Make parsing behaves according to header

Close #1778. Close #1848
This commit is contained in:
topjohnwu 2019-09-17 05:01:04 -04:00
parent baaaf7d5de
commit 3e30ccdeee
2 changed files with 236 additions and 181 deletions

View File

@ -59,6 +59,7 @@ static void restore_buf(int fd, const void *buf, size_t size) {
boot_img::~boot_img() { boot_img::~boot_img() {
munmap(map_addr, map_size); munmap(map_addr, map_size);
delete hdr;
delete k_hdr; delete k_hdr;
delete r_hdr; delete r_hdr;
delete b_hdr; delete b_hdr;
@ -97,13 +98,12 @@ int boot_img::parse_file(const char *image) {
exit(UNSUPP_RET); exit(UNSUPP_RET);
} }
#define pos_align() pos = do_align(pos, hdr.page_size()) #define pos_align() pos = do_align(pos, hdr->page_size())
int boot_img::parse_image(uint8_t *head) { int boot_img::parse_image(uint8_t *head) {
auto hp = (boot_img_hdr*) head; auto hp = reinterpret_cast<boot_img_hdr*>(head);
if (hp->page_size >= 0x02000000) { if (hp->page_size >= 0x02000000) {
fprintf(stderr, "PXA_BOOT_HDR\n"); fprintf(stderr, "PXA_BOOT_HDR\n");
hdr.set_hdr(new boot_img_hdr_pxa()); hdr = new dyn_img_pxa(head);
memcpy(*hdr, head, sizeof(boot_img_hdr_pxa));
} else { } else {
if (memcmp(hp->cmdline, NOOKHD_RL_MAGIC, 10) == 0 || if (memcmp(hp->cmdline, NOOKHD_RL_MAGIC, 10) == 0 ||
memcmp(hp->cmdline, NOOKHD_GL_MAGIC, 12) == 0 || memcmp(hp->cmdline, NOOKHD_GL_MAGIC, 12) == 0 ||
@ -118,38 +118,43 @@ int boot_img::parse_image(uint8_t *head) {
fprintf(stderr, "ACCLAIM_LOADER\n"); fprintf(stderr, "ACCLAIM_LOADER\n");
head += ACCLAIM_PRE_HEADER_SZ; head += ACCLAIM_PRE_HEADER_SZ;
} }
hdr.set_hdr(new boot_img_hdr());
memcpy(*hdr, head, sizeof(boot_img_hdr)); if (hp->header_version == 1)
hdr = new dyn_img_v1(head);
else if (hp->header_version == 2)
hdr = new dyn_img_v2(head);
else
hdr = new dyn_img_v0(head);
} }
size_t pos = hdr.page_size(); size_t pos = hdr->page_size();
flags |= hdr.id()[SHA_DIGEST_SIZE] ? SHA256_FLAG : 0; flags |= hdr->id()[SHA_DIGEST_SIZE] ? SHA256_FLAG : 0;
print_hdr(); print_hdr();
kernel = head + pos; kernel = head + pos;
pos += hdr->kernel_size; pos += hdr->kernel_size();
pos_align(); pos_align();
ramdisk = head + pos; ramdisk = head + pos;
pos += hdr->ramdisk_size; pos += hdr->ramdisk_size();
pos_align(); pos_align();
second = head + pos; second = head + pos;
pos += hdr->second_size; pos += hdr->second_size();
pos_align(); pos_align();
extra = head + pos; extra = head + pos;
pos += hdr.extra_size(); pos += hdr->extra_size();
pos_align(); pos_align();
recov_dtbo = head + pos; recov_dtbo = head + pos;
pos += hdr.recovery_dtbo_size(); pos += hdr->recovery_dtbo_size();
pos_align(); pos_align();
dtb = head + pos; dtb = head + pos;
pos += hdr.dtb_size(); pos += hdr->dtb_size();
pos_align(); pos_align();
if (head + pos < map_addr + map_size) { if (head + pos < map_addr + map_size) {
@ -166,8 +171,8 @@ int boot_img::parse_image(uint8_t *head) {
find_dtb(); find_dtb();
k_fmt = check_fmt(kernel, hdr->kernel_size); k_fmt = check_fmt(kernel, hdr->kernel_size());
r_fmt = check_fmt(ramdisk, hdr->ramdisk_size); r_fmt = check_fmt(ramdisk, hdr->ramdisk_size());
// Check MTK // Check MTK
if (k_fmt == MTK) { if (k_fmt == MTK) {
@ -178,8 +183,8 @@ int boot_img::parse_image(uint8_t *head) {
fprintf(stderr, "KERNEL [%u]\n", k_hdr->size); fprintf(stderr, "KERNEL [%u]\n", k_hdr->size);
fprintf(stderr, "NAME [%s]\n", k_hdr->name); fprintf(stderr, "NAME [%s]\n", k_hdr->name);
