WindowsXP-SP1/admin/admt/mspwdmig/admtcrypt.cpp
2020-09-30 16:53:49 +02:00

1169 lines
24 KiB
C++

#include <StdAfx.h>
#include "AdmtCrypt.h"
#include <NtSecApi.h>
#pragma comment( lib, "AdvApi32.lib" )
namespace
{
void __stdcall CreateByteArray(DWORD cb, _variant_t& vntByteArray)
{
vntByteArray.Clear();
vntByteArray.parray = SafeArrayCreateVector(VT_UI1, 0, cb);
if (vntByteArray.parray == NULL)
{
_com_issue_error(E_OUTOFMEMORY);
}
vntByteArray.vt = VT_UI1|VT_ARRAY;
}
_variant_t operator +(const _variant_t& vntByteArrayA, const _variant_t& vntByteArrayB)
{
_variant_t vntByteArrayC;
// validate parameters
if ((vntByteArrayA.vt != (VT_UI1|VT_ARRAY)) || ((vntByteArrayA.parray == NULL)))
{
_com_issue_error(E_INVALIDARG);
}
if ((vntByteArrayB.vt != (VT_UI1|VT_ARRAY)) || ((vntByteArrayB.parray == NULL)))
{
_com_issue_error(E_INVALIDARG);
}
// concatenate byte arrays
DWORD cbA = vntByteArrayA.parray->rgsabound[0].cElements;
DWORD cbB = vntByteArrayB.parray->rgsabound[0].cElements;
CreateByteArray(cbA + cbB, vntByteArrayC);
memcpy(vntByteArrayC.parray->pvData, vntByteArrayA.parray->pvData, cbA);
memcpy((BYTE*)vntByteArrayC.parray->pvData + cbA, vntByteArrayB.parray->pvData, cbB);
return vntByteArrayC;
}
#ifdef _DEBUG
_bstr_t __stdcall DebugByteArray(const _variant_t& vnt)
{
_bstr_t strArray;
if ((vnt.vt == (VT_UI1|VT_ARRAY)) && ((vnt.parray != NULL)))
{
_TCHAR szArray[256] = _T("");
DWORD c = vnt.parray->rgsabound[0].cElements;
BYTE* pb = (BYTE*) vnt.parray->pvData;
for (DWORD i = 0; i < c; i++, pb++)
{
_TCHAR sz[48];
wsprintf(sz, _T("%02X"), (UINT)(USHORT)*pb);
if (i > 0)
{
_tcscat(szArray, _T(" "));
}
_tcscat(szArray, sz);
}
strArray = szArray;
}
return strArray;
}
#define TRACE_BUFFER_SIZE 1024
void _cdecl Trace(LPCTSTR pszFormat, ...)
{
_TCHAR szMessage[TRACE_BUFFER_SIZE];
if (pszFormat)
{
va_list args;
va_start(args, pszFormat);
_vsntprintf(szMessage, TRACE_BUFFER_SIZE, pszFormat, args);
va_end(args);
#if 0
OutputDebugString(szMessage);
#else
HANDLE hFile = CreateFile(L"C:\\AdmtCrypt.log", GENERIC_WRITE, FILE_SHARE_READ, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile != INVALID_HANDLE_VALUE)
{
SetFilePointer(hFile, 0, NULL, FILE_END);
DWORD dwWritten;
WriteFile(hFile, szMessage, _tcslen(szMessage) * sizeof(_TCHAR), &dwWritten, NULL);
CloseHandle(hFile);
}
#endif
}
}
#else
_bstr_t __stdcall DebugByteArray(const _variant_t& vnt)
{
return _T("");
}
void _cdecl Trace(LPCTSTR pszFormat, ...)
