Implemented FastLZ compression codec

Motivation:

FastLZ compression codec provides sending and receiving data encoded by fast FastLZ algorithm using block mode.

Modifications:

- Added part of `jfastlz` library which implements FastLZ algorithm. See FastLz class.
- Implemented FastLzFramedEncoder which extends MessageToByteEncoder and provides compression of outgoing messages.
- Implemented FastLzFramedDecoder which extends ByteToMessageDecoder and provides uncompression of incoming messages.
- Added integration tests for `FastLzFramedEncoder/Decoder`.

Result:

Full FastLZ compression codec which can compress/uncompress data using FastLZ algorithm.
This commit is contained in:
Idel Pivnitskiy 2014-08-12 03:00:56 +04:00 committed by Trustin Lee
parent b41b11c53d
commit 0b307fe083
6 changed files with 1140 additions and 0 deletions

View File

@ -114,6 +114,14 @@ decoding data in LZF format, written by Tatu Saloranta. It can be obtained at:
* HOMEPAGE:
* https://github.com/ning/compress
This product contains a modified portion of 'jfastlz', a Java port of FastLZ compression
and decompression library written by William Kinney. It can be obtained at:
* LICENSE:
* license/LICENSE.jfastlz.txt (MIT License)
* HOMEPAGE:
* https://code.google.com/p/jfastlz/
This product optionally depends on 'Protocol Buffers', Google's data
interchange format, which can be obtained at:

