2020-09-30 16:53:49 +02:00

1310 lines
38 KiB
Plaintext

// xstring internal header (from <string>)
#pragma once
#ifndef _XSTRING_
#define _XSTRING_
#include <xmemory>
#pragma pack(push,8)
#pragma warning(push,3)
#pragma warning(disable: 4251)
_STD_BEGIN
// CLASS _String_base
class _CRTIMP2 _String_base
{ // ultimate base class for basic_string to hold error reporters
public:
void _Xlen() const; // report a length_error
void _Xran() const; // report an out_of_range error
};
// TEMPLATE CLASS _String_val
template<class _Ty,
class _Alloc>
class _String_val
: public _String_base
{ // base class for basic_string to hold allocator _Alval
protected:
typedef typename _Alloc::_TEMPLATE_MEMBER
rebind<_Ty>::other _Alty;
_String_val(_Alty _Al = _Alty())
: _Alval(_Al)
{ // construct allocator from _Al
}
_Alty _Alval; // allocator object for strings
};
// TEMPLATE CLASS basic_string
template<class _Elem,
class _Traits = char_traits<_Elem>,
class _Ax = allocator<_Elem> >
class basic_string
: public _String_val<_Elem, _Ax>
{ // null-terminated transparent array of elements
public:
typedef basic_string<_Elem, _Traits, _Ax> _Myt;
typedef _String_val<_Elem, _Ax> _Mybase;
typedef typename _Mybase::_Alty _Alloc;
typedef typename _Alloc::size_type size_type;
typedef typename _Alloc::difference_type difference_type;
typedef typename _Alloc::pointer _Tptr;
typedef typename _Alloc::const_pointer _Ctptr;
typedef _Tptr pointer;
typedef _Ctptr const_pointer;
typedef typename _Alloc::reference reference;
typedef typename _Alloc::const_reference const_reference;
typedef typename _Alloc::value_type value_type;
typedef _Ptrit<value_type, difference_type, _Tptr,
reference, _Tptr, reference> iterator;
typedef _Ptrit<value_type, difference_type, _Ctptr,
const_reference, _Tptr, reference> const_iterator;
typedef std::reverse_iterator<iterator>
reverse_iterator;
typedef std::reverse_iterator<const_iterator>
const_reverse_iterator;
basic_string()
: _Mybase()
{ // construct empty string
_Tidy();
}
explicit basic_string(const _Alloc& _Al)
: _Mybase(_Al)
{ // construct empty string with allocator
_Tidy();
}
basic_string(const _Myt& _Right)
: _Mybase(_Right._Alval)
{ // construct by copying _Right
_Tidy();
assign(_Right, 0, npos);
}
basic_string(const _Myt& _Right, size_type _Roff,
size_type _Count = npos)
: _Mybase()
{ // construct from _Right [_Roff, _Roff + _Count)
_Tidy();
assign(_Right, _Roff, _Count);
}
basic_string(const _Myt& _Right, size_type _Roff, size_type _Count,
const _Alloc& _Al)
: _Mybase(_Al)
{ // construct from _Right [_Roff, _Roff + _Count) with allocator
_Tidy();
assign(_Right, _Roff, _Count);
}
basic_string(const _Elem *_Ptr, size_type _Count)
: _Mybase()
{ // construct from [_Ptr, _Ptr + _Count)
_Tidy();
assign(_Ptr, _Count);
}
basic_string(const _Elem *_Ptr, size_type _Count, const _Alloc& _Al)
: _Mybase(_Al)
{ // construct from [_Ptr, _Ptr + _Count) with allocator
_Tidy();
assign(_Ptr, _Count);
}
basic_string(const _Elem *_Ptr)
: _Mybase()
{ // construct from [_Ptr, <null>)
_Tidy();
assign(_Ptr);
}
basic_string(const _Elem *_Ptr, const _Alloc& _Al)
: _Mybase(_Al)
{ // construct from [_Ptr, <null>) with allocator
_Tidy();
assign(_Ptr);
}
basic_string(size_type _Count, _Elem _Ch)
: _Mybase()
{ // construct from _Count * _Ch
_Tidy();
assign(_Count, _Ch);
}
basic_string(size_type _Count, _Elem _Ch, const _Alloc& _Al)
: _Mybase(_Al)
{ // construct from _Count * _Ch with allocator
_Tidy();
assign(_Count, _Ch);
}
template<class _It>
basic_string(_It _First, _It _Last)
: _Mybase()
{ // construct from [_First, _Last)
_Tidy();
_Construct(_First, _Last, _Iter_cat(_First));
}
template<class _It>
basic_string(_It _First, _It _Last, const _Alloc& _Al)
: _Mybase(_Al)
{ // construct from [_First, _Last) with allocator
_Tidy();
_Construct(_First, _Last, _Iter_cat(_First));
}
template<class _It>
void _Construct(_It _Count, _It _Ch, _Int_iterator_tag)
{ // initialize from _Count * _Ch
assign((size_type)_Count, (_Elem)_Ch);
}
template<class _It>
void _Construct(_It _First, _It _Last, input_iterator_tag)
{ // initialize from [_First, _Last), input iterators
_TRY_BEGIN
for (; _First != _Last; ++_First)
append((size_type)1, (_Elem)*_First);
_CATCH_ALL
_Tidy(true);
_RERAISE;
_CATCH_END
}
template<class _It>
void _Construct(_It _First, _It _Last, forward_iterator_tag)
{ // initialize from [_First, _Last), forward iterators
size_type _Count = 0;
