/* * KSysGuard, the KDE System Guard * * Copyright 1999 - 2002 Chris Schlaeger * Copyright 2006 John Tapsell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Library General Public License as * published by the Free Software Foundation; either version 2, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "signalplotter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Plasma { class SignalPlotterPrivate { public: SignalPlotterPrivate() : svgBackground(0) { } ~SignalPlotterPrivate() { } void themeChanged() { Plasma::Theme *theme = Plasma::Theme::defaultTheme(); backgroundColor = theme->color(Theme::BackgroundColor); fontColor = theme->color(Theme::TextColor); borderColor = fontColor; verticalLinesColor = fontColor; verticalLinesColor.setAlphaF(0.4); horizontalLinesColor = verticalLinesColor; } int precision; uint samples; uint bezierCurveOffset; double scaledBy; double verticalMin; double verticalMax; double niceVertMin; double niceVertMax; double niceVertRange; uint verticalLinesOffset; uint verticalLinesDistance; QColor verticalLinesColor; bool showHorizontalLines; uint horizontalScale; uint horizontalLinesCount; QColor horizontalLinesColor; Svg *svgBackground; QString svgFilename; QColor fontColor; QColor borderColor; QColor backgroundColor; QPixmap backgroundPixmap; QFont font; QString title; QString unit; QList plotColors; QList > plotData; bool fillPlots : 1; bool showLabels : 1; bool showTopBar : 1; bool stackPlots : 1; bool useAutoRange : 1; bool showThinFrame : 1; bool showVerticalLines : 1; bool verticalLinesScroll : 1; }; SignalPlotter::SignalPlotter(QGraphicsItem *parent) : QGraphicsWidget(parent), d(new SignalPlotterPrivate) { d->precision = 0; d->bezierCurveOffset = 0; d->samples = 0; d->verticalMin = d->verticalMax = 0.0; d->niceVertMin = d->niceVertMax = 0.0; d->niceVertRange = 0; d->useAutoRange = true; d->scaledBy = 1; d->showThinFrame = true; d->showVerticalLines = true; d->verticalLinesDistance = 30; d->verticalLinesScroll = true; d->verticalLinesOffset = 0; d->horizontalScale = 1; d->showHorizontalLines = true; d->horizontalLinesCount = 5; d->showLabels = true; d->showTopBar = true; d->stackPlots = true; d->fillPlots = true; // Anything smaller than this does not make sense. setMinimumSize(QSizeF(KIconLoader::SizeSmall, KIconLoader::SizeSmall)); setSvgBackground("widgets/plot-background"); connect(Plasma::Theme::defaultTheme(), SIGNAL(themeChanged()), SLOT(themeChanged())); d->themeChanged(); setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding); } SignalPlotter::~SignalPlotter() { delete d; } QString SignalPlotter::unit() const { return d->unit; } void SignalPlotter::setUnit(const QString &unit) { d->unit= unit; } void SignalPlotter::addPlot(const QColor &color) { // When we add a new plot, go back and set the data for this plot to 0 for // all the other times. This is because it makes it easier for moveSensors. foreach (QList data, d->plotData) { data.append(0); } PlotColor newColor; newColor.color = color; newColor.darkColor = color.dark(150); d->plotColors.append(newColor); } void SignalPlotter::addSample(const QList& sampleBuf) { if (d->samples < 4) { // It might be possible, under some race conditions, for addSample // to be called before d->samples is set. This is just to be safe. #ifndef NDEBUG kDebug() << "Error - d->samples is only " << d->samples; #endif updateDataBuffers(); #ifndef NDEBUG kDebug() << "d->samples is now " << d->samples; #endif if (d->samples < 4) { return; } } d->plotData.prepend(sampleBuf); Q_ASSERT(sampleBuf.count() == d->plotColors.count()); if ((uint)d->plotData.size() > d->samples) { d->plotData.removeLast(); // we have too many. Remove the last item if ((uint)d->plotData.size() > d->samples) { // If we still have too many, then we have resized the widget. // Remove one more. That way we will slowly resize to the new size d->plotData.removeLast(); } } if (d->bezierCurveOffset >= 2) { d->bezierCurveOffset = 0; } else { d->bezierCurveOffset++; } Q_ASSERT((uint)d->plotData.size() >= d->bezierCurveOffset); // If the vertical lines are scrolling, increment the offset // so they move with the data. if (d->verticalLinesScroll) { d->verticalLinesOffset = (d->verticalLinesOffset + d->horizontalScale) % d->verticalLinesDistance; } update(); } void SignalPlotter::reorderPlots(const QList& newOrder) { if (newOrder.count() != d->plotColors.count()) { #ifndef NDEBUG kDebug() << "neworder has " << newOrder.count() << " and plot colors is " << d->plotColors.count(); #endif return; } foreach (QList data, d->plotData) { if (newOrder.count() != data.count()) { #ifndef NDEBUG kDebug() << "Serious problem in move sample. plotdata[i] has " << data.count() << " and neworder has " << newOrder.count(); #endif } else { QList newPlot; for (int i = 0; i < newOrder.count(); i++) { int newIndex = newOrder[i]; newPlot.append(data.at(newIndex)); } data = newPlot; } } QList newPlotColors; for (int i = 0; i < newOrder.count(); i++) { int newIndex = newOrder[i]; PlotColor newColor = d->plotColors.at(newIndex); newPlotColors.append(newColor); } d->plotColors = newPlotColors; } void SignalPlotter::setVerticalRange(double min, double max) { d->verticalMin = min; d->verticalMax = max; calculateNiceRange(); } QList &SignalPlotter::plotColors() { return d->plotColors; } void SignalPlotter::removePlot(uint pos) { if (pos >= (uint)d->plotColors.size()) { return; } d->plotColors.removeAt(pos); foreach (QList data, d->plotData) { if ((uint)data.size() >= pos) { data.removeAt(pos); } } } void SignalPlotter::scale(qreal delta) { if (d->scaledBy == delta) { return; } d->scaledBy = delta; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache calculateNiceRange(); } qreal SignalPlotter::scaledBy() const { return d->scaledBy; } void SignalPlotter::setTitle(const QString &title) { if (d->title == title) { return; } d->title = title; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } QString SignalPlotter::title() const { return d->title; } void SignalPlotter::setUseAutoRange(bool value) { d->useAutoRange = value; calculateNiceRange(); // this change will be detected in paint and the image cache regenerated } bool SignalPlotter::useAutoRange() const { return d->useAutoRange; } double SignalPlotter::verticalMinValue() const { return d->verticalMin; } double SignalPlotter::verticalMaxValue() const { return d->verticalMax; } void SignalPlotter::setHorizontalScale(uint scale) { if (scale == d->horizontalScale) { return; } d->horizontalScale = scale; updateDataBuffers(); d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } uint SignalPlotter::horizontalScale() const { return d->horizontalScale; } void SignalPlotter::setShowVerticalLines(bool value) { if (d->showVerticalLines == value) { return; } d->showVerticalLines = value; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } bool SignalPlotter::showVerticalLines() const { return d->showVerticalLines; } void SignalPlotter::setVerticalLinesColor(const QColor &color) { if (d->verticalLinesColor == color) { return; } d->verticalLinesColor = color; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } QColor SignalPlotter::verticalLinesColor() const { return d->verticalLinesColor; } void SignalPlotter::setVerticalLinesDistance(uint distance) { if (distance == d->verticalLinesDistance) { return; } d->verticalLinesDistance = distance; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } uint SignalPlotter::verticalLinesDistance() const { return d->verticalLinesDistance; } void SignalPlotter::setVerticalLinesScroll(bool value) { if (value == d->verticalLinesScroll) { return; } d->verticalLinesScroll = value; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } bool SignalPlotter::verticalLinesScroll() const { return d->verticalLinesScroll; } void SignalPlotter::setShowHorizontalLines(bool value) { if (value == d->showHorizontalLines) { return; } d->showHorizontalLines = value; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } bool