kernel += 512; kernel += 512;
hdr->kernel_size -= 512; hdr->kernel_size() -= 512;
k_fmt = check_fmt(kernel, hdr->kernel_size); k_fmt = check_fmt(kernel, hdr->kernel_size());
} }
if (r_fmt == MTK) { if (r_fmt == MTK) {
fprintf(stderr, "MTK_RAMDISK_HDR\n"); fprintf(stderr, "MTK_RAMDISK_HDR\n");
@ -189,8 +194,8 @@ int boot_img::parse_image(uint8_t *head) {
fprintf(stderr, "RAMDISK [%u]\n", r_hdr->size); fprintf(stderr, "RAMDISK [%u]\n", r_hdr->size);
fprintf(stderr, "NAME [%s]\n", r_hdr->name); fprintf(stderr, "NAME [%s]\n", r_hdr->name);
ramdisk += 512; ramdisk += 512;
hdr->ramdisk_size -= 512; hdr->ramdisk_size() -= 512;
r_fmt = check_fmt(ramdisk, hdr->ramdisk_size); r_fmt = check_fmt(ramdisk, hdr->ramdisk_size());
} }
fprintf(stderr, "KERNEL_FMT [%s]\n", fmt2name[k_fmt]); fprintf(stderr, "KERNEL_FMT [%s]\n", fmt2name[k_fmt]);
@ -200,25 +205,25 @@ int boot_img::parse_image(uint8_t *head) {
} }
void boot_img::find_dtb() { void boot_img::find_dtb() {
for (uint32_t i = 0; i < hdr->kernel_size; ++i) { for (uint32_t i = 0; i < hdr->kernel_size(); ++i) {
auto fdt_hdr = reinterpret_cast<fdt_header *>(kernel + i); auto fdt_hdr = reinterpret_cast<fdt_header *>(kernel + i);
if (fdt32_to_cpu(fdt_hdr->magic) != FDT_MAGIC) if (fdt32_to_cpu(fdt_hdr->magic) != FDT_MAGIC)
continue; continue;
// Check that fdt_header.totalsize does not overflow kernel image size // Check that fdt_header.totalsize does not overflow kernel image size
uint32_t totalsize = fdt32_to_cpu(fdt_hdr->totalsize); uint32_t totalsize = fdt32_to_cpu(fdt_hdr->totalsize);
if (totalsize > hdr->kernel_size - i) { if (totalsize > hdr->kernel_size() - i) {
fprintf(stderr, "Invalid DTB detection at 0x%x: size (%u) > remaining (%u)\n", fprintf(stderr, "Invalid DTB detection at 0x%x: size (%u) > remaining (%u)\n",
i, totalsize, hdr->kernel_size - i); i, totalsize, hdr->kernel_size() - i);
continue; continue;
} }
// Check that fdt_header.off_dt_struct does not overflow kernel image size // Check that fdt_header.off_dt_struct does not overflow kernel image size
uint32_t off_dt_struct = fdt32_to_cpu(fdt_hdr->off_dt_struct); uint32_t off_dt_struct = fdt32_to_cpu(fdt_hdr->off_dt_struct);
if (off_dt_struct > hdr->kernel_size - i) { if (off_dt_struct > hdr->kernel_size() - i) {
fprintf(stderr, "Invalid DTB detection at 0x%x: " fprintf(stderr, "Invalid DTB detection at 0x%x: "
"struct offset (%u) > remaining (%u)\n", "struct offset (%u) > remaining (%u)\n",
i, off_dt_struct, hdr->kernel_size - i); i, off_dt_struct, hdr->kernel_size() - i);
continue; continue;
} }
@ -231,23 +236,23 @@ void boot_img::find_dtb() {
} }
kernel_dtb = kernel + i; kernel_dtb = kernel + i;
kernel_dt_size = hdr->kernel_size - i; kernel_dt_size = hdr->kernel_size() - i;
hdr->kernel_size = i; hdr->kernel_size() = i;
fprintf(stderr, "KERNEL_DTB [%u]\n", kernel_dt_size); fprintf(stderr, "KERNEL_DTB [%u]\n", kernel_dt_size);
break; break;
} }
} }
void boot_img::print_hdr() { void boot_img::print_hdr() {
fprintf(stderr, "HEADER_VER [%u]\n", hdr.header_version()); fprintf(stderr, "HEADER_VER [%u]\n", hdr->header_version());
fprintf(stderr, "KERNEL_SZ [%u]\n", hdr->kernel_size); fprintf(stderr, "KERNEL_SZ [%u]\n", hdr->kernel_size());
fprintf(stderr, "RAMDISK_SZ [%u]\n", hdr->ramdisk_size); fprintf(stderr, "RAMDISK_SZ [%u]\n", hdr->ramdisk_size());
fprintf(stderr, "SECOND_SZ [%u]\n", hdr->second_size); fprintf(stderr, "SECOND_SZ [%u]\n", hdr->second_size());