{
}
#endif
}
//---------------------------------------------------------------------------
// Target Crypt Class
//---------------------------------------------------------------------------
// Constructor
CTargetCrypt::CTargetCrypt()
{
Trace(_T("CTargetCrypt::CTargetCrypt()\r\n"));
}
// Destructor
CTargetCrypt::~CTargetCrypt()
{
Trace(_T("CTargetCrypt::~CTargetCrypt()\r\n"));
}
// CreateEncryptionKey Method
_variant_t CTargetCrypt::CreateEncryptionKey(LPCTSTR pszKeyId, LPCTSTR pszPassword)
{
Trace(_T("CreateEncryptionKey(pszKeyId='%s', pszPassword='%s')\r\n"), pszKeyId, pszPassword);
// generate encryption key bytes
_variant_t vntBytes = GenerateRandom(ENCRYPTION_KEY_SIZE);
Trace(_T(" vntBytes={ %s }\r\n"), (LPCTSTR)DebugByteArray(vntBytes));
// store encryption key bytes
StoreBytes(pszKeyId, vntBytes);
// create key from password
CCryptHash hashPassword(CreateHash(CALG_SHA1));
if (pszPassword && pszPassword[0])
{
hashPassword.Hash(pszPassword);
}
else
{
BYTE b = 0;
hashPassword.Hash(&b, 1);
}
CCryptKey keyPassword(DeriveKey(CALG_3DES, hashPassword));
_variant_t vntPasswordFlag;
CreateByteArray(1, vntPasswordFlag);
*((BYTE*)vntPasswordFlag.parray->pvData) = (pszPassword && pszPassword[0]) ? 0xFF : 0x00;
// concatenate encryption key bytes and hash of encryption key bytes
CCryptHash hashBytes(CreateHash(CALG_SHA1));
hashBytes.Hash(vntBytes);
_variant_t vntDecrypted = vntBytes + hashBytes.GetValue();
// Trace(_T(" vntDecrypted={ %s }\n"), (LPCTSTR)DebugByteArray(vntDecrypted));
// encrypt bytes / hash pair
_variant_t vntEncrypted = keyPassword.Encrypt(NULL, true, vntDecrypted);
// Trace(_T(" vntEncrypted={ %s }\n"), (LPCTSTR)DebugByteArray(vntEncrypted));
return vntPasswordFlag + vntEncrypted;
}
// CreateSession Method
_variant_t CTargetCrypt::CreateSession(LPCTSTR pszKeyId)
{
Trace(_T("CreateSession(pszKeyId='%s')\r\n"), pszKeyId);
// get encryption key
CCryptHash hashEncryption(CreateHash(CALG_SHA1));
hashEncryption.Hash(RetrieveBytes(pszKeyId));
CCryptKey keyEncryption(DeriveKey(CALG_3DES, hashEncryption));
// generate session key bytes
_variant_t vntBytes = GenerateRandom(SESSION_KEY_SIZE);
// create session key
CCryptHash hash(CreateHash(CALG_SHA1));
hash.Hash(vntBytes);
m_keySession.Attach(DeriveKey(CALG_3DES, hash));
// concatenate session key bytes and hash of session key bytes
_variant_t vntDecrypted = vntBytes + hash.GetValue();
// encrypt session bytes and include hash
return keyEncryption.Encrypt(NULL, true, vntDecrypted);
}
// Encrypt Method
_variant_t CTargetCrypt::Encrypt(_bstr_t strData)
{
Trace(_T("Encrypt(strData='%s')\r\n"), (LPCTSTR)strData);
// convert string to byte array
_variant_t vnt;
HRESULT hr = VectorFromBstr(strData, &vnt.parray);
if (FAILED(hr))
{
_com_issue_error(hr);
}
vnt.vt = VT_UI1|VT_ARRAY;
// encrypt data
return m_keySession.Encrypt(NULL, true, vnt);
}
//---------------------------------------------------------------------------
// Source Crypt Class
//---------------------------------------------------------------------------
// Constructor
CSourceCrypt::CSourceCrypt()
{
Trace(_T("CSourceCrypt::CSourceCrypt()\r\n"));
}
// Destructor
CSourceCrypt::~CSourceCrypt()
{
Trace(_T("CSourceCrypt::~CSourceCrypt()\r\n"));
