WarpPI/Algebra Cheat Sheet.rtf

142 lines
6.2 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{\rtf1\ansi\ansicpg1252\deff0\nouicompat\deflang1040{\fonttbl{\f0\fnil\fcharset0 Cambria;}{\f1\fnil\fcharset0 Calibri;}{\f2\fnil\fcharset0 Consolas;}{\f3\fnil\fcharset1 Cambria Math;}{\f4\fnil\fcharset161 Consolas;}{\f5\fnil\fcharset1 Unifont;}{\f6\fnil\fcharset0 Unifont;}{\f7\fnil Unifont;}{\f8\fnil\fcharset161 Unifont;}}
{\colortbl ;\red165\green165\blue165;}
{\*\generator Riched20 10.0.15063}{\*\mmathPr\mmathFont3\mwrapIndent1440 }\viewkind4\uc1
\pard\sl276\slmult1\b\f0\fs96\lang16 Rules\fs40\par
Number Rules\b0\f1\fs22\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\f2 a*0=0\par
{\pntext\f2 2.\tab}1*a=a\par
{\pntext\f2 3.\tab}a-a=0\line -a+a=0\line a\'b1a=\{0, 2a\}\par
{\pntext\f2 4.\tab}a\'b1b=\{a+b, a-b\}\par
{\pntext\f2 5.\tab}a+0=a\line 0+a=a\line a-0=a\line 0-a=a\line a\'b10=a\line 0\'b1a=a\par
{\pntext\f2 6.\tab}-1*a=-a\par
{\pntext\f2 7.\tab}a+a=2a\par
\pard\sl276\slmult1\par
\b\f0\fs40 Variable Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs24\lang1040 ax+bx=(a+b)*x (a,b NUMBER; x VARIABLES)\par
{\pntext\f2 2.\tab}ax+x=(a+1)*x (a,b NUMBER; x VARIABLES)\par
{\pntext\f2 3.\tab}x+ax=(a+1)*x (a,b NUMBER; x VARIABLES)\par
\pard\sl276\slmult1\b\f0\fs40\lang16\par
Expand Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 -(a+b)=-a-b\line -(a-b)=-a+b\par
{\pntext\f2 2.\tab}\par
{\pntext\f2 3.\tab}\par
{\pntext\f2 4.\tab}\par
{\pntext\f2 5.\tab}-(-a)=a\par
\pard\sl276\slmult1\b\f0\fs40\par
Syntax Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\cf1\b0\f2\fs22 (\cf0 a*b\cf1 )\cf0 *c=a*\cf1 (\cf0 b*c\cf1 )\cf0\par
{\pntext\f2 2.\tab}a+\cf1 (\cf0 b+c\cf1 )\cf0 =\cf1 (\cf0 a+b\cf1 )\cf0 +c\par
\pard\sl276\slmult1\b\f0\fs40\par
Fractions Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 0/a=0\par
{\pntext\f2 2.\tab}a/1=a\par
{\pntext\f2 3.\tab}a/a=1\par
{\pntext\f2 4.\tab}(a/b)\super -1\nosupersub =b/a\par
{\pntext\f2 5.\tab}(a/b)\super -c\nosupersub =(b/a)\super c\nosupersub\par
{\pntext\f2 6.\tab}\par
{\pntext\f2 7.\tab}\par
{\pntext\f2 8.\tab}\par
{\pntext\f2 9.\tab}\par
{\pntext\f2 10.\tab}\par
{\pntext\f2 11.\tab}a / (b / c) = (a * c) / b\par
{\pntext\f2 12.\tab}(b / c) / a = b / (c * a)\par
{\pntext\f2 13.\tab}\par
{\pntext\f2 14.\tab}(a/b)*(c/d)=(a*c)/(b*d)\par
\pard\sl276\slmult1\b\f0\fs40\par
Absolute Rules\par
\b0\f2\fs22 empty\par
\b\f0\fs40\par
Exponent Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 1\super a\nosupersub =1\par
{\pntext\f2 2.\tab}a\super 1\nosupersub =a\par
{\pntext\f2 3.\tab}a\super 0\nosupersub =1\par
{\pntext\f2 4.\tab}(a*b)\super n\nosupersub =(a)\super n\nosupersub *(b)\super n\nosupersub\par
{\pntext\f2 5.\tab}\par
{\pntext\f2 6.\tab}\par
{\pntext\f2 7.\tab}\par