fprintf(stderr, "EXTRA_SZ [%u]\n", hdr.extra_size()); fprintf(stderr, "EXTRA_SZ [%u]\n", hdr->extra_size());
fprintf(stderr, "RECOV_DTBO_SZ [%u]\n", hdr.recovery_dtbo_size()); fprintf(stderr, "RECOV_DTBO_SZ [%u]\n", hdr->recovery_dtbo_size());
fprintf(stderr, "DTB [%u]\n", hdr.dtb_size()); fprintf(stderr, "DTB [%u]\n", hdr->dtb_size());
uint32_t ver = hdr.os_version(); uint32_t ver = hdr->os_version();
if (ver) { if (ver) {
int a,b,c,y,m = 0; int a,b,c,y,m = 0;
int version, patch_level; int version, patch_level;
@ -264,12 +269,12 @@ void boot_img::print_hdr() {
fprintf(stderr, "OS_PATCH_LEVEL [%d-%02d]\n", y, m); fprintf(stderr, "OS_PATCH_LEVEL [%d-%02d]\n", y, m);
} }
fprintf(stderr, "PAGESIZE [%u]\n", hdr.page_size()); fprintf(stderr, "PAGESIZE [%u]\n", hdr->page_size());
fprintf(stderr, "NAME [%s]\n", hdr.name()); fprintf(stderr, "NAME [%s]\n", hdr->name());
fprintf(stderr, "CMDLINE [%.512s%.1024s]\n", hdr.cmdline(), hdr.extra_cmdline()); fprintf(stderr, "CMDLINE [%.512s%.1024s]\n", hdr->cmdline(), hdr->extra_cmdline());
fprintf(stderr, "CHECKSUM ["); fprintf(stderr, "CHECKSUM [");
for (int i = 0; hdr.id()[i]; ++i) for (int i = 0; hdr->id()[i]; ++i)
fprintf(stderr, "%02x", hdr.id()[i]); fprintf(stderr, "%02x", hdr->id()[i]);
fprintf(stderr, "]\n"); fprintf(stderr, "]\n");
} }
@ -280,10 +285,10 @@ int unpack(const char *image, bool hdr) {
if (hdr) { if (hdr) {
FILE *fp = xfopen(HEADER_FILE, "w"); FILE *fp = xfopen(HEADER_FILE, "w");
fprintf(fp, "pagesize=%u\n", boot.hdr.page_size()); fprintf(fp, "pagesize=%u\n", boot.hdr->page_size());
fprintf(fp, "name=%s\n", boot.hdr.name()); fprintf(fp, "name=%s\n", boot.hdr->name());
fprintf(fp, "cmdline=%.512s%.1024s\n", boot.hdr.cmdline(), boot.hdr.extra_cmdline()); fprintf(fp, "cmdline=%.512s%.1024s\n", boot.hdr->cmdline(), boot.hdr->extra_cmdline());
uint32_t ver = boot.hdr.os_version(); uint32_t ver = boot.hdr->os_version();
if (ver) { if (ver) {
int a, b, c, y, m = 0; int a, b, c, y, m = 0;
int version, patch_level; int version, patch_level;
@ -305,11 +310,11 @@ int unpack(const char *image, bool hdr) {
// Dump kernel // Dump kernel
if (COMPRESSED(boot.k_fmt)) { if (COMPRESSED(boot.k_fmt)) {
fd = creat(KERNEL_FILE, 0644); fd = creat(KERNEL_FILE, 0644);
decompress(boot.k_fmt, fd, boot.kernel, boot.hdr->kernel_size); decompress(boot.k_fmt, fd, boot.kernel, boot.hdr->kernel_size());
close(fd); close(fd);
} else { } else {
fprintf(stderr, "Kernel is uncompressed or not a supported compressed type!\n"); fprintf(stderr, "Kernel is uncompressed or not a supported compressed type!\n");
dump(boot.kernel, boot.hdr->kernel_size, KERNEL_FILE); dump(boot.kernel, boot.hdr->kernel_size(), KERNEL_FILE);
} }
// Dump dtb // Dump dtb
@ -318,28 +323,30 @@ int unpack(const char *image, bool hdr) {
// Dump ramdisk // Dump ramdisk
if (COMPRESSED(boot.r_fmt)) { if (COMPRESSED(boot.r_fmt)) {
fd = creat(RAMDISK_FILE, 0644); fd = creat(RAMDISK_FILE, 0644);
decompress(boot.r_fmt, fd, boot.ramdisk, boot.hdr->ramdisk_size); decompress(boot.r_fmt, fd, boot.ramdisk, boot.hdr->ramdisk_size());
close(fd); close(fd);
} else { } else {
fprintf(stderr, "Ramdisk is uncompressed or not a supported compressed type!\n"); fprintf(stderr, "Ramdisk is uncompressed or not a supported compressed type!\n");
dump(boot.ramdisk, boot.hdr->ramdisk_size, RAMDISK_FILE); dump(boot.ramdisk, boot.hdr->ramdisk_size(), RAMDISK_FILE);
