137 lines
5.9 KiB
Plaintext
137 lines
5.9 KiB
Plaintext
{\rtf1\ansi\ansicpg1252\deff0\nouicompat\deflang1040{\fonttbl{\f0\fnil\fcharset0 Cambria;}{\f1\fnil\fcharset0 Calibri;}{\f2\fnil\fcharset0 Consolas;}{\f3\fnil\fcharset1 Cambria Math;}{\f4\fnil\fcharset1 Unifont;}{\f5\fnil\fcharset0 Unifont;}{\f6\fnil Unifont;}{\f7\fnil\fcharset161 Unifont;}}
|
||
{\colortbl ;\red165\green165\blue165;}
|
||
{\*\generator Riched20 10.0.14393}{\*\mmathPr\mmathFont3\mwrapIndent1440 }\viewkind4\uc1
|
||
\pard\sl276\slmult1\b\f0\fs96\lang16 Rules\fs40\par
|
||
Number Rules\b0\f1\fs22\par
|
||
|
||
\pard
|
||
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
|
||
\fi-360\li720\sl276\slmult1\f2 a*0=0\par
|
||
{\pntext\f2 2.\tab}1*a=a\par
|
||
{\pntext\f2 3.\tab}a-a=0\line -a+a=0\line a\'b1a=\{0, 2a\}\par
|
||
{\pntext\f2 4.\tab}a\'b1b=\{a+b, a-b\}\par
|
||
{\pntext\f2 5.\tab}a+0=a\line 0+a=a\line a-0=a\line 0-a=a\line a\'b10=a\line 0\'b1a=a\par
|
||
{\pntext\f2 6.\tab}-1*a=-a\par
|
||
{\pntext\f2 7.\tab}a+a=2a\par
|
||
|
||
\pard\sl276\slmult1\par
|
||
\b\f0\fs40 Variable Rules\par
|
||
|
||
\pard
|
||
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
|
||
\fi-360\li720\sl276\slmult1\b0\f2\fs24\lang1040 ax+bx=(a+b)*x (a,b NUMBER; x VARIABLES)\par
|
||
{\pntext\f2 2.\tab}ax+x=(a+1)*x (a,b NUMBER; x VARIABLES)\par
|
||
{\pntext\f2 3.\tab}x+ax=(a+1)*x (a,b NUMBER; x VARIABLES)\par
|
||
|
||
\pard\sl276\slmult1\b\f0\fs40\lang16\par
|
||
Expand Rules\par
|
||
|
||
\pard
|
||
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
|
||
\fi-360\li720\sl276\slmult1\b0\f2\fs22 -(a+b)=-a-b\line -(a-b)=-a+b\par
|
||
{\pntext\f2 2.\tab}\par
|
||
{\pntext\f2 3.\tab}\par
|
||
{\pntext\f2 4.\tab}\par
|
||
{\pntext\f2 5.\tab}-(-a)=a\par
|
||
|
||
\pard\sl276\slmult1\b\f0\fs40\par
|
||
Syntax Rules\par
|
||
|
||
\pard
|
||
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
|
||
\fi-360\li720\sl276\slmult1\cf1\b0\f2\fs22 (\cf0 a*b\cf1 )\cf0 *c=a*\cf1 (\cf0 b*c\cf1 )\cf0\par
|
||
{\pntext\f2 2.\tab}a+\cf1 (\cf0 b+c\cf1 )\cf0 =\cf1 (\cf0 a+b\cf1 )\cf0 +c\par
|
||
|
||
\pard\sl276\slmult1\b\f0\fs40\par
|
||
Fractions Rules\par
|
||
|
||
\pard
|
||
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
|
||
\fi-360\li720\sl276\slmult1\b0\f2\fs22 0/a=0\par
|
||
{\pntext\f2 2.\tab}a/1=a\par
|
||
{\pntext\f2 3.\tab}a/a=1\par
|
||
{\pntext\f2 4.\tab}(a/b)\super -1\nosupersub =b/a\par
|
||
{\pntext\f2 5.\tab}(a/b)\super -c\nosupersub =(b/a)\super c\nosupersub\par
|
||
{\pntext\f2 6.\tab}\par
|
||
{\pntext\f2 7.\tab}\par
|
||
{\pntext\f2 8.\tab}\par
|
||
{\pntext\f2 9.\tab}\par
|
||
{\pntext\f2 10.\tab}\par
|
||
{\pntext\f2 11.\tab}a / (b / c) = (a * c) / b\par
|
||
{\pntext\f2 12.\tab}(b / c) / a = b / (c * a)\par
|
||
{\pntext\f2 13.\tab}\par
|
||
{\pntext\f2 14.\tab}(a/b)*(c/d)=(a*c)/(b*d)\par
|
||
|
||
\pard\sl276\slmult1\b\f0\fs40\par
|
||
Absolute Rules\par
|
||
\b0\f2\fs22 empty\par
|
||
\b\f0\fs40\par
|
||
Exponent Rules\par
|
||
|
||
\pard
|
||
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
|
||
\fi-360\li720\sl276\slmult1\b0\f2\fs22 1\super a\nosupersub =1\par
|
||
{\pntext\f2 2.\tab}a\super 1\nosupersub =a\par
|
||
{\pntext\f2 3.\tab}a\super 0\nosupersub =1\par