View File

@ -0,0 +1,575 @@
/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.handler.codec.compression;
/**
* Core of FastLZ compression algorithm.
*
* This class provides methods for compression and decompression of buffers and saves
* constants which use by {@link FastLzFramedEncoder} and {@link FastLzFramedDecoder}.
*
* This is refactored code of <a href="https://code.google.com/p/jfastlz/">jfastlz</a>
* library written by William Kinney.
*/
final class FastLz {
private static final int MAX_DISTANCE = 8191;
private static final int MAX_FARDISTANCE = 65535 + MAX_DISTANCE - 1;
private static final int HASH_LOG = 13;
private static final int HASH_SIZE = 1 << HASH_LOG; // 8192
private static final int HASH_MASK = HASH_SIZE - 1;
private static final int MAX_COPY = 32;
private static final int MAX_LEN = 256 + 8;
private static final int MIN_RECOMENDED_LENGTH_FOR_LEVEL_2 = 1024 * 64;
static final int MAGIC_NUMBER = 'F' << 16 | 'L' << 8 | 'Z';
static final byte BLOCK_TYPE_NON_COMPRESSED = 0x00;
static final byte BLOCK_TYPE_COMPRESSED = 0x01;
static final byte BLOCK_WITHOUT_CHECKSUM = 0x00;
static final byte BLOCK_WITH_CHECKSUM = 0x10;
static final int OPTIONS_OFFSET = 3;
static final int CHECKSUM_OFFSET = 4;
static final int MAX_CHUNK_LENGTH = 0xFFFF;
/**
* Do not call {@link #compress(byte[], int, int, byte[], int, int)} for input buffers
* which length less than this value.
*/
static final int MIN_LENGTH_TO_COMPRESSION = 32;
/**
* In this case {@link #compress(byte[], int, int, byte[], int, int)} will choose level
* automatically depending on the length of the input buffer. If length less than
* {@link #MIN_RECOMENDED_LENGTH_FOR_LEVEL_2} {@link #LEVEL_1} will be choosen,
* otherwise {@link #LEVEL_2}.
*/
static final int LEVEL_AUTO = 0;
/**
* Level 1 is the fastest compression and generally useful for short data.
*/
static final int LEVEL_1 = 1;
/**
* Level 2 is slightly slower but it gives better compression ratio.
*/
static final int LEVEL_2 = 2;
/**
* The output buffer must be at least 6% larger than the input buffer and can not be smaller than 66 bytes.
* @param inputLength length of input buffer
* @return Maximum output buffer length
*/
static int calculateOutputBufferLength(int inputLength) {
final int outputLength = (int) (inputLength * 1.06);
return Math.max(outputLength, 66);
}
/**
* Compress a block of data in the input buffer and returns the size of compressed block.
* The size of input buffer is specified by length. The minimum input buffer size is 32.
*
* If the input is not compressible, the return value might be larger than length (input buffer size).
*/
static int compress(final byte[] input, final int inOffset, final int inLength,
final byte[] output, final int outOffset, final int proposedLevel) {
final int level;
if (proposedLevel == LEVEL_AUTO) {
level = inLength < MIN_RECOMENDED_LENGTH_FOR_LEVEL_2 ? LEVEL_1 : LEVEL_2;
} else {
level = proposedLevel;
}
int ip = 0;
int ipBound = ip + inLength - 2;
int ipLimit = ip + inLength - 12;
int op = 0;
// const flzuint8* htab[HASH_SIZE];
int[] htab = new int[HASH_SIZE];
// const flzuint8** hslot;
int hslot;
// flzuint32 hval;
// int OK b/c address starting from 0
int hval;
// flzuint32 copy;