}
// ImportEncryptionKey Method
void CSourceCrypt::ImportEncryptionKey(const _variant_t& vntEncryptedKey, LPCTSTR pszPassword)
{
Trace(_T("ImportEncryptionKey(vntEncryptedKey={ %s }, pszPassword='%s')\r\n"), (LPCTSTR)DebugByteArray(vntEncryptedKey), pszPassword);
// validate parameters
if ((vntEncryptedKey.vt != (VT_UI1|VT_ARRAY)) || ((vntEncryptedKey.parray == NULL)))
{
_com_issue_error(E_INVALIDARG);
}
// extract password flag and verify with password
bool bPassword = *((BYTE*)vntEncryptedKey.parray->pvData) ? true : false;
if (bPassword)
{
if ((pszPassword == NULL) || (pszPassword[0] == NULL))
{
_com_issue_error(HRESULT_FROM_WIN32(ERROR_INVALID_PASSWORD));
}
}
else
{
if (pszPassword && pszPassword[0])
{
_com_issue_error(HRESULT_FROM_WIN32(ERROR_INVALID_PASSWORD));
}
}
// create key from password
CCryptHash hashPassword(CreateHash(CALG_SHA1));
if (pszPassword && pszPassword[0])
{
hashPassword.Hash(pszPassword);
}
else
{
BYTE b = 0;
hashPassword.Hash(&b, 1);
}
CCryptKey keyPassword(DeriveKey(CALG_3DES, hashPassword));
// encrypted data
_variant_t vntEncrypted;
DWORD cbEncrypted = vntEncryptedKey.parray->rgsabound[0].cElements - 1;
CreateByteArray(cbEncrypted, vntEncrypted);
memcpy(vntEncrypted.parray->pvData, (BYTE*)vntEncryptedKey.parray->pvData + 1, cbEncrypted);
// Trace(_T(" vntEncrypted={ %s }\n"), (LPCTSTR)DebugByteArray(vntEncrypted));
// decrypt encryption key bytes plus hash
_variant_t vntDecrypted = keyPassword.Decrypt(NULL, true, vntEncrypted);
// Trace(_T(" vntDecrypted={ %s }\n"), (LPCTSTR)DebugByteArray(vntDecrypted));
// extract encryption key bytes
_variant_t vntBytes;
CreateByteArray(ENCRYPTION_KEY_SIZE, vntBytes);
memcpy(vntBytes.parray->pvData, (BYTE*)vntDecrypted.parray->pvData, ENCRYPTION_KEY_SIZE);
Trace(_T(" vntBytes={ %s }\r\n"), (LPCTSTR)DebugByteArray(vntBytes));
// extract hash of encryption key bytes
_variant_t vntHashValue;
DWORD cbHashValue = vntDecrypted.parray->rgsabound[0].cElements - ENCRYPTION_KEY_SIZE;
CreateByteArray(cbHashValue, vntHashValue);
memcpy(vntHashValue.parray->pvData, (BYTE*)vntDecrypted.parray->pvData + ENCRYPTION_KEY_SIZE, cbHashValue);
// Trace(_T(" vntHashValue={ %s }\n"), (LPCTSTR)DebugByteArray(vntHashValue));
// create hash from bytes and create hash from hash value
CCryptHash hashA(CreateHash(CALG_SHA1));
hashA.Hash(vntBytes);
CCryptHash hashB(CreateHash(CALG_SHA1));
hashB.SetValue(vntHashValue);
// if hashes compare store encryption key bytes
if (hashA == hashB)
{
StoreBytes(m_szIdPrefix, vntBytes);
}
else
{
_com_issue_error(HRESULT_FROM_WIN32(ERROR_INVALID_PASSWORD));
}
}
// ImportSessionKey Method
void CSourceCrypt::ImportSessionKey(const _variant_t& vntEncryptedKey)
{
Trace(_T("ImportSessionKey(vntEncryptedKey={ %s })\r\n"), (LPCTSTR)DebugByteArray(vntEncryptedKey));
// validate parameters
if ((vntEncryptedKey.vt != (VT_UI1|VT_ARRAY)) || ((vntEncryptedKey.parray == NULL)))
{
_com_issue_error(E_INVALIDARG);
}
// get encryption key
CCryptKey keyEncryption(GetEncryptionKey(m_szIdPrefix));
// decrypt session key bytes plus hash
_variant_t vntDecrypted = keyEncryption.Decrypt(NULL, true, vntEncryptedKey);
// extract session key bytes
_variant_t vntBytes;
CreateByteArray(SESSION_KEY_SIZE, vntBytes);
