netty5/codec-http2/src/main/java/io/netty/handler/codec/http2/WeightedFairQueueByteDistributor.java

796 lines
36 KiB
Java
Raw Normal View History

/*
* Copyright 2015 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License, version 2.0 (the
* "License"); you may not use this file except in compliance with the License. You may obtain a
* copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package io.netty.handler.codec.http2;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
import io.netty.util.collection.IntCollections;
import io.netty.util.collection.IntObjectHashMap;
import io.netty.util.collection.IntObjectMap;
import io.netty.util.internal.DefaultPriorityQueue;
import io.netty.util.internal.EmptyPriorityQueue;
import io.netty.util.internal.MathUtil;
import io.netty.util.internal.PriorityQueue;
import io.netty.util.internal.PriorityQueueNode;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
import io.netty.util.internal.SystemPropertyUtil;
import io.netty.util.internal.UnstableApi;
import java.io.Serializable;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
import java.util.ArrayList;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import static io.netty.handler.codec.http2.Http2CodecUtil.CONNECTION_STREAM_ID;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
import static io.netty.handler.codec.http2.Http2CodecUtil.DEFAULT_MIN_ALLOCATION_CHUNK;
import static io.netty.handler.codec.http2.Http2CodecUtil.DEFAULT_PRIORITY_WEIGHT;
import static io.netty.handler.codec.http2.Http2CodecUtil.streamableBytes;
import static io.netty.handler.codec.http2.Http2Error.INTERNAL_ERROR;
import static io.netty.handler.codec.http2.Http2Exception.connectionError;
import static io.netty.util.internal.ObjectUtil.checkPositive;
import static io.netty.util.internal.ObjectUtil.checkPositiveOrZero;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
import static java.lang.Integer.MAX_VALUE;
import static java.lang.Math.max;
import static java.lang.Math.min;
/**
* A {@link StreamByteDistributor} that is sensitive to stream priority and uses
* <a href="https://en.wikipedia.org/wiki/Weighted_fair_queueing">Weighted Fair Queueing</a> approach for distributing
* bytes.
* <p>
* Inspiration for this distributor was taken from Linux's
* <a href="https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt">Completely Fair Scheduler</a>
* to model the distribution of bytes to simulate an "ideal multi-tasking CPU", but in this case we are simulating
* an "ideal multi-tasking NIC".
* <p>
* Each write operation will use the {@link #allocationQuantum(int)} to know how many more bytes should be allocated
* relative to the next stream which wants to write. This is to balance fairness while also considering goodput.
*/
@UnstableApi
public final class WeightedFairQueueByteDistributor implements StreamByteDistributor {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
/**
* The initial size of the children map is chosen to be conservative on initial memory allocations under
* the assumption that most streams will have a small number of children. This choice may be
* sub-optimal if when children are present there are many children (i.e. a web page which has many
* dependencies to load).
*
* Visible only for testing!
*/
static final int INITIAL_CHILDREN_MAP_SIZE =
max(1, SystemPropertyUtil.getInt("io.netty.http2.childrenMapSize", 2));
/**
* FireFox currently uses 5 streams to establish QoS classes.
*/
private static final int DEFAULT_MAX_STATE_ONLY_SIZE = 5;
private final Http2Connection.PropertyKey stateKey;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
/**
* If there is no Http2Stream object, but we still persist priority information then this is where the state will
* reside.
*/
private final IntObjectMap<State> stateOnlyMap;
/**
* This queue will hold streams that are not active and provides the capability to retain priority for streams which
* have no {@link Http2Stream} object. See {@link StateOnlyComparator} for the priority comparator.
*/
private final PriorityQueue<State> stateOnlyRemovalQueue;
private final Http2Connection connection;
private final State connectionState;
/**
* The minimum number of bytes that we will attempt to allocate to a stream. This is to
* help improve goodput on a per-stream basis.