_Distance(_First, _Last, _Count);
reserve(_Count);
_TRY_BEGIN
for (; _First != _Last; ++_First)
append((size_type)1, (_Elem)*_First);
_CATCH_ALL
_Tidy(true);
_RERAISE;
_CATCH_END
}
basic_string(const_pointer _First, const_pointer _Last)
: _Mybase()
{ // construct from [_First, _Last), const pointers
_Tidy();
if (_First != _Last)
assign(&*_First, _Last - _First);
}
basic_string(const_iterator _First, const_iterator _Last)
: _Mybase()
{ // construct from [_First, _Last), const_iterators
_Tidy();
if (_First != _Last)
assign(&*_First, _Last - _First);
}
~basic_string()
{ // destroy the string
_Tidy(true);
}
typedef _Traits traits_type;
typedef _Alloc allocator_type;
static const size_type npos; // generic bad/missing length/position
_Myt& operator=(const _Myt& _Right)
{ // assign _Right
return (assign(_Right));
}
_Myt& operator=(const _Elem *_Ptr)
{ // assign [_Ptr, <null>)
return (assign(_Ptr));
}
_Myt& operator=(_Elem _Ch)
{ // assign 1 * _Ch
return (assign(1, _Ch));
}
_Myt& operator+=(const _Myt& _Right)
{ // append _Right
return (append(_Right));
}
_Myt& operator+=(const _Elem *_Ptr)
{ // append [_Ptr, <null>)
return (append(_Ptr));
}
_Myt& operator+=(_Elem _Ch)
{ // append 1 * _Ch
return (append((size_type)1, _Ch));
}
_Myt& append(const _Myt& _Right)
{ // append _Right
return (append(_Right, 0, npos));
}
_Myt& append(const _Myt& _Right, size_type _Roff, size_type _Count)
{ // append _Right [_Roff, _Roff + _Count)
if (_Right.size() < _Roff)
_String_base::_Xran(); // _Roff off end
size_type _Num = _Right.size() - _Roff;
if (_Num < _Count)
_Count = _Num; // trim _Count to size
if (npos - _Mysize <= _Count)
_String_base::_Xlen(); // result too long
if (0 < _Count && _Grow(_Num = _Mysize + _Count))
{ // make room and append new stuff
_Traits::copy(_Myptr() + _Mysize,
_Right._Myptr() + _Roff, _Count);
_Eos(_Num);
}
return (*this);
}
_Myt& append(const _Elem *_Ptr, size_type _Count)
{ // append [_Ptr, _Ptr + _Count)
if (_Inside(_Ptr))
return (append(*this, _Ptr - _Myptr(), _Count)); // substring
if (npos - _Mysize <= _Count)
_String_base::_Xlen(); // result too long
size_type _Num;
if (0 < _Count && _Grow(_Num = _Mysize + _Count))
{ // make room and append new stuff
_Traits::copy(_Myptr() + _Mysize, _Ptr, _Count);
_Eos(_Num);
}
return (*this);
}
_Myt& append(const _Elem *_Ptr)
{ // append [_Ptr, <null>)
return (append(_Ptr, _Traits::length(_Ptr)));
}
_Myt& append(size_type _Count, _Elem _Ch)
{ // append _Count * _Ch
if (npos - _Mysize <= _Count)
_String_base::_Xlen(); // result too long
size_type _Num;
if (0 < _Count && _Grow(_Num = _Mysize + _Count))
{ // make room and append new stuff using assign
_Traits::assign(_Myptr() + _Mysize, _Count, _Ch);
_Eos(_Num);
}
return (*this);
}
template<class _It>
_Myt& append(_It _First, _It _Last)
{ // append [_First, _Last)
return (_Append(_First, _Last, _Iter_cat(_First)));
}
template<class _It>
_Myt& _Append(_It _Count, _It _Ch, _Int_iterator_tag)
{ // append _Count * _Ch
return (append((size_type)_Count, (_Elem)_Ch));
}
template<class _It>
_Myt& _Append(_It _First, _It _Last, input_iterator_tag)
{ // append [_First, _Last), input iterators
return (replace(end(), end(), _First, _Last));
}
_Myt& append(const_pointer _First, const_pointer _Last)
{ // append [_First, _Last), const pointers
return (replace(end(), end(), _First, _Last));
}
_Myt& append(const_iterator _First, const_iterator _Last)
{ // append [_First, _Last), const_iterators
return (replace(end(), end(), _First, _Last));
}
_Myt& assign(const _Myt& _Right)
{ // assign _Right
return (assign(_Right, 0, npos));
}
_Myt& assign(const _Myt& _Right, size_type _Roff, size_type _Count)
{ // assign _Right [_Roff, _Roff + _Count)
if (_Right.size() < _Roff)
_String_base::_Xran(); // _Roff off end
size_type _Num = _Right.size() - _Roff;
if (_Count < _Num)
_Num = _Count; // trim _Num to size
if (this == &_Right)
erase((size_type)(_Roff + _Num)), erase(0, _Roff); // substring
else if (_Grow(_Num, true))
{ // make room and assign new stuff
_Traits::copy(_Myptr(), _Right._Myptr() + _Roff, _Num);
_Eos(_Num);
}
return (*this);
}
_Myt& assign(const _Elem *_Ptr, size_type _Num)
{ // assign [_Ptr, _Ptr + _Num)
if (_Inside(_Ptr))
return (assign(*this, _Ptr - _Myptr(), _Num)); // substring
if (_Grow(_Num, true))
{ // make room and assign new stuff
_Traits::copy(_Myptr(), _Ptr, _Num);
_Eos(_Num);
}
return (*this);
}