|
||
{\pntext\f2 4.\tab}(a*b)\super n\nosupersub =(a)\super n\nosupersub *(b)\super n\nosupersub\par
|
||
{\pntext\f2 5.\tab}\par
|
||
{\pntext\f2 6.\tab}\par
|
||
{\pntext\f2 7.\tab}\par
|
||
{\pntext\f2 8.\tab}a\super b+c\nosupersub =a\super b\nosupersub a\super c \cf1\ul\nosupersub only when b+c cannot be simplified\cf0\ulnone\par
|
||
{\pntext\f2 9.\tab}(a\super b\nosupersub )\super c\nosupersub =a\super b*c\nosupersub\par
|
||
{\pntext\f2 10.\tab}\par
|
||
{\pntext\f2 11.\tab}\par
|
||
{\pntext\f2 12.\tab}\par
|
||
{\pntext\f2 13.\tab}\par
|
||
{\pntext\f2 14.\tab}\par
|
||
{\pntext\f2 15.\tab}a*a=(a)\super 2\nosupersub\par
|
||
{\pntext\f2 16.\tab}a\super b\nosupersub *a\super c\nosupersub =a\super b+c\nosupersub\par
|
||
{\pntext\f2 17.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 x=x\super 1/a\nosupersub\par
|
||
{\pntext\f2 18.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b+c\super d\nosupersub =b\super 1/a\nosupersub +c\super d\nosupersub\line a\super b\nosupersub +\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub +c\super 1/d\nosupersub\par
|
||
{\pntext\f2 19.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b-c\super d\nosupersub =b\super 1/a\nosupersub -c\super d\nosupersub\line a\super b\nosupersub -\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub -c\super 1/d\nosupersub\par
|
||
{\pntext\f2 20.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b*c\super d\nosupersub =b\super 1/a\nosupersub *c\super d\nosupersub\line a\super b\nosupersub *\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub *c\super 1/d\nosupersub\par
|
||
{\pntext\f2 21.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b/c\super d\nosupersub =b\super 1/a\nosupersub /c\super d\nosupersub\line a\super b\nosupersub /\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub /c\super 1/d\nosupersub\line\par
|
||
|
||
\pard\sl276\slmult1\b\f0\fs40\par
|
||
Factor Rules\par
|
||
\b0\f2\fs22 empty\par
|
||
\b\f0\fs40\par
|
||
Factorial Rules\par
|
||
\b0\f2\fs22 empty\par
|
||
\b\f0\fs40\par
|
||
Log Rules\par
|
||
\b0\f2\fs22 empty\par
|
||
\b\f0\fs40\par
|
||
Undefined\par
|
||
|
||
\pard
|
||
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
|
||
\fi-360\li720\sl276\slmult1\b0\f2\fs22 0\super 0\nosupersub =undefined\par
|
||
{\pntext\f2 2.\tab}a/0=undefined\par
|
||
|
||
\pard\sl276\slmult1\b\f0\fs40\par
|
||
Complex Number Rules\par
|
||
\b0\f2\fs22 empty\par
|
||
\par
|
||
\b\f0\fs96 Methods\fs40\par
|
||
Sum Method 1\b0\f1\fs22\par
|
||
\f2 3+3X+1 = 3X+4\par
|
||
\b\f0\fs40 Multiplication Method 1\b0\f1\fs22\par
|
||
\f2 X*3*X*2 = 6*X\super 2\nosupersub\par
|
||
\par
|
||
\b\f0\fs96 Characters\b0\par
|
||
|
||
\pard\f4\fs29\lang1040\u9398?\f5\tab SQUARE ROOT\par
|
||
\f3\u8730?\f5\lang1040\tab ROOT\f6\par
|
||
\f4\u9399?\f5\tab POWER\par
|
||
^\tab POWER\f2\fs22\lang16\par
|
||
|
||
\pard\sl276\slmult1\f4\fs29\lang1040\u9400?\f5\tab SIN\f6\par
|
||
\f4\u9401?\f5\tab COS\f6\par
|
||
\f4\u9402?\f5\tab TAN\f6\par
|
||
\f4\u9403?\f5\tab ARC SIN\f6\par
|
||
\f4\u9404?\f5\tab ARC COS\par
|
||
\f4\u9405?\f5\tab ARC TAN\par
|
||
\f7\lang1032\'f0\f5\lang1040\tab PI\b\f0\fs40\lang16\par
|
||
}
|
||
|