*/
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
private int allocationQuantum = DEFAULT_MIN_ALLOCATION_CHUNK;
private final int maxStateOnlySize;
public WeightedFairQueueByteDistributor(Http2Connection connection) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
this(connection, DEFAULT_MAX_STATE_ONLY_SIZE);
}
public WeightedFairQueueByteDistributor(Http2Connection connection, int maxStateOnlySize) {
checkPositiveOrZero(maxStateOnlySize, "maxStateOnlySize");
if (maxStateOnlySize == 0) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
stateOnlyMap = IntCollections.emptyMap();
stateOnlyRemovalQueue = EmptyPriorityQueue.instance();
} else {
stateOnlyMap = new IntObjectHashMap<State>(maxStateOnlySize);
// +2 because we may exceed the limit by 2 if a new dependency has no associated Http2Stream object. We need
// to create the State objects to put them into the dependency tree, which then impacts priority.
stateOnlyRemovalQueue = new DefaultPriorityQueue<State>(StateOnlyComparator.INSTANCE, maxStateOnlySize + 2);
}
this.maxStateOnlySize = maxStateOnlySize;
this.connection = connection;
stateKey = connection.newKey();
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
final Http2Stream connectionStream = connection.connectionStream();
connectionStream.setProperty(stateKey, connectionState = new State(connectionStream, 16));
// Register for notification of new streams.
connection.addListener(new Http2ConnectionAdapter() {
@Override
public void onStreamAdded(Http2Stream stream) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
State state = stateOnlyMap.remove(stream.id());
if (state == null) {
state = new State(stream);
// Only the stream which was just added will change parents. So we only need an array of size 1.
List<ParentChangedEvent> events = new ArrayList<ParentChangedEvent>(1);
connectionState.takeChild(state, false, events);
notifyParentChanged(events);
} else {
stateOnlyRemovalQueue.removeTyped(state);
state.stream = stream;
}
switch (stream.state()) {
case RESERVED_REMOTE:
case RESERVED_LOCAL:
state.setStreamReservedOrActivated();
// wasStreamReservedOrActivated is part of the comparator for stateOnlyRemovalQueue there is no
// need to reprioritize here because it will not be in stateOnlyRemovalQueue.
break;
default:
break;
}
stream.setProperty(stateKey, state);
}
@Override
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
public void onStreamActive(Http2Stream stream) {
state(stream).setStreamReservedOrActivated();
// wasStreamReservedOrActivated is part of the comparator for stateOnlyRemovalQueue there is no need to
// reprioritize here because it will not be in stateOnlyRemovalQueue.
}
@Override
public void onStreamClosed(Http2Stream stream) {
state(stream).close();
}
@Override
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
public void onStreamRemoved(Http2Stream stream) {
// The stream has been removed from the connection. We can no longer rely on the stream's property
// storage to track the State. If we have room, and the precedence of the stream is sufficient, we
// should retain the State in the stateOnlyMap.
State state = state(stream);
// Typically the stream is set to null when the stream is closed because it is no longer needed to write
// data. However if the stream was not activated it may not be closed (reserved streams) so we ensure
// the stream reference is set to null to avoid retaining a reference longer than necessary.
state.stream = null;
if (WeightedFairQueueByteDistributor.this.maxStateOnlySize == 0) {
state.parent.removeChild(state);
return;
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
if (stateOnlyRemovalQueue.size() == WeightedFairQueueByteDistributor.this.maxStateOnlySize) {
State stateToRemove = stateOnlyRemovalQueue.peek();
if (StateOnlyComparator.INSTANCE.compare(stateToRemove, state) >= 0) {
// The "lowest priority" stream is a "higher priority" than the stream being removed, so we
// just discard the state.
state.parent.removeChild(state);
return;
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
stateOnlyRemovalQueue.poll();
stateToRemove.parent.removeChild(stateToRemove);
stateOnlyMap.remove(stateToRemove.streamId);
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
stateOnlyRemovalQueue.add(state);
stateOnlyMap.put(state.streamId, state);
}
});
}
@Override
public void updateStreamableBytes(StreamState state) {
state(state.stream()).updateStreamableBytes(streamableBytes(state),
state.hasFrame() && state.windowSize() >= 0);
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
@Override
public void updateDependencyTree(int childStreamId, int parentStreamId, short weight, boolean exclusive) {
State state = state(childStreamId);
if (state == null) {
// If there is no State object that means there is no Http2Stream object and we would have to keep the
// State object in the stateOnlyMap and stateOnlyRemovalQueue. However if maxStateOnlySize is 0 this means
// stateOnlyMap and stateOnlyRemovalQueue are empty collections and cannot be modified so we drop the State.