_Myt& assign(const _Elem *_Ptr)
{ // assign [_Ptr, <null>)
return (assign(_Ptr, _Traits::length(_Ptr)));
}
_Myt& assign(size_type _Count, _Elem _Ch)
{ // assign _Count * _Ch
if (_Count == npos)
_String_base::_Xlen(); // result too long
if (_Grow(_Count, true))
{ // make room and assign new stuff
_Traits::assign(_Myptr(), _Count, _Ch);
_Eos(_Count);
}
return (*this);
}
template<class _It>
_Myt& assign(_It _First, _It _Last)
{ // assign [First, _Last)
return (_Assign(_First, _Last, _Iter_cat(_First)));
}
template<class _It>
_Myt& _Assign(_It _Count, _It _Ch, _Int_iterator_tag)
{ // assign _Count * _Ch
return (assign((size_type)_Count, (_Elem)_Ch));
}
template<class _It>
_Myt& _Assign(_It _First, _It _Last, input_iterator_tag)
{ // assign [First, _Last), input iterators
return (replace(begin(), end(), _First, _Last));
}
_Myt& assign(const_pointer _First, const_pointer _Last)
{ // assign [First, _Last), const pointers
return (replace(begin(), end(), _First, _Last));
}
_Myt& assign(const_iterator _First, const_iterator _Last)
{ // assign [First, _Last), const_iterators
return (replace(begin(), end(), _First, _Last));
}
_Myt& insert(size_type _Off, const _Myt& _Right)
{ // insert _Right at _Off
return (insert(_Off, _Right, 0, npos));
}
_Myt& insert(size_type _Off, const _Myt& _Right, size_type _Roff,
size_type _Count)
{ // insert _Right [_Roff, _Roff + _Count) at _Off
if (_Mysize < _Off || _Right.size() < _Roff)
_String_base::_Xran(); // _Off or _Roff off end
size_type _Num = _Right.size() - _Roff;
if (_Num < _Count)
_Count = _Num; // trim _Count to size
if (npos - _Mysize <= _Count)
_String_base::_Xlen(); // result too long
if (0 < _Count && _Grow(_Num = _Mysize + _Count))
{ // make room and insert new stuff
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off, _Mysize - _Off); // empty out hole
if (this == &_Right)
_Traits::move(_Myptr() + _Off,
_Myptr() + (_Off < _Roff ? _Roff + _Count : _Roff),
_Count); // substring
else
_Traits::copy(_Myptr() + _Off,
_Right._Myptr() + _Roff, _Count); // fill hole
_Eos(_Num);
}
return (*this);
}
_Myt& insert(size_type _Off, const _Elem *_Ptr, size_type _Count)
{ // insert [_Ptr, _Ptr + _Count) at _Off
if (_Inside(_Ptr))
return (insert(_Off, *this,
_Ptr - _Myptr(), _Count)); // substring
if (_Mysize < _Off)
_String_base::_Xran(); // _Off off end
if (npos - _Mysize <= _Count)
_String_base::_Xlen(); // result too long
size_type _Num;
if (0 < _Count && _Grow(_Num = _Mysize + _Count))
{ // make room and insert new stuff
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off, _Mysize - _Off); // empty out hole
_Traits::copy(_Myptr() + _Off, _Ptr, _Count); // fill hole
_Eos(_Num);
}
return (*this);
}
_Myt& insert(size_type _Off, const _Elem *_Ptr)
{ // insert [_Ptr, <null>) at _Off
return (insert(_Off, _Ptr, _Traits::length(_Ptr)));
}
_Myt& insert(size_type _Off, size_type _Count, _Elem _Ch)
{ // insert _Count * _Ch at _Off
if (_Mysize < _Off)
_String_base::_Xran(); // _Off off end
if (npos - _Mysize <= _Count)
_String_base::_Xlen(); // result too long
size_type _Num;
if (0 < _Count && _Grow(_Num = _Mysize + _Count))
{ // make room and insert new stuff
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off, _Mysize - _Off); // empty out hole
_Traits::assign(_Myptr() + _Off, _Count, _Ch); // fill hole
_Eos(_Num);
}
return (*this);
}
iterator insert(iterator _Where)
{ // insert <null> at _Where
return (insert(_Where, _Elem()));
}
iterator insert(iterator _Where, _Elem _Ch)
{ // insert _Ch at _Where
size_type _Off = _Pdif(_Where, begin());
insert(_Off, 1, _Ch);
return (begin() + _Off);
}
void insert(iterator _Where, size_type _Count, _Elem _Ch)
{ // insert _Count * _Elem at _Where
size_type _Off = _Pdif(_Where, begin());
insert(_Off, _Count, _Ch);
}
template<class _It>
void insert(iterator _Where, _It _First, _It _Last)
{ // insert [_First, _Last) at _Where
_Insert(_Where, _First, _Last, _Iter_cat(_First));
}
template<class _It>
void _Insert(iterator _Where, _It _Count, _It _Ch,
_Int_iterator_tag)
{ // insert _Count * _Ch at _Where
insert(_Where, (size_type)_Count, (_Elem)_Ch);
}
template<class _It>
void _Insert(iterator _Where, _It _First, _It _Last,
input_iterator_tag)
{ // insert [_First, _Last) at _Where, input iterators
replace(_Where, _Where, _First, _Last);
}
void insert(iterator _Where, const_pointer _First, const_pointer _Last)
{ // insert [_First, _Last) at _Where, const pointers
