL) {
DBGPRINT((sdlError, "SdbpScanIndexes", "Index missing TAG_INDEX_KEY.\n"));
return;
}
pdb->aIndexes[pdb->dwIndexes].tKey = SdbReadWORDTag(pdb, tiIndexKey, TAG_NULL);
tiIndexFlags = SdbFindFirstTag(pdb, tiIndex, TAG_INDEX_FLAGS);
if (tiIndexFlags != TAGID_NULL) {
pdb->aIndexes[pdb->dwIndexes].dwFlags = SdbReadDWORDTag(pdb, tiIndexFlags, 0);
} else {
pdb->aIndexes[pdb->dwIndexes].dwFlags = 0;
}
tiIndexBits = SdbFindFirstTag(pdb, tiIndex, TAG_INDEX_BITS);
if (tiIndexBits == TAGID_NULL) {
pdb->aIndexes[pdb->dwIndexes].tWhich = TAG_NULL;
DBGPRINT((sdlError, "SdbpScanIndexes", "Index missing TAG_INDEX_BITS.\n"));
return;
}
pdb->aIndexes[pdb->dwIndexes].tiIndex = tiIndexBits;
pdb->dwIndexes++;
tiIndex = SdbFindNextTag(pdb, tiFirst, tiIndex);
}
return;
}
PINDEX_RECORD
SdbpGetIndex(
IN PDB pdb,
IN TAGID tiIndex,
OUT DWORD* pdwNumRecs
)
/*++
Return: ?
Desc: ?
--*/
{
if (SdbGetTagFromTagID(pdb, tiIndex) != TAG_INDEX_BITS) {
DBGPRINT((sdlError,
"SdbpGetIndex",
"Index tagid 0x%lx is not referring to the index bits\n",
tiIndex));
return NULL;
}
*pdwNumRecs = SdbGetTagDataSize(pdb, tiIndex) / sizeof(INDEX_RECORD);
return (PINDEX_RECORD)SdbpGetMappedTagData(pdb, tiIndex);
}
#if defined(_WIN64)
ULONGLONG
SdbMakeIndexKeyFromGUID(
IN GUID* pGuid
)
/*
Return: a 64-bit key to use for searching
Desc: The standard index key is created for a Guid
using the xor operation on a first and second half
of guid
*/
{
ULONGLONG ullPart1 = 0,
ullPart2 = 0;
RtlMoveMemory(&ullPart1, pGuid, sizeof(ULONGLONG));
RtlMoveMemory(&ullPart2, (PBYTE)pGuid + sizeof(ULONGLONG), sizeof(ULONGLONG));
return (ullPart1 ^ ullPart2);
}
#endif // _WIN64
#define SDB_KEY_LENGTH_BYTES 8
#define SDB_KEY_LENGTH 8
ULONGLONG
SdbMakeIndexKeyFromString(
IN LPCTSTR szKey
)
/*++
Return: a 64-bit key to use for searching.
Desc: The standard index key for a Unicode string is the
first 8 characters of the string, converted to uppercase ansi,
then cast to a ULONGLONG (64 bit unsigned int).