memcpy(vntBytes.parray->pvData, vntDecrypted.parray->pvData, SESSION_KEY_SIZE);
// extract hash of session key bytes
_variant_t vntHashValue;
DWORD cbHashValue = vntDecrypted.parray->rgsabound[0].cElements - SESSION_KEY_SIZE;
CreateByteArray(cbHashValue, vntHashValue);
memcpy(vntHashValue.parray->pvData, (BYTE*)vntDecrypted.parray->pvData + SESSION_KEY_SIZE, cbHashValue);
// create hash from bytes and create hash from hash value
CCryptHash hashA(CreateHash(CALG_SHA1));
hashA.Hash(vntBytes);
CCryptHash hashB(CreateHash(CALG_SHA1));
hashB.SetValue(vntHashValue);
// if hashes compare
if (hashA == hashB)
{
// derive session key from session key bytes hash
m_keySession.Attach(DeriveKey(CALG_3DES, hashA));
}
else
{
_com_issue_error(E_FAIL);
}
}
// Decrypt Method
_bstr_t CSourceCrypt::Decrypt(const _variant_t& vntData)
{
Trace(_T("Decrypt(vntData={ %s })\r\n"), (LPCTSTR)DebugByteArray(vntData));
// decrypt data
_variant_t vnt = m_keySession.Decrypt(NULL, true, vntData);
// convert into string
BSTR bstr;
HRESULT hr = BstrFromVector(vnt.parray, &bstr);
if (FAILED(hr))
{
_com_issue_error(hr);
}
return bstr;
}
//---------------------------------------------------------------------------
// Domain Crypt Class
//---------------------------------------------------------------------------
// Constructor
CDomainCrypt::CDomainCrypt()
{
Trace(_T("CDomainCrypt::CDomainCrypt()\r\n"));
}
// Destructor
CDomainCrypt::~CDomainCrypt()
{
Trace(_T("CDomainCrypt::~CDomainCrypt()\r\n"));
}
// GetEncryptionKey Method
HCRYPTKEY CDomainCrypt::GetEncryptionKey(LPCTSTR pszKeyId)
{
// retrieve bytes
_variant_t vntBytes = RetrieveBytes(pszKeyId);
// set hash value
CCryptHash hash;
hash.Attach(CreateHash(CALG_SHA1));
hash.Hash(vntBytes);
// create encryption key derived from bytes
return DeriveKey(CALG_3DES, hash);
}
// StoreBytes Method
void CDomainCrypt::StoreBytes(LPCTSTR pszId, const _variant_t& vntBytes)
{
// validate parameters
if ((pszId == NULL) || (pszId[0] == NULL))
{
_com_issue_error(E_INVALIDARG);
}
if ((vntBytes.vt != VT_EMPTY) && (vntBytes.vt != (VT_UI1|VT_ARRAY)))
{
_com_issue_error(E_INVALIDARG);
}
if ((vntBytes.vt == (VT_UI1|VT_ARRAY)) && (vntBytes.parray == NULL))
{
_com_issue_error(E_INVALIDARG);
}
LSA_HANDLE hPolicy = NULL;
try
{
// open policy object
LSA_OBJECT_ATTRIBUTES loa = { sizeof(LSA_OBJECT_ATTRIBUTES), NULL, NULL, 0, NULL, NULL };
NTSTATUS ntsStatus = LsaOpenPolicy(NULL, &loa, POLICY_CREATE_SECRET, &hPolicy);
if (!LSA_SUCCESS(ntsStatus))
{
_com_issue_error(HRESULT_FROM_WIN32(LsaNtStatusToWinError(ntsStatus)));
}
// store data
PWSTR pwsKey = const_cast<PWSTR>(pszId);
USHORT cbKey = _tcslen(pszId) * sizeof(_TCHAR);
PWSTR pwsData = NULL;
USHORT cbData = 0;
if (vntBytes.vt != VT_EMPTY)
{
pwsData = reinterpret_cast<PWSTR>(vntBytes.parray->pvData);
cbData = (USHORT) vntBytes.parray->rgsabound[0].cElements;
}
LSA_UNICODE_STRING lusKey = { cbKey, cbKey, pwsKey };
LSA_UNICODE_STRING lusData = { cbData, cbData, pwsData };
ntsStatus = LsaStorePrivateData(hPolicy, &lusKey, &lusData);
if (!LSA_SUCCESS(ntsStatus))
{
_com_issue_error(HRESULT_FROM_WIN32(LsaNtStatusToWinError(ntsStatus)));
}
// close policy object
LsaClose(hPolicy);
}
catch (...)