replace(_Where, _Where, _First, _Last);
}
void insert(iterator _Where, const_iterator _First, const_iterator _Last)
{ // insert [_First, _Last) at _Where, const_iterators
replace(_Where, _Where, _First, _Last);
}
_Myt& erase(size_type _Off = 0, size_type _Count = npos)
{ // erase elements [_Off, _Off + _Count)
if (_Mysize < _Off)
_String_base::_Xran(); // _Off off end
if (_Mysize - _Off < _Count)
_Count = _Mysize - _Off; // trim _Count
if (0 < _Count)
{ // move elements down
_Traits::move(_Myptr() + _Off, _Myptr() + _Off + _Count,
_Mysize - _Off - _Count);
size_type _Newsize = _Mysize - _Count;
if (_Grow(_Newsize))
_Eos(_Newsize);
}
return (*this);
}
iterator erase(iterator _Where)
{ // erase element at _Where
size_type _Count = _Pdif(_Where, begin());
erase(_Count, 1);
return (iterator(_Myptr() + _Count));
}
iterator erase(iterator _First, iterator _Last)
{ // erase substring [_First, _Last)
size_type _Count = _Pdif(_First, begin());
erase(_Count, _Pdif(_Last, _First));
return (iterator(_Myptr() + _Count));
}
void clear()
{ // erase all
erase(begin(), end());
}
_Myt& replace(size_type _Off, size_type _N0, const _Myt& _Right)
{ // replace [_Off, _Off + _N0) with _Right
return (replace(_Off, _N0, _Right, 0, npos));
}
_Myt& replace(size_type _Off, size_type _N0, const _Myt& _Right,
size_type _Roff, size_type _Count)
{ // replace [_Off, _Off + _N0) with _Right [_Roff, _Roff + _Count)
if (_Mysize < _Off || _Right.size() < _Roff)
_String_base::_Xran(); // _Off or _Roff off end
if (_Mysize - _Off < _N0)
_N0 = _Mysize - _Off; // trim _N0 to size
size_type _Num = _Right.size() - _Roff;
if (_Num < _Count)
_Count = _Num; // trim _Count to size
if (npos - _Count <= _Mysize - _N0)
_String_base::_Xlen(); // result too long
size_type _Nm = _Mysize - _N0 - _Off; // length of preserved tail
size_type _Newsize = _Mysize + _Count - _N0;
if (_Mysize < _Newsize)
_Grow(_Newsize);
if (this != &_Right)
{ // no overlap, just move down and copy in new stuff
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // empty hole
_Traits::copy(_Myptr() + _Off,
_Right._Myptr() + _Roff, _Count); // fill hole
}
else if (_Count <= _N0)
{ // hole doesn't get larger, just copy in substring
_Traits::move(_Myptr() + _Off,
_Myptr() + _Roff, _Count); // fill hole
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // move tail down
}
else if (_Roff <= _Off)
{ // hole gets larger, substring begins before hole
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // move tail down
_Traits::move(_Myptr() + _Off,
_Myptr() + _Roff, _Count); // fill hole
}
else if (_Off + _N0 <= _Roff)
{ // hole gets larger, substring begins after hole
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // move tail down
_Traits::move(_Myptr() + _Off,
_Myptr() + (_Roff + _Count - _N0), _Count); // fill hole
}
else
{ // hole gets larger, substring begins in hole
_Traits::move(_Myptr() + _Off,
_Myptr() + _Roff, _N0); // fill old hole
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // move tail down
_Traits::move(_Myptr() + _Off + _N0, _Myptr() + _Roff + _Count,
_Count - _N0); // fill rest of new hole
}
if (_Mysize < _Newsize || _Grow(_Newsize))
_Eos(_Newsize); // truncate if need be and terminate
return (*this);
}
_Myt& replace(size_type _Off, size_type _N0, const _Elem *_Ptr,
size_type _Count)
{ // replace [_Off, _Off + _N0) with [_Ptr, _Ptr + _Count)
if (_Inside(_Ptr))
return (replace(_Off, _N0, *this,
_Ptr - _Myptr(), _Count)); // substring, replace carefully
if (_Mysize < _Off)
_String_base::_Xran(); // _Off off end
if (_Mysize - _Off < _N0)
_N0 = _Mysize - _Off; // trim _N0 to size
if (npos - _Count <= _Mysize - _N0)
_String_base::_Xlen(); // result too long
size_type _Nm = _Mysize - _N0 - _Off;
if (_Count < _N0)
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // smaller hole, move tail up
size_type _Num;
if ((0 < _Count || 0 < _N0) && _Grow(_Num = _Mysize + _Count - _N0))
{ // make room and rearrange
if (_N0 < _Count)
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // move tail down
_Traits::copy(_Myptr() + _Off, _Ptr, _Count); // fill hole
_Eos(_Num);
}
return (*this);
}
_Myt& replace(size_type _Off, size_type _N0, const _Elem *_Ptr)
{ // replace [_Off, _Off + _N0) with [_Ptr, <null>)
return (replace(_Off, _N0, _Ptr, _Traits::length(_Ptr)));
}
_Myt& replace(size_type _Off, size_type _N0,
size_type _Count, _Elem _Ch)