SignalPlotter::showHorizontalLines() const { return d->showHorizontalLines; } void SignalPlotter::setFontColor(const QColor &color) { d->fontColor = color; } QColor SignalPlotter::fontColor() const { return d->fontColor; } void SignalPlotter::setHorizontalLinesColor(const QColor &color) { if (color == d->horizontalLinesColor) { return; } d->horizontalLinesColor = color; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } QColor SignalPlotter::horizontalLinesColor() const { return d->horizontalLinesColor; } void SignalPlotter::setHorizontalLinesCount(uint count) { if (count == d->horizontalLinesCount) { return; } d->horizontalLinesCount = count; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache calculateNiceRange(); } uint SignalPlotter::horizontalLinesCount() const { return d->horizontalLinesCount; } void SignalPlotter::setShowLabels(bool value) { if (value == d->showLabels) { return; } d->showLabels = value; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } bool SignalPlotter::showLabels() const { return d->showLabels; } void SignalPlotter::setShowTopBar(bool value) { if (d->showTopBar == value) { return; } d->showTopBar = value; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } bool SignalPlotter::showTopBar() const { return d->showTopBar; } void SignalPlotter::setFont(const QFont &font) { d->font = font; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } QFont SignalPlotter::font() const { return d->font; } QString SignalPlotter::svgBackground() { return d->svgFilename; } void SignalPlotter::setSvgBackground(const QString &filename) { if (d->svgFilename == filename) { return; } if (!filename.isEmpty() && filename[0] == '/') { KStandardDirs *kstd = KGlobal::dirs(); d->svgFilename = kstd->findResource("data", "ksysguard/" + filename); } else { d->svgFilename = filename; } delete d->svgBackground; d->svgBackground = 0; if (!d->svgFilename.isEmpty()) { d->svgBackground = new Svg(this); d->svgBackground->setImagePath(d->svgFilename); } } void SignalPlotter::setBackgroundColor(const QColor &color) { if (color == d->backgroundColor) { return; } d->backgroundColor = color; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } QColor SignalPlotter::backgroundColor() const { return d->backgroundColor; } void SignalPlotter::setThinFrame(bool set) { if (d->showThinFrame == set) { return; } d->showThinFrame = set; d->backgroundPixmap = QPixmap(); // we changed a paint setting, so reset the cache } bool SignalPlotter::thinFrame() const { return d->showThinFrame; } void SignalPlotter::setStackPlots(bool stack) { d->stackPlots = stack; d->fillPlots = stack; } bool SignalPlotter::stackPlots() const { return d->stackPlots; } void SignalPlotter::updateDataBuffers() { // This is called when the widget has resized // // Determine new number of samples first. // +0.5 to ensure rounding up // +4 for extra data points so there is // 1) no wasted space and // 2) no loss of precision when drawing the first data point. d->samples = static_cast(((size().width() - 2) / d->horizontalScale) + 4.5); } QPixmap SignalPlotter::getSnapshotImage(uint w, uint height) { uint horizontalStep = (uint)((1.0 * w / size().width()) + 0.5); // get the closest integer horizontal step uint newWidth = (uint) (horizontalStep * size().width()); QPixmap image = QPixmap(newWidth, height); QPainter p(&image); drawWidget(&p, newWidth, height, newWidth); p.end(); return image; } void SignalPlotter::setGeometry(const QRectF &geometry) { // First update our size, then update the data buffers accordingly. QGraphicsWidget::setGeometry(geometry); updateDataBuffers(); } void SignalPlotter::paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget) { Q_UNUSED(option); Q_UNUSED(widget); uint w = (uint) size().width(); uint h = (uint) size().height(); // Do not do repaints when the widget is not yet setup properly. if (w <= 2) { return; } drawWidget(painter, w, h, d->horizontalScale); } void SignalPlotter::drawWidget(QPainter *p, uint w, uint