{
if (hPolicy)
{
LsaClose(hPolicy);
}
throw;
}
}
// RetrievePrivateData Method
_variant_t CDomainCrypt::RetrieveBytes(LPCTSTR pszId)
{
_variant_t vntBytes;
// validate parameters
if ((pszId == NULL) || (pszId[0] == NULL))
{
_com_issue_error(E_INVALIDARG);
}
LSA_HANDLE hPolicy = NULL;
try
{
// open policy object
LSA_OBJECT_ATTRIBUTES loa = { sizeof(LSA_OBJECT_ATTRIBUTES), NULL, NULL, 0, NULL, NULL };
NTSTATUS ntsStatus = LsaOpenPolicy(NULL, &loa, POLICY_GET_PRIVATE_INFORMATION, &hPolicy);
if (!LSA_SUCCESS(ntsStatus))
{
_com_issue_error(HRESULT_FROM_WIN32(LsaNtStatusToWinError(ntsStatus)));
}
// retrieve data
PWSTR pwsKey = const_cast<PWSTR>(pszId);
USHORT cbKey = _tcslen(pszId) * sizeof(_TCHAR);
LSA_UNICODE_STRING lusKey = { cbKey, cbKey, pwsKey };
PLSA_UNICODE_STRING plusData;
ntsStatus = LsaRetrievePrivateData(hPolicy, &lusKey, &plusData);
if (!LSA_SUCCESS(ntsStatus))
{
_com_issue_error(HRESULT_FROM_WIN32(LsaNtStatusToWinError(ntsStatus)));
}
vntBytes.parray = SafeArrayCreateVector(VT_UI1, 0, plusData->Length);
if (vntBytes.parray == NULL)
{
LsaFreeMemory(plusData);
_com_issue_error(E_OUTOFMEMORY);
}
vntBytes.vt = VT_UI1|VT_ARRAY;
memcpy(vntBytes.parray->pvData, plusData->Buffer, plusData->Length);
LsaFreeMemory(plusData);
// close policy object
LsaClose(hPolicy);
}
catch (...)
{
if (hPolicy)
{
LsaClose(hPolicy);
}
throw;
}
return vntBytes;
}
// private data key identifier
_TCHAR CDomainCrypt::m_szIdPrefix[] = _T("L$6A2899C0-CECE-459A-B5EB-7ED04DE61388");
//---------------------------------------------------------------------------
// Crypt Provider Class
//---------------------------------------------------------------------------
// Constructors
//
// Notes:
// If the enhanced provider is not installed, CryptAcquireContext() generates
// the following error: (0x80090019) The keyset is not defined.
CCryptProvider::CCryptProvider() :
m_hProvider(NULL)
{
Trace(_T("E CCryptProvider::CCryptProvider(this=0x%p)\r\n"), this);
if (!CryptAcquireContext(&m_hProvider, NULL, MS_ENHANCED_PROV, PROV_RSA_FULL, CRYPT_MACHINE_KEYSET|CRYPT_VERIFYCONTEXT))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
#ifdef _DEBUG
char szProvider[256];
DWORD cbProvider = sizeof(szProvider);
if (CryptGetProvParam(m_hProvider, PP_NAME, (BYTE*) szProvider, &cbProvider, 0))
{
}
DWORD dwVersion;
DWORD cbVersion = sizeof(dwVersion);
if (CryptGetProvParam(m_hProvider, PP_VERSION, (BYTE*) &dwVersion, &cbVersion, 0))
{
}
// char szContainer[256];
// DWORD cbContainer = sizeof(szContainer);
// if (CryptGetProvParam(m_hProvider, PP_CONTAINER, (BYTE*) szContainer, &cbContainer, 0))
// {
// }
#endif
Trace(_T("L CCryptProvider::CCryptProvider()\r\n"));
}
CCryptProvider::CCryptProvider(const CCryptProvider& r) :
m_hProvider(r.m_hProvider)
{
// if (!CryptContextAddRef(r.m_hProvider, NULL, 0))
// {
// _com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
// }
}
// Destructor
CCryptProvider::~CCryptProvider()
{
Trace(_T("E CCryptProvider::~CCryptProvider()\r\n"));
if (m_hProvider)
{
if (!CryptReleaseContext(m_hProvider, 0))
{
#ifdef _DEBUG
DebugBreak();
#endif
}
}
Trace(_T("L CCryptProvider::~CCryptProvider()\r\n"));
}
// assignment operators
CCryptProvider& CCryptProvider::operator =(const CCryptProvider& r)
{
m_hProvider = r.m_hProvider;
// if (!CryptContextAddRef(r.m_hProvider, NULL, 0))
// {
// _com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
// }
return *this;
}
// CreateHash Method
HCRYPTHASH CCryptProvider::CreateHash(ALG_ID aid)
{
HCRYPTHASH hHash;
if (!CryptCreateHash(m_hProvider, aid, 0, 0, &hHash))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
return hHash;
}
// DeriveKey Method
HCRYPTKEY CCryptProvider::DeriveKey(ALG_ID aid, HCRYPTHASH hHash, DWORD dwFlags)
{
HCRYPTKEY hKey;
if (!CryptDeriveKey(m_hProvider, aid, hHash, dwFlags, &hKey))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
return hKey;
}
// GenerateRandom Method
//
// Generates a specified number of random bytes.