{ // replace [_Off, _Off + _N0) with _Count * _Ch
if (_Mysize < _Off)
_String_base::_Xran(); // _Off off end
if (_Mysize - _Off < _N0)
_N0 = _Mysize - _Off; // trim _N0 to size
if (npos - _Count <= _Mysize - _N0)
_String_base::_Xlen(); // result too long
size_type _Nm = _Mysize - _N0 - _Off;
if (_Count < _N0)
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // smaller hole, move tail up
size_type _Num;
if ((0 < _Count || 0 < _N0) && _Grow(_Num = _Mysize + _Count - _N0))
{ // make room and rearrange
if (_N0 < _Count)
_Traits::move(_Myptr() + _Off + _Count,
_Myptr() + _Off + _N0, _Nm); // move tail down
_Traits::assign(_Myptr() + _Off, _Count, _Ch); // fill hole
_Eos(_Num);
}
return (*this);
}
_Myt& replace(iterator _First, iterator _Last, const _Myt& _Right)
{ // replace [_First, _Last) with _Right
return (replace(
_Pdif(_First, begin()), _Pdif(_Last, _First), _Right));
}
_Myt& replace(iterator _First, iterator _Last, const _Elem *_Ptr,
size_type _Count)
{ // replace [_First, _Last) with [_Ptr, _Ptr + _Count)
return (replace(
_Pdif(_First, begin()), _Pdif(_Last, _First), _Ptr, _Count));
}
_Myt& replace(iterator _First, iterator _Last, const _Elem *_Ptr)
{ // replace [_First, _Last) with [_Ptr, <null>)
return (replace(
_Pdif(_First, begin()), _Pdif(_Last, _First), _Ptr));
}
_Myt& replace(iterator _First, iterator _Last,
size_type _Count, _Elem _Ch)
{ // replace [_First, _Last) with _Count * _Ch
return (replace(
_Pdif(_First, begin()), _Pdif(_Last, _First), _Count, _Ch));
}
template<class _It>
_Myt& replace(iterator _First, iterator _Last,
_It _First2, _It _Last2)
{ // replace [_First, _Last) with [_First2, _Last2)
return (_Replace(_First, _Last,
_First2, _Last2, _Iter_cat(_First2)));
}
template<class _It>
_Myt& _Replace(iterator _First, iterator _Last,
_It _Count, _It _Ch, _Int_iterator_tag)
{ // replace [_First, _Last) with _Count * _Ch
return (replace(_First, _Last, (size_type)_Count, (_Elem)_Ch));
}
template<class _It>
_Myt& _Replace(iterator _First, iterator _Last,
_It _First2, _It _Last2, input_iterator_tag)
{ // replace [_First, _Last) with [_First2, _Last2), input iterators
_Myt _Right(_First2, _Last2);
replace(_First, _Last, _Right);
return (*this);
}
_Myt& replace(iterator _First, iterator _Last,
const_pointer _First2, const_pointer _Last2)
{ // replace [_First, _Last) with [_First2, _Last2), const pointers
if (_First2 == _Last2)
erase(_Pdif(_First, begin()), _Pdif(_Last, _First));
else
replace(_Pdif(_First, begin()), _Pdif(_Last, _First),
&*_First2, _Last2 - _First2);
return (*this);
}
_Myt& replace(iterator _First, iterator _Last,
const_iterator _First2, const_iterator _Last2)
{ // replace [_First, _Last) with [_First2, _Last2), const_iterators
if (_First2 == _Last2)
erase(_Pdif(_First, begin()), _Pdif(_Last, _First));
else
replace(_Pdif(_First, begin()), _Pdif(_Last, _First),
&*_First2, _Last2 - _First2);
return (*this);
}
iterator begin()
{ // return iterator for beginning of mutable sequence
return (iterator(_Myptr()));
}
const_iterator begin() const
{ // return iterator for beginning of nonmutable sequence
return (const_iterator(_Myptr()));
}
iterator end()
{ // return iterator for end of mutable sequence
return (iterator(_Myptr() + _Mysize));
}
const_iterator end() const
{ // return iterator for end of nonmutable sequence
return (const_iterator(_Myptr() + _Mysize));
}
reverse_iterator rbegin()
{ // return iterator for beginning of reversed mutable sequence
return (reverse_iterator(end()));
}
const_reverse_iterator rbegin() const
{ // return iterator for beginning of reversed nonmutable sequence
return (const_reverse_iterator(end()));
}
reverse_iterator rend()
{ // return iterator for end of reversed mutable sequence
return (reverse_iterator(begin()));
}
const_reverse_iterator rend() const
{ // return iterator for end of reversed nonmutable sequence
return (const_reverse_iterator(begin()));
}
reference at(size_type _Off)
{ // subscript mutable sequence with checking
if (_Mysize <= _Off)
_String_base::_Xran(); // _Off off end
return (_Myptr()[_Off]);
}
const_reference at(size_type _Off) const
{ // subscript nonmutable sequence with checking
if (_Mysize <= _Off)
_String_base::_Xran(); // _Off off end
return (_Myptr()[_Off]);
}
reference operator[](size_type _Off)
{ // subscript mutable sequence
return (_Myptr()[_Off]);
}
const_reference operator[](size_type _Off) const
{ // subscript nonmutable sequence