if (maxStateOnlySize == 0) {
return;
}
state = new State(childStreamId);
stateOnlyRemovalQueue.add(state);
stateOnlyMap.put(childStreamId, state);
}
State newParent = state(parentStreamId);
if (newParent == null) {
// If there is no State object that means there is no Http2Stream object and we would have to keep the
// State object in the stateOnlyMap and stateOnlyRemovalQueue. However if maxStateOnlySize is 0 this means
// stateOnlyMap and stateOnlyRemovalQueue are empty collections and cannot be modified so we drop the State.
if (maxStateOnlySize == 0) {
return;
}
newParent = new State(parentStreamId);
stateOnlyRemovalQueue.add(newParent);
stateOnlyMap.put(parentStreamId, newParent);
// Only the stream which was just added will change parents. So we only need an array of size 1.
List<ParentChangedEvent> events = new ArrayList<ParentChangedEvent>(1);
connectionState.takeChild(newParent, false, events);
notifyParentChanged(events);
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
}
// if activeCountForTree == 0 then it will not be in its parent's pseudoTimeQueue and thus should not be counted
// toward parent.totalQueuedWeights.
if (state.activeCountForTree != 0 && state.parent != null) {
state.parent.totalQueuedWeights += weight - state.weight;
}
state.weight = weight;
if (newParent != state.parent || (exclusive && newParent.children.size() != 1)) {
final List<ParentChangedEvent> events;
if (newParent.isDescendantOf(state)) {
events = new ArrayList<ParentChangedEvent>(2 + (exclusive ? newParent.children.size() : 0));
state.parent.takeChild(newParent, false, events);
} else {
events = new ArrayList<ParentChangedEvent>(1 + (exclusive ? newParent.children.size() : 0));
}
newParent.takeChild(state, exclusive, events);
notifyParentChanged(events);
}
// The location in the dependency tree impacts the priority in the stateOnlyRemovalQueue map. If we created new
// State objects we must check if we exceeded the limit after we insert into the dependency tree to ensure the
// stateOnlyRemovalQueue has been updated.
while (stateOnlyRemovalQueue.size() > maxStateOnlySize) {
State stateToRemove = stateOnlyRemovalQueue.poll();
stateToRemove.parent.removeChild(stateToRemove);
stateOnlyMap.remove(stateToRemove.streamId);
}
}
@Override
public boolean distribute(int maxBytes, Writer writer) throws Http2Exception {
// As long as there is some active frame we should write at least 1 time.
if (connectionState.activeCountForTree == 0) {
return false;
}
// The goal is to write until we write all the allocated bytes or are no longer making progress.
// We still attempt to write even after the number of allocated bytes has been exhausted to allow empty frames
// to be sent. Making progress means the active streams rooted at the connection stream has changed.
int oldIsActiveCountForTree;
do {
oldIsActiveCountForTree = connectionState.activeCountForTree;
// connectionState will never be active, so go right to its children.
maxBytes -= distributeToChildren(maxBytes, writer, connectionState);
} while (connectionState.activeCountForTree != 0 &&
(maxBytes > 0 || oldIsActiveCountForTree != connectionState.activeCountForTree));
return connectionState.activeCountForTree != 0;
}
/**
* Sets the amount of bytes that will be allocated to each stream. Defaults to 1KiB.
* @param allocationQuantum the amount of bytes that will be allocated to each stream. Must be &gt; 0.
*/
public void allocationQuantum(int allocationQuantum) {
checkPositive(allocationQuantum, "allocationQuantum");
this.allocationQuantum = allocationQuantum;
}
private int distribute(int maxBytes, Writer writer, State state) throws Http2Exception {
if (state.isActive()) {
int nsent = min(maxBytes, state.streamableBytes);
state.write(nsent, writer);
if (nsent == 0 && maxBytes != 0) {
// If a stream sends zero bytes, then we gave it a chance to write empty frames and it is now
// considered inactive until the next call to updateStreamableBytes. This allows descendant streams to
// be allocated bytes when the parent stream can't utilize them. This may be as a result of the
// stream's flow control window being 0.
state.updateStreamableBytes(state.streamableBytes, false);
}
return nsent;
}
return distributeToChildren(maxBytes, writer, state);
}
/**
* It is a pre-condition that {@code state.poll()} returns a non-{@code null} value. This is a result of the way
* the allocation algorithm is structured and can be explained in the following cases:
* <h3>For the recursive case</h3>
* If a stream has no children (in the allocation tree) than that node must be active or it will not be in the
* allocation tree. If a node is active then it will not delegate to children and recursion ends.