--*/
{
char szFlippedKey[SDB_KEY_LENGTH_BYTES]; // flipped to deal with little-endian issues
char* pszKey = &szFlippedKey[SDB_KEY_LENGTH_BYTES-1]; // points to the last char
NTSTATUS status;
int i;
WCHAR ch;
int nLength;
#ifndef WIN32A_MODE
UNICODE_STRING ustrKey;
UNICODE_STRING ustrKeySrc; // truncated string
UNICODE_STRING ustrKeySrcUpcased;
WCHAR Buffer[SDB_KEY_LENGTH];
WCHAR BufferUpcased[SDB_KEY_LENGTH];
LPCWSTR pKeyBuffer = BufferUpcased;
NTSTATUS Status;
RtlInitUnicodeString(&ustrKey, szKey);
//
// Call below copies upto maximum length of the destination string
//
ustrKeySrc.Buffer = Buffer;
ustrKeySrc.MaximumLength = sizeof(Buffer);
RtlCopyUnicodeString(&ustrKeySrc, &ustrKey);
//
// Upcase what we have created
//
ustrKeySrcUpcased.Buffer = BufferUpcased;
ustrKeySrcUpcased.MaximumLength = sizeof(BufferUpcased);
Status = RtlUpcaseUnicodeString(&ustrKeySrcUpcased, &ustrKeySrc, FALSE);
if (!NT_SUCCESS(Status)) {
DBGPRINT((sdlError,
"SdbMakeIndexKeyFromString",
"Failed to upcase unicode string \"%s\"\n",
szKey));
return 0;
}
//
// Now we have an upper-case unicode string which is of max. 8 characters length
//
nLength = ustrKeySrcUpcased.Length / sizeof(WCHAR);
#else // WIN32A_MODE
WCHAR Buffer[SDB_KEY_LENGTH + 1];
LPCWSTR pKeyBuffer = Buffer;
nLength = mbstowcs(Buffer, szKey, CHARCOUNT(Buffer));
if (nLength < 0) {
DBGPRINT((sdlError,
"SdbMakeIndexKeyFromString",
"Failed to convert string \"%s\" to unicode\n",
szKey));
return 0;
}
Buffer[nLength] = TEXT('\0'); // zero-terminate
//
// Upcase now. Buffer is always 0-terminated.
//
_wcsupr(Buffer);
#endif // WIN32A_MODE
assert(nLength <= SDB_KEY_LENGTH);
RtlZeroMemory(szFlippedKey , sizeof(szFlippedKey));
//
// To be compatible with the old (ANSI) scheme of making keys, we
// construct the key using all non-null bytes in the string, up to 8
//
for (i = 0; i < nLength; ++i) {
ch = *pKeyBuffer++;
*pszKey-- = (unsigned char)ch;
//
// ch is a unicode char, whatever it is, see if it has 2 bytes or just one
//
if (HIBYTE(ch) && i < (SDB_KEY_LENGTH - 1)) {
//
// Two bytes, store both
//
*pszKey-- = (unsigned char)HIBYTE(ch);
++i;
}
}
return *((ULONGLONG*)szFlippedKey);
}
ULONGLONG
SdbpTagToKey(
IN PDB pdb,
IN TAGID tiTag
)
/*++
Return: ?
Desc: ?
--*/
{
TAG_TYPE ttType;
ULONGLONG ullReturn = 0;
DWORD dwSize;
PVOID pData;
LPTSTR szTemp = NULL;
ttType = GETTAGTYPE(SdbGetTagFromTagID(pdb, tiTag));
switch (ttType) {
case TAG_TYPE_STRING:
case TAG_TYPE_STRINGREF:
szTemp = SdbGetStringTagPtr(pdb, tiTag);
if (!szTemp) {
ullReturn = 0;
} else {
ullReturn = SdbMakeIndexKeyFromString(szTemp);
}
break;
case TAG_TYPE_NULL:
ullReturn = 1;
break;
case TAG_TYPE_BINARY: // indexing binary data
// check that the size of the data is sizeof(GUID)
if (sizeof(GUID) == SdbGetTagDataSize(pdb, tiTag)) {
//
// Special case.
//
pData = SdbpGetMappedTagData(pdb, tiTag);
if (pData == NULL) {
return 0;
}
ullReturn = MAKEKEYFROMGUID((GUID*)pData);
break;
}
//
// Fall through to the general binary data case.
//
default:
dwSize = SdbGetTagDataSize(pdb, tiTag);
if (dwSize > sizeof(ULONGLONG)) {
dwSize = sizeof(ULONGLONG);
}
pData = SdbpGetMappedTagData(pdb, tiTag);
if (pData == NULL) {
return 0;
}
memcpy(&ullReturn, pData, dwSize);
break;
}
return ullReturn;
}