height, int horizontalScale) { uint h = height; // h will become the height of just the bit we draw the plots in p->setFont(d->font); uint fontheight = p->fontMetrics().height(); if (d->verticalMin < d->niceVertMin || d->verticalMax > d->niceVertMax || d->verticalMax < (d->niceVertRange * 0.75 + d->niceVertMin) || d->niceVertRange == 0) { calculateNiceRange(); } QPen pen; pen.setWidth(1); pen.setCapStyle(Qt::RoundCap); p->setPen(pen); uint top = p->pen().width() / 2; // The y position of the top of the graph. Basically this is one more than the height of the top bar h-= top; // Check if there's enough room to actually show a top bar. // Must be enough room for a bar at the top, plus horizontal // lines each of a size with room for a scale. bool showTopBar = d->showTopBar && h > (fontheight/*top bar size*/ +5/*smallest reasonable size for a graph*/); if (showTopBar) { top += fontheight; // The top bar has the same height as fontheight. Thus the top of the graph is at fontheight h -= fontheight; } if (d->backgroundPixmap.isNull() || (uint)d->backgroundPixmap.size().height() != height || (uint)d->backgroundPixmap.size().width() != w) { // recreate on resize etc d->backgroundPixmap = QPixmap(w, height); d->backgroundPixmap.fill(Qt::transparent); QPainter pCache(&d->backgroundPixmap); pCache.setRenderHint(QPainter::Antialiasing, false); pCache.setFont(d->font); drawBackground(&pCache, w, height); if (d->showThinFrame) { drawThinFrame(&pCache, w, height); // We have a 'frame' in the bottom and right - so subtract them from the view h--; w--; pCache.setClipRect(0, 0, w, height-1); } if (showTopBar) { int separatorX = w / 2; drawTopBarFrame(&pCache, separatorX, top); } // Draw scope-like grid vertical lines if it doesn't move. // If it does move, draw it in the dynamic part of the code. if (!d->verticalLinesScroll && d->showVerticalLines && w > 60) { drawVerticalLines(&pCache, top, w, h); } if (d->showHorizontalLines) { drawHorizontalLines(&pCache, top, w, h); } } else { if (d->showThinFrame) { // We have a 'frame' in the bottom and right - so subtract them from the view h--; w--; } } p->drawPixmap(0, 0, d->backgroundPixmap); p->setRenderHint(QPainter::Antialiasing, true); if (showTopBar) { int separatorX = w / 2; int topBarWidth = w - separatorX -2; drawTopBarContents(p, separatorX, topBarWidth, top -1); } p->setClipRect(0, top, w, h, Qt::IntersectClip); // Draw scope-like grid vertical lines if (d->verticalLinesScroll && d->showVerticalLines && w > 60) { drawVerticalLines(p, top, w, h); } drawPlots(p, top, w, h, horizontalScale); if (d->showLabels && w > 60 && h > (fontheight + 1)) { // if there's room to draw the labels, then draw them! drawAxisText(p, top, h); } } void SignalPlotter::drawBackground(QPainter *p, int w, int h) { if (d->svgBackground) { d->svgBackground->resize(w, h); d->svgBackground->paint(p, 0, 0); } else { p->fillRect(0, 0, w, h, d->backgroundColor); } } void SignalPlotter::drawThinFrame(QPainter *p, int w, int h) { // Draw a line along the bottom and the right side of the // widget to create a 3D like look. p->setPen(d->borderColor); p->drawLine(0, h - 1, w - 1, h - 1); p->drawLine(w - 1, 0, w - 1, h - 1); } void SignalPlotter::calculateNiceRange() { d->niceVertRange = d->verticalMax - d->verticalMin; // If the range is too small we will force it to 1.0 since it // looks a lot nicer. if (d->niceVertRange < 0.000001) { d->niceVertRange = 1.0; } d->niceVertMin = d->verticalMin; if (d->verticalMin != 0.0) { double dim = pow(10, floor(log10(fabs(d->verticalMin)))) / 2; if (d->verticalMin < 0.0) { d->niceVertMin = dim * floor(d->verticalMin / dim); } else { d->niceVertMin = dim * ceil(d->verticalMin / dim); } d->niceVertRange = d->verticalMax - d->niceVertMin; if (d->niceVertRange < 0.000001) { d->niceVertRange = 1.0; } } // Massage the range so that the grid shows some nice values. double step = d->niceVertRange / (d->scaledBy * (d->horizontalLinesCount + 1)); int logdim = (int)floor(log10(step)); double