// int OK b/c address starting from 0
int copy;
/* sanity check */
if (inLength < 4) {
if (inLength != 0) {
// *op++ = length-1;
output[outOffset + op++] = (byte) (inLength - 1);
ipBound++;
while (ip <= ipBound) {
output[outOffset + op++] = input[inOffset + ip++];
}
return inLength + 1;
}
// else
return 0;
}
/* initializes hash table */
// for (hslot = htab; hslot < htab + HASH_SIZE; hslot++)
for (hslot = 0; hslot < HASH_SIZE; hslot++) {
//*hslot = ip;
htab[hslot] = ip;
}
/* we start with literal copy */
copy = 2;
output[outOffset + op++] = MAX_COPY - 1;
output[outOffset + op++] = input[inOffset + ip++];
output[outOffset + op++] = input[inOffset + ip++];
/* main loop */
while (ip < ipLimit) {
int ref = 0;
long distance = 0;
/* minimum match length */
// flzuint32 len = 3;
// int OK b/c len is 0 and octal based
int len = 3;
/* comparison starting-point */
int anchor = ip;
boolean matchLabel = false;
/* check for a run */
if (level == LEVEL_2) {
//if(ip[0] == ip[-1] && FASTLZ_READU16(ip-1)==FASTLZ_READU16(ip+1))
if (input[inOffset + ip] == input[inOffset + ip - 1] &&
readU16(input, inOffset + ip - 1) == readU16(input, inOffset + ip + 1)) {
distance = 1;
ip += 3;
ref = anchor - 1 + 3;
/*
* goto match;
*/
matchLabel = true;
}
}
if (!matchLabel) {
/* find potential match */
// HASH_FUNCTION(hval,ip);
hval = hashFunction(input, inOffset + ip);
// hslot = htab + hval;
hslot = hval;
// ref = htab[hval];
ref = htab[hval];
/* calculate distance to the match */
distance = anchor - ref;
/* update hash table */
//*hslot = anchor;
htab[hslot] = anchor;
/* is this a match? check the first 3 bytes */
if (distance == 0
|| (level == LEVEL_1 ? distance >= MAX_DISTANCE : distance >= MAX_FARDISTANCE)
|| input[inOffset + ref++] != input[inOffset + ip++]
|| input[inOffset + ref++] != input[inOffset + ip++]
|| input[inOffset + ref++] != input[inOffset + ip++]) {
/*
* goto literal;
*/
output[outOffset + op++] = input[inOffset + anchor++];
ip = anchor;
copy++;
if (copy == MAX_COPY) {
copy = 0;
output[outOffset + op++] = MAX_COPY - 1;
}
continue;
}
if (level == LEVEL_2) {
/* far, needs at least 5-byte match */
if (distance >= MAX_DISTANCE) {
if (input[inOffset + ip++] != input[inOffset + ref++]
|| input[inOffset + ip++] != input[inOffset + ref++]) {
/*
* goto literal;
*/
output[outOffset + op++] = input[inOffset + anchor++];
ip = anchor;
copy++;
if (copy == MAX_COPY) {
copy = 0;
output[outOffset + op++] = MAX_COPY - 1;
}
continue;
}
len += 2;
}
}
} // end if(!matchLabel)
/*
* match:
*/
/* last matched byte */
ip = anchor + len;
/* distance is biased */
distance--;
if (distance == 0) {
/* zero distance means a run */
//flzuint8 x = ip[-1];
byte x = input[inOffset + ip - 1];
while (ip < ipBound) {
if (input[inOffset + ref++] != x) {
break;
} else {
ip++;
}
}
} else {
for (;;) {
/* safe because the outer check against ip limit */
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
while (ip < ipBound) {
if (input[inOffset + ref++] != input[inOffset + ip++]) {
break;
}
}
break;
}
}
/* if we have copied something, adjust the copy count */
if (copy != 0) {
/* copy is biased, '0' means 1 byte copy */
// *(op-copy-1) = copy-1;
output[outOffset + op - copy - 1] = (byte) (copy - 1);
} else {
/* back, to overwrite the copy count */