} }
// Dump second // Dump second
dump(boot.second, boot.hdr->second_size, SECOND_FILE); dump(boot.second, boot.hdr->second_size(), SECOND_FILE);
// Dump extra // Dump extra
dump(boot.extra, boot.hdr.extra_size(), EXTRA_FILE); dump(boot.extra, boot.hdr->extra_size(), EXTRA_FILE);
// Dump recovery_dtbo // Dump recovery_dtbo
dump(boot.recov_dtbo, boot.hdr.recovery_dtbo_size(), RECV_DTBO_FILE); dump(boot.recov_dtbo, boot.hdr->recovery_dtbo_size(), RECV_DTBO_FILE);
// Dump dtb // Dump dtb
dump(boot.dtb, boot.hdr.dtb_size(), DTB_FILE); dump(boot.dtb, boot.hdr->dtb_size(), DTB_FILE);
return ret; return ret;
} }
#define file_align() write_zero(fd, align_off(lseek(fd, 0, SEEK_CUR) - header_off, boot.hdr.page_size())) #define file_align() \
write_zero(fd, align_off(lseek(fd, 0, SEEK_CUR) - header_off, boot.hdr->page_size()))
void repack(const char* orig_image, const char* out_image, bool force_nocomp) { void repack(const char* orig_image, const char* out_image, bool force_nocomp) {
boot_img boot {}; boot_img boot {};
@ -349,10 +356,10 @@ void repack(const char* orig_image, const char* out_image, bool force_nocomp) {
boot.parse_file(orig_image); boot.parse_file(orig_image);
// Reset sizes // Reset sizes
boot.hdr->kernel_size = 0; boot.hdr->kernel_size() = 0;
boot.hdr->ramdisk_size = 0; boot.hdr->ramdisk_size() = 0;
boot.hdr->second_size = 0; boot.hdr->second_size() = 0;
boot.hdr.dtb_size() = 0; boot.hdr->dtb_size() = 0;
boot.kernel_dt_size = 0; boot.kernel_dt_size = 0;
fprintf(stderr, "Repack to boot image: [%s]\n", out_image); fprintf(stderr, "Repack to boot image: [%s]\n", out_image);
@ -376,30 +383,30 @@ void repack(const char* orig_image, const char* out_image, bool force_nocomp) {
if (access(HEADER_FILE, R_OK) == 0) { if (access(HEADER_FILE, R_OK) == 0) {
parse_prop_file(HEADER_FILE, [&](string_view key, string_view value) -> bool { parse_prop_file(HEADER_FILE, [&](string_view key, string_view value) -> bool {
if (key == "page_size") { if (key == "page_size") {
boot.hdr.page_size() = parse_int(value); boot.hdr->page_size() = parse_int(value);
} else if (key == "name") { } else if (key == "name") {
memset(boot.hdr.name(), 0, 16); memset(boot.hdr->name(), 0, 16);
memcpy(boot.hdr.name(), value.data(), value.length() > 15 ? 15 : value.length()); memcpy(boot.hdr->name(), value.data(), value.length() > 15 ? 15 : value.length());
} else if (key == "cmdline") { } else if (key == "cmdline") {
memset(boot.hdr.cmdline(), 0, 512); memset(boot.hdr->cmdline(), 0, 512);
memset(boot.hdr.extra_cmdline(), 0, 1024); memset(boot.hdr->extra_cmdline(), 0, 1024);
if (value.length() > 512) { if (value.length() > 512) {
memcpy(boot.hdr.cmdline(), value.data(), 512); memcpy(boot.hdr->cmdline(), value.data(), 512);
memcpy(boot.hdr.extra_cmdline(), &value[512], value.length() - 511); memcpy(boot.hdr->extra_cmdline(), &value[512], value.length() - 511);
} else { } else {
memcpy(boot.hdr.cmdline(), value.data(), value.length()); memcpy(boot.hdr->cmdline(), value.data(), value.length());
} }
} else if (key == "os_version") { } else if (key == "os_version") {
int patch_level = boot.hdr.os_version() & 0x7ff; int patch_level = boot.hdr->os_version() & 0x7ff;
int a, b, c; int a, b, c;
sscanf(value.data(), "%d.%d.%d", &a, &b, &c); sscanf(value.data(), "%d.%d.%d", &a, &b, &c);