* <h3>For the initial case</h3>
* We check connectionState.activeCountForTree == 0 before any allocation is done. So if the connection stream
* has no active children we don't get into this method.
*/
private int distributeToChildren(int maxBytes, Writer writer, State state) throws Http2Exception {
long oldTotalQueuedWeights = state.totalQueuedWeights;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
State childState = state.pollPseudoTimeQueue();
State nextChildState = state.peekPseudoTimeQueue();
childState.setDistributing();
try {
assert nextChildState == null || nextChildState.pseudoTimeToWrite >= childState.pseudoTimeToWrite :
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
"nextChildState[" + nextChildState.streamId + "].pseudoTime(" + nextChildState.pseudoTimeToWrite +
") < " + " childState[" + childState.streamId + "].pseudoTime(" + childState.pseudoTimeToWrite + ")";
int nsent = distribute(nextChildState == null ? maxBytes :
min(maxBytes, (int) min((nextChildState.pseudoTimeToWrite - childState.pseudoTimeToWrite) *
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
childState.weight / oldTotalQueuedWeights + allocationQuantum, MAX_VALUE)
),
writer,
childState);
state.pseudoTime += nsent;
childState.updatePseudoTime(state, nsent, oldTotalQueuedWeights);
return nsent;
} finally {
childState.unsetDistributing();
// Do in finally to ensure the internal flags is not corrupted if an exception is thrown.
// The offer operation is delayed until we unroll up the recursive stack, so we don't have to remove from
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
// the priority pseudoTimeQueue due to a write operation.
if (childState.activeCountForTree != 0) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
state.offerPseudoTimeQueue(childState);
}
}
}
private State state(Http2Stream stream) {
return stream.getProperty(stateKey);
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
private State state(int streamId) {
Http2Stream stream = connection.stream(streamId);
return stream != null ? state(stream) : stateOnlyMap.get(streamId);
}
/**
* For testing only!
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
*/
boolean isChild(int childId, int parentId, short weight) {
State parent = state(parentId);
State child;
return parent.children.containsKey(childId) &&
(child = state(childId)).parent == parent && child.weight == weight;
}
/**
* For testing only!
*/
int numChildren(int streamId) {
State state = state(streamId);
return state == null ? 0 : state.children.size();
}
/**
* Notify all listeners of the priority tree change events (in ascending order)
* @param events The events (top down order) which have changed
*/
void notifyParentChanged(List<ParentChangedEvent> events) {
for (int i = 0; i < events.size(); ++i) {
ParentChangedEvent event = events.get(i);
stateOnlyRemovalQueue.priorityChanged(event.state);
if (event.state.parent != null && event.state.activeCountForTree != 0) {
event.state.parent.offerAndInitializePseudoTime(event.state);
event.state.parent.activeCountChangeForTree(event.state.activeCountForTree);
}
}
}
/**
* A comparator for {@link State} which has no associated {@link Http2Stream} object. The general precedence is:
* <ul>
* <li>Was a stream activated or reserved (streams only used for priority are higher priority)</li>
* <li>Depth in the priority tree (closer to root is higher priority></li>
* <li>Stream ID (higher stream ID is higher priority - used for tie breaker)</li>
* </ul>
*/
private static final class StateOnlyComparator implements Comparator<State>, Serializable {
private static final long serialVersionUID = -4806936913002105966L;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
static final StateOnlyComparator INSTANCE = new StateOnlyComparator();
private StateOnlyComparator() {
}
@Override
public int compare(State o1, State o2) {
// "priority only streams" (which have not been activated) are higher priority than streams used for data.
boolean o1Actived = o1.wasStreamReservedOrActivated();
if (o1Actived != o2.wasStreamReservedOrActivated()) {
return o1Actived ? -1 : 1;
}
// Numerically greater depth is higher priority.
int x = o2.dependencyTreeDepth - o1.dependencyTreeDepth;
// I also considered tracking the number of streams which are "activated" (eligible transfer data) at each
// subtree. This would require a traversal from each node to the root on dependency tree structural changes,
// and then it would require a re-prioritization at each of these nodes (instead of just the nodes where the
// direct parent changed). The costs of this are judged to be relatively high compared to the nominal
// benefit it provides to the heuristic. Instead folks should just increase maxStateOnlySize.