op--;
}
/* reset literal counter */
copy = 0;
/* length is biased, '1' means a match of 3 bytes */
ip -= 3;
len = ip - anchor;
/* encode the match */
if (level == LEVEL_2) {
if (distance < MAX_DISTANCE) {
if (len < 7) {
output[outOffset + op++] = (byte) ((len << 5) + (distance >>> 8));
output[outOffset + op++] = (byte) (distance & 255);
} else {
output[outOffset + op++] = (byte) ((7 << 5) + (distance >>> 8));
for (len -= 7; len >= 255; len -= 255) {
output[outOffset + op++] = (byte) 255;
}
output[outOffset + op++] = (byte) len;
output[outOffset + op++] = (byte) (distance & 255);
}
} else {
/* far away, but not yet in the another galaxy... */
if (len < 7) {
distance -= MAX_DISTANCE;
output[outOffset + op++] = (byte) ((len << 5) + 31);
output[outOffset + op++] = (byte) 255;
output[outOffset + op++] = (byte) (distance >>> 8);
output[outOffset + op++] = (byte) (distance & 255);
} else {
distance -= MAX_DISTANCE;
output[outOffset + op++] = (byte) ((7 << 5) + 31);
for (len -= 7; len >= 255; len -= 255) {
output[outOffset + op++] = (byte) 255;
}
output[outOffset + op++] = (byte) len;
output[outOffset + op++] = (byte) 255;
output[outOffset + op++] = (byte) (distance >>> 8);
output[outOffset + op++] = (byte) (distance & 255);
}
}
} else {
if (len > MAX_LEN - 2) {
while (len > MAX_LEN - 2) {
output[outOffset + op++] = (byte) ((7 << 5) + (distance >>> 8));
output[outOffset + op++] = (byte) (MAX_LEN - 2 - 7 - 2);
output[outOffset + op++] = (byte) (distance & 255);
len -= MAX_LEN - 2;
}
}
if (len < 7) {
output[outOffset + op++] = (byte) ((len << 5) + (distance >>> 8));
output[outOffset + op++] = (byte) (distance & 255);
} else {
output[outOffset + op++] = (byte) ((7 << 5) + (distance >>> 8));
output[outOffset + op++] = (byte) (len - 7);
output[outOffset + op++] = (byte) (distance & 255);
}
}
/* update the hash at match boundary */
//HASH_FUNCTION(hval,ip);
hval = hashFunction(input, inOffset + ip);
htab[hval] = ip++;
//HASH_FUNCTION(hval,ip);
hval = hashFunction(input, inOffset + ip);
htab[hval] = ip++;
/* assuming literal copy */
output[outOffset + op++] = MAX_COPY - 1;
continue;
// Moved to be inline, with a 'continue'
/*
* literal:
*
output[outOffset + op++] = input[inOffset + anchor++];
ip = anchor;
copy++;
if(copy == MAX_COPY){
copy = 0;
output[outOffset + op++] = MAX_COPY-1;
}
*/
}
/* left-over as literal copy */
ipBound++;
while (ip <= ipBound) {
output[outOffset + op++] = input[inOffset + ip++];
copy++;
if (copy == MAX_COPY) {
copy = 0;
output[outOffset + op++] = MAX_COPY - 1;
}
}
/* if we have copied something, adjust the copy length */
if (copy != 0) {
//*(op-copy-1) = copy-1;
output[outOffset + op - copy - 1] = (byte) (copy - 1);
} else {
op--;
}
if (level == LEVEL_2) {
/* marker for fastlz2 */
output[outOffset] |= 1 << 5;
}
return op;
}
/**
* Decompress a block of compressed data and returns the size of the decompressed block.
* If error occurs, e.g. the compressed data is corrupted or the output buffer is not large
* enough, then 0 (zero) will be returned instead.
*
* Decompression is memory safe and guaranteed not to write the output buffer
* more than what is specified in outLength.
*/
static int decompress(final byte[] input, final int inOffset, final int inLength,