{\pntext\f2 8.\tab}a\super b+c\nosupersub =a\super b\nosupersub a\super c \cf1\ul\nosupersub only when b+c cannot be simplified\cf0\ulnone\par
{\pntext\f2 9.\tab}(a\super b\nosupersub )\super c\nosupersub =a\super b*c\nosupersub\par
{\pntext\f2 10.\tab}\par
{\pntext\f2 11.\tab}\par
{\pntext\f2 12.\tab}\par
{\pntext\f2 13.\tab}\par
{\pntext\f2 14.\tab}\par
{\pntext\f2 15.\tab}a*a=(a)\super 2\nosupersub\par
{\pntext\f2 16.\tab}a\super b\nosupersub *a\super c\nosupersub =a\super b+c\nosupersub\par
{\pntext\f2 17.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 x=x\super 1/a\nosupersub\par
{\pntext\f2 18.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b+c\super d\nosupersub =b\super 1/a\nosupersub +c\super d\nosupersub\line a\super b\nosupersub +\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub +c\super 1/d\nosupersub\par
{\pntext\f2 19.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b-c\super d\nosupersub =b\super 1/a\nosupersub -c\super d\nosupersub\line a\super b\nosupersub -\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub -c\super 1/d\nosupersub\par
{\pntext\f2 20.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b*c\super d\nosupersub =b\super 1/a\nosupersub *c\super d\nosupersub\line a\super b\nosupersub *\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub *c\super 1/d\nosupersub\par
{\pntext\f2 21.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b/c\super d\nosupersub =b\super 1/a\nosupersub /c\super d\nosupersub\line a\super b\nosupersub /\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub /c\super 1/d\nosupersub\line\par
\pard\sl276\slmult1\b\f0\fs40\par
Factor Rules\par
\b0\f2\fs22 empty\par
\b\f0\fs40\par
Factorial Rules\par
\b0\f2\fs22 empty\par
\b\f0\fs40\par
Log Rules\par
\b0\f2\fs22 empty\par
\b\f0\fs40\par
Undefined\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 0\super 0\nosupersub =undefined\par
{\pntext\f2 2.\tab}a/0=undefined\par
\pard\sl276\slmult1\b\f0\fs40\par
Complex Number Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 e\super i\f4\lang1032\'c8\nosupersub\f2\lang16 =cos(\f4\lang1032\'c8\f2\lang16 )*i*sin(\f4\lang1032\'c8\f2\lang16 )\par
\pard\sl276\slmult1\par
\par
\b\f0\fs96 Methods\fs40\par
Sum Method 1\b0\f1\fs22\par
\f2 3+3X+1 = 3X+4\par
\b\f0\fs40 Multiplication Method 1\b0\f1\fs22\par
\f2 X*3*X*2 = 6*X\super 2\nosupersub\par
\par
\b\f0\fs96 Characters\b0\par
\pard\f5\fs29\lang1040\u9398?\f6\tab SQUARE ROOT\par
\f3\u8730?\f6\lang1040\tab ROOT\f7\par
\f5\u9399?\f6\tab POWER\par
^\tab POWER\f2\fs22\lang16\par
\pard\sl276\slmult1\f5\fs29\lang1040\u9400?\f6\tab SIN\f7\par
\f5\u9401?\f6\tab COS\f7\par
\f5\u9402?\f6\tab TAN\f7\par
\f5\u9403?\f6\tab ARC SIN\f7\par
\f5\u9404?\f6\tab ARC COS\par
\f5\u9405?\f6\tab ARC TAN\par
\f8\lang1032\'f0\f6\lang1040\tab PI\b\f0\fs40\lang16\par
}