return (_Myptr()[_Off]);
}
void push_back(_Elem _Ch)
{ // insert element at end
insert(end(), _Ch);
}
const _Elem *c_str() const
{ // return pointer to null-terminated nonmutable array
return (_Myptr());
}
const _Elem *data() const
{ // return pointer to nonmutable array
return (c_str());
}
size_type length() const
{ // return length of sequence
return (_Mysize);
}
size_type size() const
{ // return length of sequence
return (_Mysize);
}
size_type max_size() const
{ // return maximum possible length of sequence
size_type _Num = _Mybase::_Alval.max_size();
return (_Num <= 1 ? 1 : _Num - 1);
}
void resize(size_type _Newsize)
{ // determine new length, padding with null elements as needed
resize(_Newsize, _Elem());
}
void resize(size_type _Newsize, _Elem _Ch)
{ // determine new length, padding with _Ch elements as needed
if (_Newsize <= _Mysize)
erase(_Newsize);
else
append(_Newsize - _Mysize, _Ch);
}
size_type capacity() const
{ // return current length of allocated storage
return (_Myres);
}
void reserve(size_type _Newcap = 0)
{ // determine new minimum length of allocated storage
if (_Myres < _Newcap)
_Grow(_Newcap);
}
bool empty() const
{ // test if sequence is empty
return (_Mysize == 0);
}
size_type copy(_Elem *_Ptr, size_type _Count, size_type _Off = 0) const
{ // copy [_Off, _Off + _Count) to [_Ptr, _Ptr + _Count)
if (_Mysize < _Off)
_String_base::_Xran(); // _Off off end
if (_Mysize - _Off < _Count)
_Count = _Mysize - _Off;
_Traits::copy(_Ptr, _Myptr() + _Off, _Count);
return (_Count);
}
void swap(_Myt& _Right)
{ // exchange contents with _Right
if (_Mybase::_Alval == _Right._Alval)
{ // same allocator, swap control information
_Bxty _Tbx = _Bx;
_Bx = _Right._Bx, _Right._Bx = _Tbx;
size_type _Tlen = _Mysize;
_Mysize = _Right._Mysize, _Right._Mysize = _Tlen;
size_type _Tres = _Myres;
_Myres = _Right._Myres, _Right._Myres = _Tres;
}
else
{ // different allocator, do multiple assigns
_Myt _Tmp = *this; *this = _Right, _Right = _Tmp;
}
}
friend void swap(_Myt& _Left, _Myt& _Right)
{ // swap _Left and _Right strings
_Left.swap(_Right);
}
size_type find(const _Myt& _Right, size_type _Off = 0) const
{ // look for _Right beginnng at or after _Off
return (find(_Right._Myptr(), _Off, _Right.size()));
}
size_type find(const _Elem *_Ptr, size_type _Off,
size_type _Count) const
{ // look for [_Ptr, _Ptr + _Count) beginnng at or after _Off
if (_Count == 0 && _Off <= _Mysize)
return (_Off); // null string always matches (if inside string)
size_type _Nm;
if (_Off < _Mysize && _Count <= (_Nm = _Mysize - _Off))
{ // room for match, look for it
const _Elem *_Uptr, *_Vptr;
for (_Nm -= _Count - 1, _Vptr = _Myptr() + _Off;
(_Uptr = _Traits::find(_Vptr, _Nm, *_Ptr)) != 0;
_Nm -= _Uptr - _Vptr + 1, _Vptr = _Uptr + 1)
if (_Traits::compare(_Uptr, _Ptr, _Count) == 0)
return (_Uptr - _Myptr()); // found a match
}
return (npos); // no match
}
size_type find(const _Elem *_Ptr, size_type _Off = 0) const
{ // look for [_Ptr, <null>) beginnng at or after _Off
return (find(_Ptr, _Off, _Traits::length(_Ptr)));
}
size_type find(_Elem _Ch, size_type _Off = 0) const
{ // look for _Ch at or after _Off
return (find((const _Elem *)&_Ch, _Off, 1));
}
size_type rfind(const _Myt& _Right, size_type _Off = npos) const
{ // look for _Right beginning before _Off
return (rfind(_Right._Myptr(), _Off, _Right.size()));
}
size_type rfind(const _Elem *_Ptr, size_type _Off,
size_type _Count) const
{ // look for [_Ptr, _Ptr + _Count) beginning before _Off
if (_Count == 0)
return (_Off < _Mysize ? _Off : _Mysize); // null always matches
if (_Count <= _Mysize)
{ // room for match, look for it
const _Elem *_Uptr = _Myptr() +
(_Off < _Mysize - _Count ? _Off : _Mysize - _Count);
for (; ; --_Uptr)
if (_Traits::eq(*_Uptr, *_Ptr)
&& _Traits::compare(_Uptr, _Ptr, _Count) == 0)
return (_Uptr - _Myptr()); // found a match
else if (_Uptr == _Myptr())
break; // at beginning, no more chance for match
}
return (npos); // no match
}
size_type rfind(const _Elem *_Ptr, size_type _Off = npos) const
{ // look for [_Ptr, <null>) beginning before _Off
return (rfind(_Ptr, _Off, _Traits::length(_Ptr)));
}
size_type rfind(_Elem _Ch, size_type _Off = npos) const
{ // look for _Ch before _Off
return (rfind((const _Elem *)&_Ch, _Off, 1));
}
size_type find_first_of(const _Myt& _Right,
size_type _Off = 0) const
{ // look for one of _Right at or after _Off