final byte[] output, final int outOffset, final int outLength) {
//int level = ((*(const flzuint8*)input) >> 5) + 1;
final int level = (input[inOffset] >> 5) + 1;
if (level != LEVEL_1 && level != LEVEL_2) {
throw new DecompressionException(String.format(
"invalid level: %d (expected: %d or %d)", level, LEVEL_1, LEVEL_2
));
}
// const flzuint8* ip = (const flzuint8*) input;
int ip = 0;
// flzuint8* op = (flzuint8*) output;
int op = 0;
// flzuint32 ctrl = (*ip++) & 31;
long ctrl = input[inOffset + ip++] & 31;
int loop = 1;
do {
// const flzuint8* ref = op;
int ref = op;
// flzuint32 len = ctrl >> 5;
long len = ctrl >> 5;
// flzuint32 ofs = (ctrl & 31) << 8;
long ofs = (ctrl & 31) << 8;
if (ctrl >= 32) {
len--;
// ref -= ofs;
ref -= ofs;
int code;
if (len == 6) {
if (level == LEVEL_1) {
// len += *ip++;
len += input[inOffset + ip++] & 0xFF;
} else {
do {
code = input[inOffset + ip++] & 0xFF;
len += code;
} while (code == 255);
}
}
if (level == LEVEL_1) {
// ref -= *ip++;
ref -= input[inOffset + ip++] & 0xFF;
} else {
code = input[inOffset + ip++] & 0xFF;
ref -= code;
/* match from 16-bit distance */
// if(FASTLZ_UNEXPECT_CONDITIONAL(code==255))
// if(FASTLZ_EXPECT_CONDITIONAL(ofs==(31 << 8)))
if (code == 255 && ofs == 31 << 8) {
ofs = (input[inOffset + ip++] & 0xFF) << 8;
ofs += input[inOffset + ip++] & 0xFF;
ref = (int) (op - ofs - MAX_DISTANCE);
}
}
// if the output index + length of block(?) + 3(?) is over the output limit?
if (op + len + 3 > outLength) {
return 0;
}
// if (FASTLZ_UNEXPECT_CONDITIONAL(ref-1 < (flzuint8 *)output))
// if the address space of ref-1 is < the address of output?
// if we are still at the beginning of the output address?
if (ref - 1 < 0) {
return 0;
}
if (ip < inLength) {
ctrl = input[inOffset + ip++] & 0xFF;
} else {
loop = 0;
}
if (ref == op) {
/* optimize copy for a run */
// flzuint8 b = ref[-1];
byte b = output[outOffset + ref - 1];
output[outOffset + op++] = b;
output[outOffset + op++] = b;
output[outOffset + op++] = b;
while (len != 0) {
output[outOffset + op++] = b;
--len;
}
} else {
/* copy from reference */
ref--;
// *op++ = *ref++;
output[outOffset + op++] = output[outOffset + ref++];
output[outOffset + op++] = output[outOffset + ref++];
output[outOffset + op++] = output[outOffset + ref++];
while (len != 0) {
output[outOffset + op++] = output[outOffset + ref++];
--len;
}
}
} else {
ctrl++;
if (op + ctrl > outLength) {
return 0;
}
if (ip + ctrl > inLength) {
return 0;
}
//*op++ = *ip++;
output[outOffset + op++] = input[inOffset + ip++];
for (--ctrl; ctrl != 0; ctrl--) {
// *op++ = *ip++;
output[outOffset + op++] = input[inOffset + ip++];
}
loop = ip < inLength ? 1 : 0;
if (loop != 0) {
// ctrl = *ip++;
ctrl = input[inOffset + ip++] & 0xFF;
}
}
// while(FASTLZ_EXPECT_CONDITIONAL(loop));
} while (loop != 0);
// return op - (flzuint8*)output;
return op;
}
private static int hashFunction(byte[] p, int offset) {
int v = readU16(p, offset);
v ^= readU16(p, offset + 1) ^ v >> 16 - HASH_LOG;
v &= HASH_MASK;
return v;
}
private static int readU16(byte[] data, int offset) {
if (offset + 1 >= data.length) {
return data[offset] & 0xff;
}
return (data[offset + 1] & 0xff) << 8 | data[offset] & 0xff;
}
private FastLz() { }
}