boot.hdr.os_version() = (((a << 14) | (b << 7) | c) << 11) | patch_level; boot.hdr->os_version() = (((a << 14) | (b << 7) | c) << 11) | patch_level;
} else if (key == "os_patch_level") { } else if (key == "os_patch_level") {
int os_version = boot.hdr.os_version() >> 11; int os_version = boot.hdr->os_version() >> 11;
int y, m; int y, m;
sscanf(value.data(), "%d-%d", &y, &m); sscanf(value.data(), "%d-%d", &y, &m);
y -= 2000; y -= 2000;
boot.hdr.os_version() = (os_version << 11) | (y << 4) | m; boot.hdr->os_version() = (os_version << 11) | (y << 4) | m;
} }
return true; return true;
}); });
@ -407,7 +414,7 @@ void repack(const char* orig_image, const char* out_image, bool force_nocomp) {
// Skip a page for header // Skip a page for header
header_off = lseek(fd, 0, SEEK_CUR); header_off = lseek(fd, 0, SEEK_CUR);
write_zero(fd, boot.hdr.page_size()); write_zero(fd, boot.hdr->page_size());
// kernel // kernel
kernel_off = lseek(fd, 0, SEEK_CUR); kernel_off = lseek(fd, 0, SEEK_CUR);
@ -420,16 +427,16 @@ void repack(const char* orig_image, const char* out_image, bool force_nocomp) {
void *raw_buf; void *raw_buf;
mmap_ro(KERNEL_FILE, raw_buf, raw_size); mmap_ro(KERNEL_FILE, raw_buf, raw_size);
if (!COMPRESSED_ANY(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.k_fmt)) { if (!COMPRESSED_ANY(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.k_fmt)) {
boot.hdr->kernel_size = compress(boot.k_fmt, fd, raw_buf, raw_size); boot.hdr->kernel_size() = compress(boot.k_fmt, fd, raw_buf, raw_size);
} else { } else {
boot.hdr->kernel_size = write(fd, raw_buf, raw_size); boot.hdr->kernel_size() = write(fd, raw_buf, raw_size);
} }
munmap(raw_buf, raw_size); munmap(raw_buf, raw_size);
} }
// kernel dtb // kernel dtb
if (access(KER_DTB_FILE, R_OK) == 0) if (access(KER_DTB_FILE, R_OK) == 0)
boot.hdr->kernel_size += restore(KER_DTB_FILE, fd); boot.hdr->kernel_size() += restore(KER_DTB_FILE, fd);
file_align(); file_align();
// ramdisk // ramdisk
@ -443,9 +450,9 @@ void repack(const char* orig_image, const char* out_image, bool force_nocomp) {
void *raw_buf; void *raw_buf;
mmap_ro(RAMDISK_FILE, raw_buf, raw_size); mmap_ro(RAMDISK_FILE, raw_buf, raw_size);
if (!COMPRESSED_ANY(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.r_fmt) && !force_nocomp) { if (!COMPRESSED_ANY(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.r_fmt) && !force_nocomp) {
boot.hdr->ramdisk_size = compress(boot.r_fmt, fd, raw_buf, raw_size); boot.hdr->ramdisk_size() = compress(boot.r_fmt, fd, raw_buf, raw_size);
} else { } else {
boot.hdr->ramdisk_size = write(fd, raw_buf, raw_size); boot.hdr->ramdisk_size() = write(fd, raw_buf, raw_size);
} }
munmap(raw_buf, raw_size); munmap(raw_buf, raw_size);
file_align(); file_align();
@ -454,28 +461,28 @@ void repack(const char* orig_image, const char* out_image, bool force_nocomp) {
// second // second
second_off = lseek(fd, 0, SEEK_CUR); second_off = lseek(fd, 0, SEEK_CUR);
if (access(SECOND_FILE, R_OK) == 0) { if (access(SECOND_FILE, R_OK) == 0) {
boot.hdr->second_size = restore(SECOND_FILE, fd); boot.hdr->second_size() = restore(SECOND_FILE, fd);
file_align(); file_align();
} }
// extra // extra
extra_off = lseek(fd, 0, SEEK_CUR); extra_off = lseek(fd, 0, SEEK_CUR);
if (access(EXTRA_FILE, R_OK) == 0) { if (access(EXTRA_FILE, R_OK) == 0) {
boot.hdr.extra_size() = restore(EXTRA_FILE, fd); boot.hdr->extra_size() = restore(EXTRA_FILE, fd);
file_align(); file_align();
} }
// recovery_dtbo // recovery_dtbo