// Last resort is to give larger stream ids more priority.
return x != 0 ? x : o1.streamId - o2.streamId;
}
}
private static final class StatePseudoTimeComparator implements Comparator<State>, Serializable {
private static final long serialVersionUID = -1437548640227161828L;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
static final StatePseudoTimeComparator INSTANCE = new StatePseudoTimeComparator();
private StatePseudoTimeComparator() {
}
@Override
public int compare(State o1, State o2) {
return MathUtil.compare(o1.pseudoTimeToWrite, o2.pseudoTimeToWrite);
}
}
/**
* The remote flow control state for a single stream.
*/
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
private final class State implements PriorityQueueNode {
private static final byte STATE_IS_ACTIVE = 0x1;
private static final byte STATE_IS_DISTRIBUTING = 0x2;
private static final byte STATE_STREAM_ACTIVATED = 0x4;
/**
* Maybe {@code null} if the stream if the stream is not active.
*/
Http2Stream stream;
State parent;
IntObjectMap<State> children = IntCollections.emptyMap();
private final PriorityQueue<State> pseudoTimeQueue;
final int streamId;
int streamableBytes;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
int dependencyTreeDepth;
/**
* Count of nodes rooted at this sub tree with {@link #isActive()} equal to {@code true}.
*/
int activeCountForTree;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
private int pseudoTimeQueueIndex = INDEX_NOT_IN_QUEUE;
private int stateOnlyQueueIndex = INDEX_NOT_IN_QUEUE;
/**
* An estimate of when this node should be given the opportunity to write data.
*/
long pseudoTimeToWrite;
/**
* A pseudo time maintained for immediate children to base their {@link #pseudoTimeToWrite} off of.
*/
long pseudoTime;
long totalQueuedWeights;
private byte flags;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
short weight = DEFAULT_PRIORITY_WEIGHT;
State(int streamId) {
this(streamId, null, 0);
}
State(Http2Stream stream) {
this(stream, 0);
}
State(Http2Stream stream, int initialSize) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
this(stream.id(), stream, initialSize);
}
State(int streamId, Http2Stream stream, int initialSize) {
this.stream = stream;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
this.streamId = streamId;
pseudoTimeQueue = new DefaultPriorityQueue<State>(StatePseudoTimeComparator.INSTANCE, initialSize);
}
boolean isDescendantOf(State state) {
State next = parent;
while (next != null) {
if (next == state) {
return true;
}
next = next.parent;
}
return false;
}
void takeChild(State child, boolean exclusive, List<ParentChangedEvent> events) {
takeChild(null, child, exclusive, events);
}
/**
* Adds a child to this priority. If exclusive is set, any children of this node are moved to being dependent on
* the child.
*/
void takeChild(Iterator<IntObjectMap.PrimitiveEntry<State>> childItr, State child, boolean exclusive,
List<ParentChangedEvent> events) {
State oldParent = child.parent;
if (oldParent != this) {
events.add(new ParentChangedEvent(child, oldParent));
child.setParent(this);
// If the childItr is not null we are iterating over the oldParent.children collection and should
// use the iterator to remove from the collection to avoid concurrent modification. Otherwise it is
// assumed we are not iterating over this collection and it is safe to call remove directly.
if (childItr != null) {
childItr.remove();
} else if (oldParent != null) {
oldParent.children.remove(child.streamId);
}
// Lazily initialize the children to save object allocations.
initChildrenIfEmpty();
final State oldChild = children.put(child.streamId, child);
assert oldChild == null : "A stream with the same stream ID was already in the child map.";
}
if (exclusive && !children.isEmpty()) {
// If it was requested that this child be the exclusive dependency of this node,
// move any previous children to the child node, becoming grand children of this node.
Iterator<IntObjectMap.PrimitiveEntry<State>> itr = removeAllChildrenExcept(child).entries().iterator();
while (itr.hasNext()) {
child.takeChild(itr, itr.next().value(), false, events);
}
}
}
/**
* Removes the child priority and moves any of its dependencies to being direct dependencies on this node.
*/
void removeChild(State child) {
if (children.remove(child.streamId) != null) {
List<ParentChangedEvent> events = new ArrayList<ParentChangedEvent>(1 + child.children.size());
events.add(new ParentChangedEvent(child, child.parent));
child.setParent(null);
// Move up any grand children to be directly dependent on this node.