return (find_first_of(_Right._Myptr(), _Off, _Right.size()));
}
size_type find_first_of(const _Elem *_Ptr, size_type _Off,
size_type _Count) const
{ // look for one of [_Ptr, _Ptr + _Count) at or after _Off
if (0 < _Count && _Off < _Mysize)
{ // room for match, look for it
const _Elem *const _Vptr = _Myptr() + _Mysize;
for (const _Elem *_Uptr = _Myptr() + _Off; _Uptr < _Vptr; ++_Uptr)
if (_Traits::find(_Ptr, _Count, *_Uptr) != 0)
return (_Uptr - _Myptr()); // found a match
}
return (npos); // no match
}
size_type find_first_of(const _Elem *_Ptr, size_type _Off = 0) const
{ // look for one of [_Ptr, <null>) at or after _Off
return (find_first_of(_Ptr, _Off, _Traits::length(_Ptr)));
}
size_type find_first_of(_Elem _Ch, size_type _Off = 0) const
{ // look for _Ch at or after _Off
return (find((const _Elem *)&_Ch, _Off, 1));
}
size_type find_last_of(const _Myt& _Right,
size_type _Off = npos) const
{ // look for one of _Right before _Off
return (find_last_of(_Right._Myptr(), _Off, _Right.size()));
}
size_type find_last_of(const _Elem *_Ptr, size_type _Off,
size_type _Count) const
{ // look for one of [_Ptr, _Ptr + _Count) before _Off
if (0 < _Count && 0 < _Mysize)
for (const _Elem *_Uptr = _Myptr()
+ (_Off < _Mysize ? _Off : _Mysize - 1); ; --_Uptr)
if (_Traits::find(_Ptr, _Count, *_Uptr) != 0)
return (_Uptr - _Myptr()); // found a match
else if (_Uptr == _Myptr())
break; // at beginning, no more chance for match
return (npos); // no match
}
size_type find_last_of(const _Elem *_Ptr,
size_type _Off = npos) const
{ // look for one of [_Ptr, <null>) before _Off
return (find_last_of(_Ptr, _Off, _Traits::length(_Ptr)));
}
size_type find_last_of(_Elem _Ch, size_type _Off = npos) const
{ // look for _Ch before _Off
return (rfind((const _Elem *)&_Ch, _Off, 1));
}
size_type find_first_not_of(const _Myt& _Right,
size_type _Off = 0) const
{ // look for none of _Right at or after _Off
return (find_first_not_of(_Right._Myptr(), _Off,
_Right.size()));
}
size_type find_first_not_of(const _Elem *_Ptr, size_type _Off,
size_type _Count) const
{ // look for none of [_Ptr, _Ptr + _Count) at or after _Off
if (_Off < _Mysize)
{ // room for match, look for it
const _Elem *const _Vptr = _Myptr() + _Mysize;
for (const _Elem *_Uptr = _Myptr() + _Off; _Uptr < _Vptr; ++_Uptr)
if (_Traits::find(_Ptr, _Count, *_Uptr) == 0)
return (_Uptr - _Myptr());
}
return (npos);
}
size_type find_first_not_of(const _Elem *_Ptr,
size_type _Off = 0) const
{ // look for one of [_Ptr, <null>) at or after _Off
return (find_first_not_of(_Ptr, _Off, _Traits::length(_Ptr)));
}
size_type find_first_not_of(_Elem _Ch, size_type _Off = 0) const
{ // look for non _Ch at or after _Off
return (find_first_not_of((const _Elem *)&_Ch, _Off, 1));
}
size_type find_last_not_of(const _Myt& _Right,
size_type _Off = npos) const
{ // look for none of _Right before _Off
return (find_last_not_of(_Right._Myptr(), _Off, _Right.size()));
}
size_type find_last_not_of(const _Elem *_Ptr, size_type _Off,
size_type _Count) const
{ // look for none of [_Ptr, _Ptr + _Count) before _Off
if (0 < _Mysize)
for (const _Elem *_Uptr = _Myptr()
+ (_Off < _Mysize ? _Off : _Mysize - 1); ; --_Uptr)
if (_Traits::find(_Ptr, _Count, *_Uptr) == 0)
return (_Uptr - _Myptr());
else if (_Uptr == _Myptr())
break;
return (npos);
}
size_type find_last_not_of(const _Elem *_Ptr,
size_type _Off = npos) const
{ // look for none of [_Ptr, <null>) before _Off
return (find_last_not_of(_Ptr, _Off, _Traits::length(_Ptr)));
}
size_type find_last_not_of(_Elem _Ch, size_type _Off = npos) const
{ // look for non _Ch before _Off
return (find_last_not_of((const _Elem *)&_Ch, _Off, 1));
}
_Myt substr(size_type _Off = 0, size_type _Count = npos) const
{ // return [_Off, _Off + _Count) as new string
return (_Myt(*this, _Off, _Count));
}
int compare(const _Myt& _Right) const
{ // compare [0, _Mysize) with _Right
return (compare(0, _Mysize, _Right._Myptr(), _Right.size()));
}
int compare(size_type _Off, size_type _N0,
const _Myt& _Right) const
{ // compare [_Off, _Off + _N0) with _Right
return (compare(_Off, _N0, _Right, 0, npos));
}
int compare(size_type _Off, size_type _N0, const _Myt& _Right,
size_type _Roff, size_type _Count) const
{ // compare [_Off, _Off + _N0) with _Right [_Roff, _Roff + _Count)
if (_Right.size() < _Roff)
_String_base::_Xran(); // _Off off end
if (_Right._Mysize - _Roff < _Count)