View File

@ -0,0 +1,211 @@
/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.handler.codec.compression;
import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandlerContext;
import io.netty.handler.codec.ByteToMessageDecoder;
import java.util.List;
import java.util.zip.Adler32;
import java.util.zip.Checksum;
import static io.netty.handler.codec.compression.FastLz.*;
/**
* Uncompresses a {@link ByteBuf} encoded with the Bzip2 format.
*
* See <a href="https://github.com/netty/netty/issues/2750">FastLZ format</a>.
*/
public class FastLzFramedDecoder extends ByteToMessageDecoder {
/**
* Current state of decompression.
*/
private enum State {
INIT_BLOCK,
INIT_BLOCK_PARAMS,
DECOMPRESS_DATA,
CORRUPTED
}
private State currentState = State.INIT_BLOCK;
/**
* Underlying checksum calculator in use.
*/
private final Checksum checksum;
/**
* Length of current received chunk of data.
*/
private int chunkLength;
/**
* Original of current received chunk of data.
* It is equal to {@link #chunkLength} for non compressed chunks.
*/
private int originalLength;
/**
* Indicates is this chunk compressed or not.
*/
private boolean isCompressed;
/**
* Indicates is this chunk has checksum or not.
*/
private boolean hasChecksum;
/**
* Chechsum value of current received chunk of data which has checksum.
*/
private int currentChecksum;
/**
* Creates the fastest FastLZ decoder without checksum calculation.
*/
public FastLzFramedDecoder() {
this(false);
}
/**
* Creates a FastLZ decoder with calculation of checksums as specified.
*
* @param validateChecksums
* If true, the checksum field will be validated against the actual
* uncompressed data, and if the checksums do not match, a suitable
* {@link DecompressionException} will be thrown.
* Note, that in this case decoder will use {@link java.util.zip.Adler32}
* as a default checksum calculator.
*/
public FastLzFramedDecoder(boolean validateChecksums) {
this(validateChecksums ? new Adler32() : null);
}
/**
* Creates a FastLZ decoder with specified checksum calculator.
*
* @param checksum
* the {@link Checksum} instance to use to check data for integrity.
* You may set {@code null} if you do not want to validate checksum of each block.
*/
public FastLzFramedDecoder(Checksum checksum) {
this.checksum = checksum;
}
@Override
protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
for (;;) {
try {
switch (currentState) {
case INIT_BLOCK:
if (in.readableBytes() < 4) {
return;
}
final int magic = in.readUnsignedMedium();
if (magic != MAGIC_NUMBER) {
throw new DecompressionException("unexpected block identifier");
}
final byte options = in.readByte();
isCompressed = (options & 0x01) == BLOCK_TYPE_COMPRESSED;
hasChecksum = (options & 0x10) == BLOCK_WITH_CHECKSUM;
currentState = State.INIT_BLOCK_PARAMS;
case INIT_BLOCK_PARAMS:
if (in.readableBytes() < 2 + (isCompressed ? 2 : 0) + (hasChecksum ? 4 : 0)) {
return;
}
currentChecksum = hasChecksum ? in.readInt() : 0;
chunkLength = in.readUnsignedShort();
originalLength = isCompressed ? in.readUnsignedShort() : chunkLength;
currentState = State.DECOMPRESS_DATA;
case DECOMPRESS_DATA:
final int chunkLength = this.chunkLength;
if (in.readableBytes() < chunkLength) {
return;
}
final int idx = in.readerIndex();
final int originalLength = this.originalLength;
ByteBuf uncompressed = ctx.alloc().heapBuffer(originalLength, originalLength);
final byte[] output = uncompressed.array();
final int outputPtr = uncompressed.arrayOffset() + uncompressed.writerIndex();
boolean success = false;
try {
if (isCompressed) {
final byte[] input;
final int inputPtr;
if (in.hasArray()) {
input = in.array();
inputPtr = in.arrayOffset() + idx;
} else {
input = new byte[chunkLength];
in.getBytes(idx, input);
inputPtr = 0;
}
final int decompressedBytes = decompress(input, inputPtr, chunkLength,
output, outputPtr, originalLength);
if (originalLength != decompressedBytes) {
throw new DecompressionException(String.format(
"stream corrupted: originalLength(%d) and actual length(%d) mismatch",
originalLength, decompressedBytes));
}
} else {
in.getBytes(idx, output, outputPtr, chunkLength);
}
final Checksum checksum = this.checksum;
if (hasChecksum && checksum != null) {
checksum.reset();
checksum.update(output, outputPtr, originalLength);
final int checksumResult = (int) checksum.getValue();
if (checksumResult != currentChecksum) {
throw new DecompressionException(String.format(
"stream corrupted: mismatching checksum: %d (expected: %d)",
checksumResult, currentChecksum));
}
}
uncompressed.writerIndex(uncompressed.writerIndex() + originalLength);
out.add(uncompressed);
in.skipBytes(chunkLength);
currentState = State.INIT_BLOCK;
success = true;
} finally {
if (!success) {
uncompressed.release();
}
}
break;
case CORRUPTED:
in.skipBytes(in.readableBytes());
return;
default:
throw new IllegalStateException();
}
} catch (Exception e) {
currentState = State.CORRUPTED;
throw e;
}
}
}
}