Iterator<IntObjectMap.PrimitiveEntry<State>> itr = child.children.entries().iterator();
while (itr.hasNext()) {
takeChild(itr, itr.next().value(), false, events);
}
notifyParentChanged(events);
}
}
/**
* Remove all children with the exception of {@code streamToRetain}.
* This method is intended to be used to support an exclusive priority dependency operation.
* @return The map of children prior to this operation, excluding {@code streamToRetain} if present.
*/
private IntObjectMap<State> removeAllChildrenExcept(State stateToRetain) {
stateToRetain = children.remove(stateToRetain.streamId);
IntObjectMap<State> prevChildren = children;
// This map should be re-initialized in anticipation for the 1 exclusive child which will be added.
// It will either be added directly in this method, or after this method is called...but it will be added.
initChildren();
if (stateToRetain != null) {
children.put(stateToRetain.streamId, stateToRetain);
}
return prevChildren;
}
private void setParent(State newParent) {
// if activeCountForTree == 0 then it will not be in its parent's pseudoTimeQueue.
if (activeCountForTree != 0 && parent != null) {
parent.removePseudoTimeQueue(this);
parent.activeCountChangeForTree(-activeCountForTree);
}
parent = newParent;
// Use MAX_VALUE if no parent because lower depth is considered higher priority by StateOnlyComparator.
dependencyTreeDepth = newParent == null ? MAX_VALUE : newParent.dependencyTreeDepth + 1;
}
private void initChildrenIfEmpty() {
if (children == IntCollections.<State>emptyMap()) {
initChildren();
}
}
private void initChildren() {
children = new IntObjectHashMap<State>(INITIAL_CHILDREN_MAP_SIZE);
}
void write(int numBytes, Writer writer) throws Http2Exception {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
assert stream != null;
try {
writer.write(stream, numBytes);
} catch (Throwable t) {
throw connectionError(INTERNAL_ERROR, t, "byte distribution write error");
}
}
void activeCountChangeForTree(int increment) {
assert activeCountForTree + increment >= 0;
activeCountForTree += increment;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
if (parent != null) {
assert activeCountForTree != increment ||
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
pseudoTimeQueueIndex == INDEX_NOT_IN_QUEUE ||
parent.pseudoTimeQueue.containsTyped(this) :
"State[" + streamId + "].activeCountForTree changed from 0 to " + increment + " is in a " +
"pseudoTimeQueue, but not in parent[ " + parent.streamId + "]'s pseudoTimeQueue";
if (activeCountForTree == 0) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
parent.removePseudoTimeQueue(this);
} else if (activeCountForTree == increment && !isDistributing()) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
// If frame count was 0 but is now not, and this node is not already in a pseudoTimeQueue (assumed
// to be pState's pseudoTimeQueue) then enqueue it. If this State object is being processed the
// pseudoTime for this node should not be adjusted, and the node will be added back to the
// pseudoTimeQueue/tree structure after it is done being processed. This may happen if the
// activeCountForTree == 0 (a node which can't stream anything and is blocked) is at/near root of
// the tree, and is popped off the pseudoTimeQueue during processing, and then put back on the
// pseudoTimeQueue because a child changes position in the priority tree (or is closed because it is
// not blocked and finished writing all data).
parent.offerAndInitializePseudoTime(this);
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
parent.activeCountChangeForTree(increment);
}
}
void updateStreamableBytes(int newStreamableBytes, boolean isActive) {
if (isActive() != isActive) {
if (isActive) {
activeCountChangeForTree(1);
setActive();
} else {
activeCountChangeForTree(-1);
unsetActive();
}
}
streamableBytes = newStreamableBytes;
}
/**
* Assumes the parents {@link #totalQueuedWeights} includes this node's weight.
*/
void updatePseudoTime(State parentState, int nsent, long totalQueuedWeights) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
assert streamId != CONNECTION_STREAM_ID && nsent >= 0;
// If the current pseudoTimeToSend is greater than parentState.pseudoTime then we previously over accounted
// and should use parentState.pseudoTime.
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
pseudoTimeToWrite = min(pseudoTimeToWrite, parentState.pseudoTime) + nsent * totalQueuedWeights / weight;
}
/**
* The concept of pseudoTime can be influenced by priority tree manipulations or if a stream goes from "active"
* to "non-active". This method accounts for that by initializing the {@link #pseudoTimeToWrite} for
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
* {@code state} to {@link #pseudoTime} of this node and then calls {@link #offerPseudoTimeQueue(State)}.