dim = pow((double)10.0, logdim) / 2; int a = (int)ceil(step / dim); if (logdim >= 0) { d->precision = 0; } else if (a % 2 == 0) { d->precision = -logdim; } else { d->precision = 1 - logdim; } d->niceVertRange = d->scaledBy * dim * a * (d->horizontalLinesCount + 1); d->niceVertMax = d->niceVertMin + d->niceVertRange; } void SignalPlotter::drawTopBarFrame(QPainter *p, int separatorX, int height) { // Draw horizontal bar with current sensor values at top of display. // Remember that it has a height of 'height'. Thus the lowest pixel // it can draw on is height-1 since we count from 0. p->setPen(Qt::NoPen); p->setPen(d->fontColor); p->drawText(0, 1, separatorX, height, Qt::AlignCenter, d->title); p->setPen(d->horizontalLinesColor); p->drawLine(separatorX - 1, 1, separatorX - 1, height - 1); } void SignalPlotter::drawTopBarContents(QPainter *p, int x, int width, int height) { // The height is the height of the contents, so this will be // one pixel less than the height of the topbar double bias = -d->niceVertMin; double scaleFac = width / d->niceVertRange; // The top bar shows the current values of all the plot data. // This iterates through each different plot and plots the newest data for each. if (!d->plotData.isEmpty()) { QList newestData = d->plotData.first(); for (int i = newestData.count()-1; i >= 0; --i) { double newest_datapoint = newestData.at(i); int start = x + (int)(bias * scaleFac); int end = x + (int)((bias += newest_datapoint) * scaleFac); int start2 = qMin(start, end); end = qMax(start, end); start = start2; // If the rect is wider than 2 pixels we draw only the last // pixels with the bright color. The rest is painted with // a 50% darker color. p->setPen(Qt::NoPen); QLinearGradient linearGrad(QPointF(start, 1), QPointF(end, 1)); linearGrad.setColorAt(0, d->plotColors[i].darkColor); linearGrad.setColorAt(1, d->plotColors[i].color); p->fillRect(start, 1, end - start, height-1, QBrush(linearGrad)); } } } void SignalPlotter::drawVerticalLines(QPainter *p, int top, int w, int h) { p->setPen(d->verticalLinesColor); for (int x = d->verticalLinesOffset; x < (w - 2); x += d->verticalLinesDistance) { p->drawLine(w - x, top, w - x, h + top -1); } } void SignalPlotter::drawPlots(QPainter *p, int top, int w, int h, int horizontalScale) { Q_ASSERT(d->niceVertRange != 0); if (d->niceVertRange == 0) { d->niceVertRange = 1; } double scaleFac = (h - 1) / d->niceVertRange; int xPos = 0; QList< QList >::Iterator it = d->plotData.begin(); p->setPen(Qt::NoPen); // In autoRange mode we determine the range and plot the values in // one go. This is more efficiently than running through the // buffers twice but we do react on recently discarded samples as // well as new samples one plot too late. So the range is not // correct if the recently discarded samples are larger or smaller // than the current extreme values. But we can probably live with // this. // These values aren't used directly anywhere. Instead we call // calculateNiceRange() which massages these values into a nicer // values. Rounding etc. This means it's safe to change these values // without affecting any other drawings. if (d->useAutoRange) { d->verticalMin = d->verticalMax = 0.0; } // d->bezierCurveOffset is how many points we have at the start. // All the bezier curves are in groups of 3, with the first of the // next group being the last point of the previous group // Example, when d->bezierCurveOffset == 0, and we have data, then just // plot a normal bezier curve. (we will have at least 3 points in this case) // When d->bezierCurveOffset == 1, then we want a bezier curve that uses // the first data point and the second data point. Then the next group // starts from the second data point. // // When d->bezierCurveOffset == 2, then we want a bezier curve that // uses the first, second and third data. for (uint i = 0; it != d->plotData.end() && i < d->samples; ++i) { QPen pen; pen.setWidth(1); pen.setCapStyle(Qt::FlatCap); // We will