View File

@ -0,0 +1,186 @@
/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.handler.codec.compression;
import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandlerContext;
import io.netty.handler.codec.MessageToByteEncoder;
import java.util.zip.Adler32;
import java.util.zip.Checksum;
import static io.netty.handler.codec.compression.FastLz.*;
/**
* Compresses a {@link ByteBuf} using the FastLZ algorithm.
*
* See <a href="https://github.com/netty/netty/issues/2750">FastLZ format</a>.
*/
public class FastLzFramedEncoder extends MessageToByteEncoder<ByteBuf> {
/**
* Compression level.
*/
private final int level;
/**
* Underlying checksum calculator in use.
*/
private final Checksum checksum;
/**
* Creates a FastLZ encoder without checksum calculator and with auto detection of compression level.
*/
public FastLzFramedEncoder() {
this(LEVEL_AUTO, null);
}
/**
* Creates a FastLZ encoder with specified compression level and without checksum calculator.
*
* @param level supports only these values:
* 0 - Encoder will choose level automatically depending on the length of the input buffer.
* 1 - Level 1 is the fastest compression and generally useful for short data.
* 2 - Level 2 is slightly slower but it gives better compression ratio.
*/
public FastLzFramedEncoder(int level) {
this(level, null);
}
/**
* Creates a FastLZ encoder with auto detection of compression
* level and calculation of checksums as specified.
*
* @param validateChecksums
* If true, the checksum of each block will be calculated and this value
* will be added to the header of block.
* By default {@link FastLzFramedEncoder} uses {@link java.util.zip.Adler32}
* for checksum calculation.
*/
public FastLzFramedEncoder(boolean validateChecksums) {
this(LEVEL_AUTO, validateChecksums ? new Adler32() : null);
}
/**
* Creates a FastLZ encoder with specified compression level and checksum calculator.
*
* @param level supports only these values:
* 0 - Encoder will choose level automatically depending on the length of the input buffer.
* 1 - Level 1 is the fastest compression and generally useful for short data.
* 2 - Level 2 is slightly slower but it gives better compression ratio.
* @param checksum
* the {@link Checksum} instance to use to check data for integrity.
* You may set {@code null} if you don't want to validate checksum of each block.
*/
public FastLzFramedEncoder(int level, Checksum checksum) {
super(false);
if (level != LEVEL_AUTO && level != LEVEL_1 && level != LEVEL_2) {
throw new IllegalArgumentException(String.format(
"level: %d (expected: %d or %d or %d)", level, LEVEL_AUTO, LEVEL_1, LEVEL_2));
}
this.level = level;
this.checksum = checksum;
}
@Override
protected void encode(ChannelHandlerContext ctx, ByteBuf in, ByteBuf out) throws Exception {
final Checksum checksum = this.checksum;
for (;;) {
if (!in.isReadable()) {
return;
}
final int idx = in.readerIndex();
final int length = Math.min(in.readableBytes(), MAX_CHUNK_LENGTH);
final int outputIdx = out.writerIndex();
out.setMedium(outputIdx, MAGIC_NUMBER);
int outputOffset = outputIdx + CHECKSUM_OFFSET + (checksum != null ? 4 : 0);
final byte blockType;
final int chunkLength;
if (length < MIN_LENGTH_TO_COMPRESSION) {
blockType = BLOCK_TYPE_NON_COMPRESSED;
out.ensureWritable(outputOffset + 2 + length);
final byte[] output = out.array();
final int outputPtr = out.arrayOffset() + outputOffset + 2;
if (checksum != null) {
final byte[] input;
final int inputPtr;
if (in.hasArray()) {
input = in.array();
inputPtr = in.arrayOffset() + idx;
} else {
input = new byte[length];
in.getBytes(idx, input);
inputPtr = 0;
}
checksum.reset();
checksum.update(input, inputPtr, length);
out.setInt(outputIdx + CHECKSUM_OFFSET, (int) checksum.getValue());
System.arraycopy(input, inputPtr, output, outputPtr, length);
} else {
in.getBytes(idx, output, outputPtr, length);
}
chunkLength = length;
} else {
// try to compress
final byte[] input;
final int inputPtr;
if (in.hasArray()) {
input = in.array();
inputPtr = in.arrayOffset() + idx;
} else {
input = new byte[length];
in.getBytes(idx, input);
inputPtr = 0;
}
if (checksum != null) {
checksum.reset();
checksum.update(input, inputPtr, length);
out.setInt(outputIdx + CHECKSUM_OFFSET, (int) checksum.getValue());
}
final int maxOutputLength = calculateOutputBufferLength(length);
out.ensureWritable(outputOffset + 4 + maxOutputLength);
final byte[] output = out.array();
final int outputPtr = out.arrayOffset() + outputOffset + 4;
final int compressedLength = compress(input, inputPtr, length, output, outputPtr, level);
if (compressedLength < length) {
blockType = BLOCK_TYPE_COMPRESSED;
chunkLength = compressedLength;
out.setShort(outputOffset, chunkLength);
outputOffset += 2;
} else {
blockType = BLOCK_TYPE_NON_COMPRESSED;
System.arraycopy(input, inputPtr, output, outputPtr - 2, length);
chunkLength = length;
}
}
out.setShort(outputOffset, length);
out.setByte(outputIdx + OPTIONS_OFFSET,
blockType | (checksum != null ? BLOCK_WITH_CHECKSUM : BLOCK_WITHOUT_CHECKSUM));
out.writerIndex(outputOffset + 2 + chunkLength);
in.skipBytes(length);
}
}
}