_Count = _Right._Mysize - _Roff; // trim _Count to size
return (compare(_Off, _N0, _Right._Myptr() + _Roff, _Count));
}
int compare(const _Elem *_Ptr) const
{ // compare [0, _Mysize) with [_Ptr, <null>)
return (compare(0, _Mysize, _Ptr, _Traits::length(_Ptr)));
}
int compare(size_type _Off, size_type _N0, const _Elem *_Ptr) const
{ // compare [_Off, _Off + _N0) with [_Ptr, <null>)
return (compare(_Off, _N0, _Ptr, _Traits::length(_Ptr)));
}
int compare(size_type _Off, size_type _N0, const _Elem *_Ptr,
size_type _Count) const
{ // compare [_Off, _Off + _N0) with [_Ptr, _Ptr + _Count)
if (_Mysize < _Off)
_String_base::_Xran(); // _Off off end
if (_Mysize - _Off < _N0)
_N0 = _Mysize - _Off; // trim _N0 to size
size_type _Ans = _N0 == 0 ? 0
: _Traits::compare(_Myptr() + _Off, _Ptr,
_N0 < _Count ? _N0 : _Count);
return (_Ans != 0 ? (int)_Ans : _N0 < _Count ? -1
: _N0 == _Count ? 0 : +1);
}
allocator_type get_allocator() const
{ // return allocator object for values
return (_Mybase::_Alval);
}
enum
{ // length of internal buffer, [1, 16]
_BUF_SIZE = 16 / sizeof (_Elem) < 1 ? 1
: 16 / sizeof(_Elem)};
private:
enum
{ // roundup mask for allocated buffers, [0, 15]
_ALLOC_MASK = sizeof (_Elem) <= 1 ? 15
: sizeof (_Elem) <= 2 ? 7
: sizeof (_Elem) <= 4 ? 3
: sizeof (_Elem) <= 8 ? 1 : 0};
void _Copy(size_type _Newsize, size_type _Oldlen)
{ // copy _Oldlen elements to newly allocated buffer
size_type _Newres = _Newsize | _ALLOC_MASK;
if (max_size() < _Newres)
_Newres = _Newsize; // undo roundup if too big
_Elem *_Ptr;
_TRY_BEGIN
_Ptr = _Mybase::_Alval.allocate(_Newres + 1, (void *)0);
_CATCH_ALL
_Newres = _Newsize; // allocation failed, undo roundup and retry
_TRY_BEGIN
_Ptr = _Mybase::_Alval.allocate(_Newres + 1, (void *)0);
_CATCH_ALL
_Tidy(true); // failed again, discard storage and reraise
_RERAISE;
_CATCH_END
_CATCH_END
if (0 < _Oldlen)
_Traits::copy(_Ptr, _Myptr(), _Oldlen); // copy existing elements
_Tidy(true);
_Bx._Ptr = _Ptr;
_Myres = _Newres;
_Eos(_Oldlen);
}
void _Eos(size_type _Newsize)
{ // set new length and null terminator
_Traits::assign(_Myptr()[_Mysize = _Newsize], _Elem());
}
bool _Grow(size_type _Newsize, bool _Trim = false)
{ // ensure buffer is big enough, trim to size if _Trim is true
if (max_size() < _Newsize)
_String_base::_Xlen(); // result too long
if (_Myres < _Newsize)
_Copy(_Newsize, _Trim ? 0 : _Mysize); // reallocate to grow
else if (_Trim && _Newsize < _BUF_SIZE)
_Tidy(true); // deallocate if assigning small string
else if (_Newsize == 0)
_Eos(0); // new size is zero, just null terminate
return (0 < _Newsize); // return true only if more work to do
}
bool _Inside(const _Elem *_Ptr)
{ // test if _Ptr points inside string
return (_Myptr() <= _Ptr && _Ptr < _Myptr() + _Mysize);
}
static size_type __cdecl _Pdif(const_iterator _P2,
const_iterator _P1)
{ // compute safe iterator difference
return (_P2.base() == 0 ? 0 : _P2 - _P1);
}
_Elem *_Myptr()
{ // determine current pointer to buffer for mutable string
return (_BUF_SIZE <= _Myres ? _Bx._Ptr : _Bx._Buf);
}
const _Elem *_Myptr() const
{ // determine current pointer to buffer for nonmutable string
return (_BUF_SIZE <= _Myres ? _Bx._Ptr : _Bx._Buf);
}
void _Tidy(bool _Built = false)
{ // initialize buffer, deallocating any storage
if (!_Built)
;
else if (_BUF_SIZE <= _Myres)
_Mybase::_Alval.deallocate(_Myptr(), _Myres + 1);
_Myres = _BUF_SIZE - 1;
_Eos(0);
}
union _Bxty
{ // storage for small buffer or pointer to larger one
_Elem _Buf[_BUF_SIZE];
_Elem *_Ptr;
} _Bx;
size_type _Mysize; // current length of string
size_type _Myres; // current storage reserved for string
};
// STATIC npos OBJECT
template<class _Elem,
class _Traits,
class _Alloc>
const /* typename */ basic_string<_Elem, _Traits, _Alloc>::size_type
basic_string<_Elem, _Traits, _Alloc>::npos =
(basic_string<_Elem, _Traits, _Alloc>::size_type)(-1);
typedef basic_string<char, char_traits<char>, allocator<char> >
string;
typedef basic_string<wchar_t, char_traits<wchar_t>,
allocator<wchar_t> > wstring;
#ifdef _DLL_CPPLIB
template class _CRTIMP2 basic_string<char, char_traits<char>,
allocator<char> >;
template class _CRTIMP2 basic_string<wchar_t, char_traits<wchar_t>,
allocator<wchar_t> >;
#endif // _DLL_CPPLIB
_STD_END
#pragma warning(default: 4251)
#pragma warning(pop)
#pragma pack(pop)
#endif /* _XSTRING */
/*
* Copyright (c) 1992-2001 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
V3.10:0009 */