plot 1 bezier curve for every 3 points, with the 4th point // being the end of one bezier curve and the start of the second. // This does means the bezier curves will not join nicely, but it // should be better than nothing. QList datapoints = *it; QList prev_datapoints = datapoints; QList prev_prev_datapoints = datapoints; QList prev_prev_prev_datapoints = datapoints; if (i == 0 && d->bezierCurveOffset > 0) { // We are plotting an incomplete bezier curve - we don't have // all the data we want. Try to cope. xPos += horizontalScale * d->bezierCurveOffset; if (d->bezierCurveOffset == 1) { prev_datapoints = *it; ++it; // Now we are on the first element of the next group, if it exists if (it != d->plotData.end()) { prev_prev_prev_datapoints = prev_prev_datapoints = *it; } else { prev_prev_prev_datapoints = prev_prev_datapoints = prev_datapoints; } } else { // d->bezierCurveOffset must be 2 now prev_datapoints = *it; Q_ASSERT(it != d->plotData.end()); ++it; prev_prev_datapoints = *it; Q_ASSERT(it != d->plotData.end()); ++it; // Now we are on the first element of the next group, if it exists if (it != d->plotData.end()) { prev_prev_prev_datapoints = *it; } else { prev_prev_prev_datapoints = prev_prev_datapoints; } } } else { // We have a group of 3 points at least. That's 1 start point and 2 control points. xPos += horizontalScale * 3; it++; if (it != d->plotData.end()) { prev_datapoints = *it; it++; if (it != d->plotData.end()) { prev_prev_datapoints = *it; it++; // We are now on the next set of data points if (it != d->plotData.end()) { // We have this datapoint, so use it for our finish point prev_prev_prev_datapoints = *it; } else { // We don't have the next set, so use our last control // point as our finish point prev_prev_prev_datapoints = prev_prev_datapoints; } } else { prev_prev_prev_datapoints = prev_prev_datapoints = prev_datapoints; } } else { prev_prev_prev_datapoints = prev_prev_datapoints = prev_datapoints = datapoints; } } float x0 = w - xPos + 3.0 * horizontalScale; float x1 = w - xPos + 2.0 * horizontalScale; float x2 = w - xPos + 1.0 * horizontalScale; float x3 = w - xPos; float y0 = h - 1 + top; float y1 = y0; float y2 = y0; float y3 = y0; int offset = 0; // Our line is 2 pixels thick. This means that when we draw the area, we need to offset double max_y = 0; double min_y = 0; for (int j = qMin(datapoints.size(), d->plotColors.size()) - 1; j >=0; --j) { if (d->useAutoRange) { // If we use autorange, then we need to prepare the min and max values for _next_ time we paint. // If we are stacking the plots, then we need to add the maximums together. double current_maxvalue = qMax(datapoints[j], qMax(prev_datapoints[j], qMax(prev_prev_datapoints[j], prev_prev_prev_datapoints[j]))); double current_minvalue = qMin(datapoints[j], qMin(prev_datapoints[j], qMin(prev_prev_datapoints[j], prev_prev_prev_datapoints[j]))); d->verticalMax = qMax(d->verticalMax, current_maxvalue); d->verticalMin = qMin(d->verticalMin, current_maxvalue); if (d->stackPlots) { max_y += current_maxvalue; min_y += current_minvalue; } } // Draw polygon only if enough data points are available. if (j < prev_prev_prev_datapoints.count() && j < prev_prev_datapoints.count() && j < prev_datapoints.count()) { // The height of the whole widget is h+top-> The height of // the area we are plotting in is just h. // The y coordinate system starts from the top, so at the // bottom the y coordinate is h+top. // So to draw a point at value y', we need to put this at h+top-y' float delta_y0; delta_y0 = (datapoints[j] - d->niceVertMin) * scaleFac; float delta_y1; delta_y1 = (prev_datapoints[j] - d->niceVertMin) * scaleFac; float delta_y2; delta_y2 = (prev_prev_datapoints[j] - d->niceVertMin) * scaleFac; float delta_y3; delta_y3 = (prev_prev_prev_datapoints[j] - d->niceVertMin) * scaleFac; QPainterPath path; if (d->stackPlots && offset) { // we don't want the lines to overdraw each other. // This isn't a great solution though :( if (delta_y0 < 3) { delta_y0=3; } if (delta_y1 < 3) { delta_y1=3; } if (delta_y2 < 3) { delta_y2=3; } if (delta_y3 < 3) { delta_y3=3; } } path.moveTo(x0, y0 - delta_y0); path.cubicTo(x1, y1 - delta_y1, x2, y2 - delta_y2, x3, y3 - delta_y3); if (d->fillPlots) { QPainterPath path2(path); QLinearGradient myGradient(0,(h - 1 + top), 0, (h - 1 + top) / 5); Q_ASSERT(d->plotColors.size() >= j); QColor c0(d->plotColors[j].darkColor); QColor c1(d->plotColors[j].color); c0.setAlpha(150); c1.setAlpha(150); myGradient.setColorAt(0, c0); myGradient.setColorAt(1, c1); path2.lineTo(x3, y3 - offset); if (d->stackPlots) { // offset is set to 1 after the first plot is drawn, // so we don't trample on top of the 2pt thick line path2.cubicTo(x2, y2 - offset, x1, y1 - offset, x0, y0 - offset); } else { path2.lineTo(x0, y0 - 1); } p->setBrush(myGradient); p->setPen(Qt::NoPen); p->drawPath(path2); } p->setBrush(Qt::NoBrush); Q_ASSERT(d->plotColors.size() >= j); pen.setColor(d->plotColors[j].color); p->setPen(pen); p->drawPath(path); if (d->stackPlots) { // We can draw the plots stacked on top of each other. // This means that say plot 0 has the value 2 and plot // 1 has the value 3, then we plot plot 0 at 2 and plot 1 at 2+3 = 5. y0 -= delta_y0; y1 -= delta_y1; y2 -= delta_y2; y3 -= delta_y3; offset = 1; // see the comment further up for int offset; } } if (d->useAutoRange && d->stackPlots) { d->verticalMax = qMax(max_y, d->verticalMax); d->verticalMin = qMin(min_y, d->verticalMin); } } } } void SignalPlotter::drawAxisText(QPainter *p, int top, int h) { // Draw horizontal lines and values. Lines are always drawn. // Values are only draw when width is greater than 60. QString val; // top = 0 or font.height depending on whether there's a topbar or not // h = graphing area.height - i.e. the actual space we have to draw inside // Note we are drawing from 0,0 as the top left corner. So we have to add on top // to get to the top of where we are drawing so top+h is the height of the widget. p->setPen(d->fontColor); double stepsize = d->niceVertRange / (d->scaledBy * (d->horizontalLinesCount + 1)); int step = (int)ceil((d->horizontalLinesCount+1) * (p->fontMetrics().height() + p->fontMetrics().leading() / 2.0) / h); if (step == 0) { step = 1; } for (int y = d->horizontalLinesCount + 1; y >= 1; y-= step) { int y_coord = top + (y * (h - 1)) / (d->horizontalLinesCount + 1); // Make sure it's y*h first to avoid rounding bugs if (y_coord - p->fontMetrics().ascent() < top) { // at most, only allow 4 pixels of the text to be covered up // by the top bar. Otherwise just don't bother to draw it continue; } double value; if ((uint)y == d->horizontalLinesCount + 1) { value = d->niceVertMin; // sometimes using the formulas gives us a value very slightly off } else { value = d->niceVertMax / d->scaledBy - y * stepsize; } QString number = KLocale::global()->formatNumber(value, d->precision); val = QString("%1 %2").arg(number, d->unit); p->drawText(6, y_coord - 3, val); } } void SignalPlotter::drawHorizontalLines(QPainter *p, int top, int w, int h) { p->setPen(d->horizontalLinesColor); for (uint y = 0; y <= d->horizontalLinesCount + 1; y++) { // note that the y_coord starts from 0. so we draw from pixel number 0 to h-1. Thus the -1 in the y_coord int y_coord = top + (y * (h - 1)) / (d->horizontalLinesCount + 1); // Make sure it's y*h first to avoid rounding bugs p->drawLine(0, y_coord, w - 2, y_coord); } } double SignalPlotter::lastValue(uint i) const { if (d->plotData.isEmpty() || d->plotData.first().size() <= (int)i) { return 0; } return d->plotData.first()[i]; } QString SignalPlotter::lastValueAsString(uint i) const { if (d->plotData.isEmpty()) { return QString(); } double value = d->plotData.first()[i] / d->scaledBy; // retrieve the newest value for this plot then scale it correct QString number = KLocale::global()->formatNumber(value, (value >= 100)?0:2); return QString("%1 %2").arg(number, d->unit); } } // Plasma namespace #include "moc_signalplotter.cpp"