View File

@ -0,0 +1,136 @@
/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.handler.codec.compression;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.CompositeByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.embedded.EmbeddedChannel;
import io.netty.util.ReferenceCountUtil;
import static org.hamcrest.Matchers.*;
import static org.junit.Assert.*;
public class FastLzIntegrationTest extends IntegrationTest {
public static class TestWithChecksum extends IntegrationTest {
@Override
protected EmbeddedChannel createEncoderEmbeddedChannel() {
return new EmbeddedChannel(new FastLzFramedEncoder(true));
}
@Override
protected EmbeddedChannel createDecoderEmbeddedChannel() {
return new EmbeddedChannel(new FastLzFramedDecoder(true));
}
}
public static class TestRandomChecksum extends IntegrationTest {
@Override
protected EmbeddedChannel createEncoderEmbeddedChannel() {
return new EmbeddedChannel(new FastLzFramedEncoder(rand.nextBoolean()));
}
@Override
protected EmbeddedChannel createDecoderEmbeddedChannel() {
return new EmbeddedChannel(new FastLzFramedDecoder(rand.nextBoolean()));
}
}
@Override
protected EmbeddedChannel createEncoderEmbeddedChannel() {
return new EmbeddedChannel(new FastLzFramedEncoder(rand.nextBoolean()));
}
@Override
protected EmbeddedChannel createDecoderEmbeddedChannel() {
return new EmbeddedChannel(new FastLzFramedDecoder(rand.nextBoolean()));
}
@Override // test batched flow of data
protected void testIdentity(final byte[] data) {
final ByteBuf original = Unpooled.wrappedBuffer(data);
final EmbeddedChannel encoder = createEncoderEmbeddedChannel();
final EmbeddedChannel decoder = createDecoderEmbeddedChannel();
try {
int written = 0, length = rand.nextInt(100);
while (written + length < data.length) {
ByteBuf in = Unpooled.wrappedBuffer(data, written, length);
encoder.writeOutbound(in);
written += length;
length = rand.nextInt(100);
}
ByteBuf in = Unpooled.wrappedBuffer(data, written, data.length - written);
encoder.writeOutbound(in);
encoder.finish();
ByteBuf msg;
final CompositeByteBuf compressed = Unpooled.compositeBuffer();
while ((msg = encoder.readOutbound()) != null) {
compressed.addComponent(msg);
compressed.writerIndex(compressed.writerIndex() + msg.readableBytes());
}
assertThat(compressed, is(notNullValue()));
final byte[] compressedArray = new byte[compressed.readableBytes()];
compressed.readBytes(compressedArray);
written = 0;
length = rand.nextInt(100);
while (written + length < compressedArray.length) {
in = Unpooled.wrappedBuffer(compressedArray, written, length);
decoder.writeInbound(in);
written += length;
length = rand.nextInt(100);
}
in = Unpooled.wrappedBuffer(compressedArray, written, compressedArray.length - written);
decoder.writeInbound(in);
assertFalse(compressed.isReadable());
final CompositeByteBuf decompressed = Unpooled.compositeBuffer();
while ((msg = decoder.readInbound()) != null) {
decompressed.addComponent(msg);
decompressed.writerIndex(decompressed.writerIndex() + msg.readableBytes());
}
assertEquals(original, decompressed);
compressed.release();
decompressed.release();
original.release();
} finally {
encoder.close();
decoder.close();
for (;;) {
Object msg = encoder.readOutbound();
if (msg == null) {
break;
}
ReferenceCountUtil.release(msg);
}
for (;;) {
Object msg = decoder.readInbound();
if (msg == null) {
break;
}
ReferenceCountUtil.release(msg);
}
}
}
}

View File

@ -0,0 +1,24 @@
The MIT License
Copyright (c) 2009 William Kinney
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.