if (access(RECV_DTBO_FILE, R_OK) == 0) { if (access(RECV_DTBO_FILE, R_OK) == 0) {
boot.hdr.recovery_dtbo_offset() = lseek(fd, 0, SEEK_CUR); boot.hdr->recovery_dtbo_offset() = lseek(fd, 0, SEEK_CUR);
boot.hdr.recovery_dtbo_size() = restore(RECV_DTBO_FILE, fd); boot.hdr->recovery_dtbo_size() = restore(RECV_DTBO_FILE, fd);
file_align(); file_align();
} }
// dtb // dtb
dtb_off = lseek(fd, 0, SEEK_CUR); dtb_off = lseek(fd, 0, SEEK_CUR);
if (access(DTB_FILE, R_OK) == 0) { if (access(DTB_FILE, R_OK) == 0) {
boot.hdr.dtb_size() = restore(DTB_FILE, fd); boot.hdr->dtb_size() = restore(DTB_FILE, fd);
file_align(); file_align();
} }
@ -495,56 +502,56 @@ void repack(const char* orig_image, const char* out_image, bool force_nocomp) {
// MTK headers // MTK headers
if (boot.flags & MTK_KERNEL) { if (boot.flags & MTK_KERNEL) {
boot.k_hdr->size = boot.hdr->kernel_size; boot.k_hdr->size = boot.hdr->kernel_size();
boot.hdr->kernel_size += 512; boot.hdr->kernel_size() += 512;
memcpy(boot.map_addr + kernel_off, boot.k_hdr, sizeof(mtk_hdr)); memcpy(boot.map_addr + kernel_off, boot.k_hdr, sizeof(mtk_hdr));
} }
if (boot.flags & MTK_RAMDISK) { if (boot.flags & MTK_RAMDISK) {
boot.r_hdr->size = boot.hdr->ramdisk_size; boot.r_hdr->size = boot.hdr->ramdisk_size();
boot.hdr->ramdisk_size += 512; boot.hdr->ramdisk_size() += 512;
memcpy(boot.map_addr + ramdisk_off, boot.r_hdr, sizeof(mtk_hdr)); memcpy(boot.map_addr + ramdisk_off, boot.r_hdr, sizeof(mtk_hdr));
} }
// Update checksum // Update checksum
HASH_CTX ctx; HASH_CTX ctx;
(boot.flags & SHA256_FLAG) ? SHA256_init(&ctx) : SHA_init(&ctx); (boot.flags & SHA256_FLAG) ? SHA256_init(&ctx) : SHA_init(&ctx);
uint32_t size = boot.hdr->kernel_size; uint32_t size = boot.hdr->kernel_size();
HASH_update(&ctx, boot.map_addr + kernel_off, size); HASH_update(&ctx, boot.map_addr + kernel_off, size);
HASH_update(&ctx, &size, sizeof(size)); HASH_update(&ctx, &size, sizeof(size));
size = boot.hdr->ramdisk_size; size = boot.hdr->ramdisk_size();
HASH_update(&ctx, boot.map_addr + ramdisk_off, size); HASH_update(&ctx, boot.map_addr + ramdisk_off, size);
HASH_update(&ctx, &size, sizeof(size)); HASH_update(&ctx, &size, sizeof(size));
size = boot.hdr->second_size; size = boot.hdr->second_size();
HASH_update(&ctx, boot.map_addr + second_off, size); HASH_update(&ctx, boot.map_addr + second_off, size);
HASH_update(&ctx, &size, sizeof(size)); HASH_update(&ctx, &size, sizeof(size));
size = boot.hdr.extra_size(); size = boot.hdr->extra_size();
if (size) { if (size) {
HASH_update(&ctx, boot.map_addr + extra_off, size); HASH_update(&ctx, boot.map_addr + extra_off, size);
HASH_update(&ctx, &size, sizeof(size)); HASH_update(&ctx, &size, sizeof(size));
} }
if (boot.hdr.header_version()) { if (boot.hdr->header_version()) {
size = boot.hdr.recovery_dtbo_size(); size = boot.hdr->recovery_dtbo_size();
HASH_update(&ctx, boot.map_addr + boot.hdr.recovery_dtbo_offset(), size); HASH_update(&ctx, boot.map_addr + boot.hdr->recovery_dtbo_offset(), size);
HASH_update(&ctx, &size, sizeof(size)); HASH_update(&ctx, &size, sizeof(size));
size = boot.hdr.dtb_size(); size = boot.hdr->dtb_size();
if (size) { if (size) {
HASH_update(&ctx, boot.map_addr + dtb_off, size); HASH_update(&ctx, boot.map_addr + dtb_off, size);
HASH_update(&ctx, &size, sizeof(size)); HASH_update(&ctx, &size, sizeof(size));
} }
} }
memset(boot.hdr.id(), 0, 32); memset(boot.hdr->id(), 0, 32);
