Motivation:
There are cases where you want a buffer to be "constant."
Buffers are inherently mutable, but it's possible to block off write access to the buffer contents.
This doesn't make it completely safe to share the buffer across multiple threads, but it does catch most races that could occur.
Modification:
Add a method to Buf for toggling read-only mode.
When a buffer is read-only, the write accessors throw exceptions when called.
In the MemSegBuf, this is implemented by having separate read and write references to the underlying memory segment.
In a read-only buffer, the write reference is redirected to point to a closed memory segment, thus preventing all writes to the memory backing the buffer.
Result:
It is now possible to make buffers read-only.
Note, however, that it is also possible to toggle a read-only buffer back to writable.
We need that in order for buffer pools to be able to fully reset the state of a buffer, regardless of the buffer implementation.
Motivation:
The main use case with Buf.compact is in conjunction with ensureWritable.
It turns out we can get a simpler API, and faster methods, by combining those two operations, because it allows us to relax some guarantees and skip some steps in certain cases, which wouldn't be as neat or clean if they were two separate steps.
Modification:
Add a new Buf.ensureWritable method, which takes an allowCompaction argument.
In MemSegBuf, we can just delegate to compact() when applicable.
In CompositeBuf, we can sometimes get away with just reorganising the bufs array.
Result:
We can now do ensureWritable without allocating in some cases, and this can in particular make the operation faster for CompositeBuf.
Motivation:
Compaction makes more space available at the end of a buffer, by discarding bytes at the beginning that have already been processed.
Modification:
Add a copying compact method to Buf.
Result:
It is now possible to discard read bytes by calling `compact()`.
Motivation:
There are many use cases where other objects will have fields that are buffers.
Since buffers are reference counted, their life cycle needs to be managed carefully.
Modification:
Add the abstract BufHolder, and the concrete sub-class BufRef, as neat building blocks for building other classes that contain field references to buffers.
The behaviours of closed/sent buffers have also been specified in tests, and tightened up in the code.
Result:
It is now easier to create classes/objects that wrap buffers.
Motivation:
There are use cases that involve accumulating data into a buffer, then carving out prefix slices and sending them off on their own journey for further processing.
Modification:
Add a Buf.bifurcate API, that split a buffer, and its ownership, in two.
Internally, the API will inject and maintain an atomically reference counted Drop instance, so that the original memory segment is not released until all bifurcated parts are closed.
This works particularly well for composite buffers, where only the buffer (if any) wherein the bifurcation point lands, will actually have its memory split. A composite buffer can otherwise just crack its buffer array in two.
Result:
We now have a safe way of breaking the single ownership of some memory into multiple parts, that can be sent and owned independently.
Motivation:
Cursors are better than iterators in that they only need to check boundary conditions once per iteration, when processed in a loop.
This should make them easier for the compiler to optimise.
Modification:
Change the ByteIterator to a ByteCursor. The API is almost the same, but with a few subtle differences in semantics.
The primary difference is that the cursor movement and boundary condition checking and position movement happen at the same time, and do not need to occur when the values are fetched out of the cursor.
An iterator, on the other hand, needs to throw an exception if "next" is called too many times.
Result:
Simpler code, and hopefully faster code as well.
Motivation:
Composite buffers are uniquely positioned to be able to extend their underlying storage relatively cheaply.
This fact is relied upon in a couple of buffer use cases within Netty, that we wish to support.
Modification:
Add a static `extend` method to Allocator, so that the CompositeBuf class can remain internal.
The `extend` method inserts the extension buffer at the end of the composite buffer as if it had been included from the start.
This involves checking offsets and byte order invariants.
We also require that the composite buffer be in an owned state.
Result:
It's now possible to extend a composite buffer with a specific buffer, after the composite buffer has been created.
Motivation:
When a build fails, it's desirable to have the build artifacts available
so the build failure can be inspected, investigated and hopefully fixed.
Modification:
Change the Makefile and CI workflow such that the build artifacts are
captured and uploaded when the build fails.
Result:
A "target.zip" file is now available for download on failed GitHub
Actions builds.