_variant_t CCryptProvider::GenerateRandom(DWORD dwNumberOfBytes) const
{
_variant_t vntRandom;
// create byte array of specified length
vntRandom.parray = SafeArrayCreateVector(VT_UI1, 0, dwNumberOfBytes);
if (vntRandom.parray == NULL)
{
_com_issue_error(E_OUTOFMEMORY);
}
vntRandom.vt = VT_UI1|VT_ARRAY;
// generate specified number of random bytes
GenerateRandom((BYTE*)vntRandom.parray->pvData, dwNumberOfBytes);
return vntRandom;
}
// GenerateRandom Method
//
// Generates a specified number of random bytes.
void CCryptProvider::GenerateRandom(BYTE* pbData, DWORD cbData) const
{
// generate specified number of random bytes
if (!CryptGenRandom(m_hProvider, cbData, pbData))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
}
//---------------------------------------------------------------------------
// Crypt Key Class
//---------------------------------------------------------------------------
// Constructor
CCryptKey::CCryptKey(HCRYPTKEY hKey) :
m_hKey(hKey)
{
}
// Destructor
CCryptKey::~CCryptKey()
{
if (m_hKey)
{
if (!CryptDestroyKey(m_hKey))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
}
}
// Encrypt Method
_variant_t CCryptKey::Encrypt(HCRYPTHASH hHash, bool bFinal, const _variant_t& vntData)
{
_variant_t vntEncrypted;
// validate parameters
if ((vntData.vt != (VT_UI1|VT_ARRAY)) || ((vntData.parray == NULL)))
{
_com_issue_error(E_INVALIDARG);
}
// get encrypted data size
DWORD cbData = vntData.parray->rgsabound[0].cElements;
DWORD cbBuffer = cbData;
if (!CryptEncrypt(m_hKey, hHash, bFinal ? TRUE : FALSE, 0, NULL, &cbBuffer, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
// create encrypted data buffer
vntEncrypted.parray = SafeArrayCreateVector(VT_UI1, 0, cbBuffer);
if (vntEncrypted.parray == NULL)
{
_com_issue_error(E_OUTOFMEMORY);
}
vntEncrypted.vt = VT_UI1|VT_ARRAY;
// copy data to encrypted buffer
memcpy(vntEncrypted.parray->pvData, vntData.parray->pvData, cbData);
// encrypt data
BYTE* pbData = (BYTE*) vntEncrypted.parray->pvData;
if (!CryptEncrypt(m_hKey, hHash, bFinal ? TRUE : FALSE, 0, pbData, &cbData, cbBuffer))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
return vntEncrypted;
}
// Decrypt Method
_variant_t CCryptKey::Decrypt(HCRYPTHASH hHash, bool bFinal, const _variant_t& vntData)
{
_variant_t vntDecrypted;
// validate parameters
if ((vntData.vt != (VT_UI1|VT_ARRAY)) || ((vntData.parray == NULL)))
{
_com_issue_error(E_INVALIDARG);
}
// decrypt data
_variant_t vnt = vntData;
BYTE* pb = (BYTE*) vnt.parray->pvData;
DWORD cb = vnt.parray->rgsabound[0].cElements;
if (!CryptDecrypt(m_hKey, hHash, bFinal ? TRUE : FALSE, 0, pb, &cb))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
// create decrypted byte array
// the number of decrypted bytes may be less than
// the number of encrypted bytes
vntDecrypted.parray = SafeArrayCreateVector(VT_UI1, 0, cb);
if (vntDecrypted.parray == NULL)
{
_com_issue_error(E_OUTOFMEMORY);
}
vntDecrypted.vt = VT_UI1|VT_ARRAY;
memcpy(vntDecrypted.parray->pvData, vnt.parray->pvData, cb);
return vntDecrypted;
}
//---------------------------------------------------------------------------
// Crypt Hash Class
//---------------------------------------------------------------------------
// Constructor