memcpy(boot.hdr.id(), HASH_final(&ctx), memcpy(boot.hdr->id(), HASH_final(&ctx),
(boot.flags & SHA256_FLAG) ? SHA256_DIGEST_SIZE : SHA_DIGEST_SIZE); (boot.flags & SHA256_FLAG) ? SHA256_DIGEST_SIZE : SHA_DIGEST_SIZE);
// Print new image info // Print new image info
boot.print_hdr(); boot.print_hdr();
// Try to fix the header // Try to fix the header
if (boot.hdr.header_version() && boot.hdr.header_size() == 0) if (boot.hdr->header_version() && boot.hdr->header_size() == 0)
boot.hdr.header_size() = sizeof(boot_img_hdr); boot.hdr->header_size() = sizeof(boot_img_hdr);
// Main header // Main header
memcpy(boot.map_addr + header_off, *boot.hdr, boot.hdr.hdr_size()); memcpy(boot.map_addr + header_off, **boot.hdr, boot.hdr->hdr_size());
if (boot.flags & DHTB_FLAG) { if (boot.flags & DHTB_FLAG) {
// DHTB header // DHTB header

View File

@ -1,6 +1,7 @@
#pragma once #pragma once
#include <stdint.h> #include <stdint.h>
#include <utility>
#include "format.h" #include "format.h"
struct boot_img_hdr_base { struct boot_img_hdr_base {
@ -55,7 +56,7 @@ struct boot_img_hdr_v2 : public boot_img_hdr_v1 {
uint64_t dtb_addr; /* physical load address for DTB image */ uint64_t dtb_addr; /* physical load address for DTB image */
} __attribute__((packed)); } __attribute__((packed));
// Default to hdr v1 // Default to hdr v2
typedef boot_img_hdr_v2 boot_img_hdr; typedef boot_img_hdr_v2 boot_img_hdr;
// Special Samsung header // Special Samsung header
@ -138,6 +139,135 @@ struct blob_hdr {
uint32_t version; /* 0x00000001 */ uint32_t version; /* 0x00000001 */
} __attribute__((packed)); } __attribute__((packed));
#define drct_var(name) \
auto &name() { return img_hdr->name; }
#define decl_var(name, len) \
virtual uint##len##_t &name() { j##len = 0; return j##len; }
#define decl_val(name, type) \
virtual type name() { return 0; }
struct dyn_img_hdr {
// Direct entries
drct_var(kernel_size)
drct_var(ramdisk_size)
drct_var(second_size)
// Standard entries
decl_var(page_size, 32)
decl_val(header_version, uint32_t)
decl_var(extra_size, 32)
decl_var(os_version, 32)
decl_val(name, char *)
decl_val(cmdline, char *)
decl_val(id, char *)
decl_val(extra_cmdline, char *)
// v1/v2 specific
decl_var(recovery_dtbo_size, 32)
decl_var(recovery_dtbo_offset, 64)
decl_var(header_size, 32)
decl_var(dtb_size, 32)
virtual ~dyn_img_hdr() {
free(raw);
}
virtual size_t hdr_size() = 0;
boot_img_hdr_base * const &operator* () const {
return img_hdr;
}
protected:
union {
/* Main header could be either AOSP or PXA,
* but both of them are base headers. */
boot_img_hdr_base *img_hdr; /* Common base header */
boot_img_hdr_v2 *v2_hdr; /* AOSP v2 header */
boot_img_hdr_pxa *hdr_pxa; /* Samsung PXA header */
void *raw; /* Raw pointer */
};
private:
// Junk for references
static uint32_t j32;
static uint64_t j64;
};
#undef drct_var
#undef decl_var
#undef decl_val
#define impl_val(name) \
decltype(std::declval<dyn_img_hdr>().name()) name() override { return hdr_pxa->name; }
struct dyn_img_pxa : public dyn_img_hdr {
impl_val(extra_size)
impl_val(page_size)
impl_val(name)
impl_val(cmdline)
impl_val(id)
impl_val(extra_cmdline)
dyn_img_pxa(void *ptr) {
raw = xmalloc(sizeof(boot_img_hdr_pxa));
memcpy(raw, ptr, sizeof(boot_img_hdr_pxa));
}
size_t hdr_size() override {
return sizeof(boot_img_hdr_pxa);
}
};
#undef impl_val
#define impl_val(name) \
decltype(std::declval<dyn_img_hdr>().name()) name() override { return v2_hdr->name; }