*/
void offerAndInitializePseudoTime(State state) {
state.pseudoTimeToWrite = pseudoTime;
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
offerPseudoTimeQueue(state);
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
void offerPseudoTimeQueue(State state) {
pseudoTimeQueue.offer(state);
totalQueuedWeights += state.weight;
}
/**
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
* Must only be called if the pseudoTimeQueue is non-empty!
*/
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
State pollPseudoTimeQueue() {
State state = pseudoTimeQueue.poll();
// This method is only ever called if the pseudoTimeQueue is non-empty.
totalQueuedWeights -= state.weight;
return state;
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
void removePseudoTimeQueue(State state) {
if (pseudoTimeQueue.removeTyped(state)) {
totalQueuedWeights -= state.weight;
}
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
State peekPseudoTimeQueue() {
return pseudoTimeQueue.peek();
}
void close() {
updateStreamableBytes(0, false);
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
stream = null;
}
boolean wasStreamReservedOrActivated() {
return (flags & STATE_STREAM_ACTIVATED) != 0;
}
void setStreamReservedOrActivated() {
flags |= STATE_STREAM_ACTIVATED;
}
boolean isActive() {
return (flags & STATE_IS_ACTIVE) != 0;
}
private void setActive() {
flags |= STATE_IS_ACTIVE;
}
private void unsetActive() {
flags &= ~STATE_IS_ACTIVE;
}
boolean isDistributing() {
return (flags & STATE_IS_DISTRIBUTING) != 0;
}
void setDistributing() {
flags |= STATE_IS_DISTRIBUTING;
}
void unsetDistributing() {
flags &= ~STATE_IS_DISTRIBUTING;
}
@Override
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
public int priorityQueueIndex(DefaultPriorityQueue<?> queue) {
return queue == stateOnlyRemovalQueue ? stateOnlyQueueIndex : pseudoTimeQueueIndex;
}
@Override
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
public void priorityQueueIndex(DefaultPriorityQueue<?> queue, int i) {
if (queue == stateOnlyRemovalQueue) {
stateOnlyQueueIndex = i;
} else {
pseudoTimeQueueIndex = i;
}
}
@Override
public String toString() {
// Use activeCountForTree as a rough estimate for how many nodes are in this subtree.
StringBuilder sb = new StringBuilder(256 * (activeCountForTree > 0 ? activeCountForTree : 1));
toString(sb);
return sb.toString();
}
private void toString(StringBuilder sb) {
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
sb.append("{streamId ").append(streamId)
.append(" streamableBytes ").append(streamableBytes)
.append(" activeCountForTree ").append(activeCountForTree)
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
.append(" pseudoTimeQueueIndex ").append(pseudoTimeQueueIndex)
.append(" pseudoTimeToWrite ").append(pseudoTimeToWrite)
.append(" pseudoTime ").append(pseudoTime)
.append(" flags ").append(flags)
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
.append(" pseudoTimeQueue.size() ").append(pseudoTimeQueue.size())
.append(" stateOnlyQueueIndex ").append(stateOnlyQueueIndex)
.append(" parent.streamId ").append(parent == null ? -1 : parent.streamId).append("} [");
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
if (!pseudoTimeQueue.isEmpty()) {
for (State s : pseudoTimeQueue) {
s.toString(sb);
sb.append(", ");
}
// Remove the last ", "
sb.setLength(sb.length() - 2);
}
sb.append(']');
}
}
HTTP/2 Non Active Stream RFC Corrections Motivation: codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined. Modifications: - Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation. - Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations. - DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created. Result: More compliant with the HTTP/2 RFC. Fixes https://github.com/netty/netty/issues/6206. [1] https://tools.ietf.org/html/rfc7540#section-5.3.4
2017-01-24 21:50:39 +01:00
/**
* Allows a correlation to be made between a stream and its old parent before a parent change occurs.
*/
private static final class ParentChangedEvent {
final State state;
final State oldParent;
/**
* Create a new instance.
* @param state The state who has had a parent change.
* @param oldParent The previous parent.
*/
ParentChangedEvent(State state, State oldParent) {
this.state = state;
this.oldParent = oldParent;
}
}
}