CCryptHash::CCryptHash(HCRYPTHASH hHash) :
m_hHash(hHash)
{
}
// Destructor
CCryptHash::~CCryptHash()
{
if (m_hHash)
{
if (!CryptDestroyHash(m_hHash))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
}
}
// GetValue Method
_variant_t CCryptHash::GetValue() const
{
_variant_t vntValue;
// get hash size
DWORD dwHashSize;
DWORD cbHashSize = sizeof(DWORD);
if (!CryptGetHashParam(m_hHash, HP_HASHSIZE, (BYTE*)&dwHashSize, &cbHashSize, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
// allocate buffer
vntValue.parray = SafeArrayCreateVector(VT_UI1, 0, dwHashSize);
if (vntValue.parray == NULL)
{
_com_issue_error(E_OUTOFMEMORY);
}
vntValue.vt = VT_UI1|VT_ARRAY;
// get hash value
if (!CryptGetHashParam(m_hHash, HP_HASHVAL, (BYTE*)vntValue.parray->pvData, &dwHashSize, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
return vntValue;
}
// SetValue Method
void CCryptHash::SetValue(const _variant_t& vntValue)
{
// if parameter is valid
if ((vntValue.vt == (VT_UI1|VT_ARRAY)) && ((vntValue.parray != NULL)))
{
// get hash size
DWORD dwHashSize;
DWORD cbHashSize = sizeof(DWORD);
if (!CryptGetHashParam(m_hHash, HP_HASHSIZE, (BYTE*)&dwHashSize, &cbHashSize, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
// validate hash size
BYTE* pbValue = (BYTE*)vntValue.parray->pvData;
DWORD cbValue = vntValue.parray->rgsabound[0].cElements;
if (cbValue != dwHashSize)
{
_com_issue_error(E_INVALIDARG);
}
// set hash value
if (!CryptSetHashParam(m_hHash, HP_HASHVAL, (BYTE*)pbValue, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
}
else
{
_com_issue_error(E_INVALIDARG);
}
}
// Hash Method
void CCryptHash::Hash(LPCTSTR pszData)
{
if (pszData && pszData[0])
{
Hash((BYTE*)pszData, _tcslen(pszData) * sizeof(_TCHAR));
}
else
{
_com_issue_error(E_INVALIDARG);
}
}
// Hash Method
void CCryptHash::Hash(const _variant_t& vntData)
{
if ((vntData.vt == (VT_UI1|VT_ARRAY)) && ((vntData.parray != NULL)))
{
Hash((BYTE*)vntData.parray->pvData, vntData.parray->rgsabound[0].cElements);
}
else
{
_com_issue_error(E_INVALIDARG);
}
}
// Hash Method
void CCryptHash::Hash(BYTE* pbData, DWORD cbData)
{
if ((pbData != NULL) && (cbData > 0))
{
if (!CryptHashData(m_hHash, pbData, cbData, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
}
else
{
_com_issue_error(E_INVALIDARG);
}
}
bool CCryptHash::operator ==(const CCryptHash& hash)
{
bool bEqual = false;
DWORD cbSize = sizeof(DWORD);
// compare hash sizes
DWORD dwSizeA;
DWORD dwSizeB;
if (!CryptGetHashParam(m_hHash, HP_HASHSIZE, (BYTE*)&dwSizeA, &cbSize, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
if (!CryptGetHashParam(hash.m_hHash, HP_HASHSIZE, (BYTE*)&dwSizeB, &cbSize, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
// if sizes are equal
if (dwSizeA == dwSizeB)
{
// compare hashes
BYTE* pbA;
BYTE* pbB;
try
{
pbA = (BYTE*) _alloca(dwSizeA);
pbB = (BYTE*) _alloca(dwSizeB);
}
catch (...)
{
_com_issue_error(E_OUTOFMEMORY);
}
if (!CryptGetHashParam(m_hHash, HP_HASHVAL, pbA, &dwSizeA, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
if (!CryptGetHashParam(hash.m_hHash, HP_HASHVAL, pbB, &dwSizeB, 0))
{
_com_issue_error(HRESULT_FROM_WIN32(GetLastError()));
}
if (memcmp(pbA, pbB, dwSizeA) == 0)
{
bEqual = true;
}
}
return bEqual;
}