struct dyn_img_v0 : public dyn_img_hdr {
impl_val(page_size)
impl_val(extra_size)
impl_val(os_version)
impl_val(name)
impl_val(cmdline)
impl_val(id)
impl_val(extra_cmdline)
dyn_img_v0(void *ptr) {
raw = xmalloc(sizeof(boot_img_hdr_v2));
memcpy(raw, ptr, sizeof(boot_img_hdr_v2));
}
size_t hdr_size() override {
return sizeof(boot_img_hdr_v2);
}
};
struct dyn_img_v1 : public dyn_img_v0 {
impl_val(header_version)
impl_val(recovery_dtbo_size)
impl_val(recovery_dtbo_offset)
impl_val(header_size)
dyn_img_v1(void *ptr) : dyn_img_v0(ptr) {}
uint32_t &extra_size() override {
return dyn_img_hdr::extra_size();
}
};
struct dyn_img_v2 : public dyn_img_v1 {
impl_val(dtb_size)
dyn_img_v2(void *ptr) : dyn_img_v1(ptr) {}
};
#undef impl_val
// Flags // Flags
#define MTK_KERNEL 1 << 1 #define MTK_KERNEL 1 << 1
#define MTK_RAMDISK 1 << 2 #define MTK_RAMDISK 1 << 2
@ -150,95 +280,13 @@ struct blob_hdr {
#define NOOKHD_FLAG 1 << 9 #define NOOKHD_FLAG 1 << 9
#define ACCLAIM_FLAG 1 << 10 #define ACCLAIM_FLAG 1 << 10
struct dyn_img_hdr {
#define dyn_access(x) (pxa ? hdr_pxa->x : v2_hdr->x)
#define dyn_get(name, type) \
type name() const { return dyn_access(name); }
#define dyn_ref(name, type) \
type &name() { return dyn_access(name); }
#define v2_ref(name, type, alt) \
type &name() { if (pxa) { alt = 0; return alt; } return v2_hdr->name; }
dyn_ref(page_size, uint32_t);
dyn_get(name, char *);
dyn_get(cmdline, char *);
dyn_get(id, char *);
dyn_get(extra_cmdline, char *);
v2_ref(os_version, uint32_t, j32);
v2_ref(recovery_dtbo_size, uint32_t, j32);
v2_ref(recovery_dtbo_offset, uint64_t, j64);
v2_ref(header_size, uint32_t, j32);
v2_ref(dtb_size, uint32_t, j32);
dyn_img_hdr() : pxa(false), img_hdr(nullptr) {}
~dyn_img_hdr() {
if (pxa)
delete hdr_pxa;
else
delete v2_hdr;
}
uint32_t header_version() {
// There won't be v4 header any time soon...
// If larger than 4, assume this field will be treated as extra_size
return pxa || v2_hdr->header_version > 4 ? 0 : v2_hdr->header_version;
}
uint32_t &extra_size() {
// If header version > 0, we should treat this field as header_version
if (header_version()) {
j32 = 0;
return j32;
}
return dyn_access(extra_size);
}
size_t hdr_size() {
return pxa ? sizeof(boot_img_hdr_pxa) : sizeof(boot_img_hdr);
}
void set_hdr(boot_img_hdr *h) {
v2_hdr = h;
}
void set_hdr(boot_img_hdr_pxa *h) {
hdr_pxa = h;
pxa = true;
}
boot_img_hdr_base *operator-> () const {
return img_hdr;
};
boot_img_hdr_base * const &operator* () const {
return img_hdr;
}
private:
bool pxa;
union {
/* Main header could be either AOSP or PXA,
* but both of them is a base header.
* Same address can be interpreted in 3 ways */
boot_img_hdr_base *img_hdr; /* Common base header */
boot_img_hdr *v2_hdr; /* AOSP v2 header */
boot_img_hdr_pxa *hdr_pxa; /* Samsung PXA header */
};
static uint32_t j32;
static uint64_t j64;
};
struct boot_img { struct boot_img {
// Memory map of the whole image // Memory map of the whole image
uint8_t *map_addr; uint8_t *map_addr;
size_t map_size; size_t map_size;
// Headers // Headers
dyn_img_hdr hdr; /* Android image header */ dyn_img_hdr *hdr; /* Android image header */
mtk_hdr *k_hdr; /* MTK kernel header */ mtk_hdr *k_hdr; /* MTK kernel header */
mtk_hdr *r_hdr; /* MTK ramdisk header */ mtk_hdr *r_hdr; /* MTK ramdisk header */
blob_hdr *b_hdr; /* Tegra blob header */ blob_hdr *b_hdr; /* Tegra blob header */