CompositeByteBuf optimizations and new addFlattenedComponents method (#8939)
Motivation: The CompositeByteBuf discardReadBytes / discardReadComponents methods are currently quite inefficient, including when there are no read components to discard. We would like to call the latter more frequently in ByteToMessageDecoder#COMPOSITE_CUMULATOR. In the same context it would be beneficial to perform a "shallow copy" of a composite buffer (for example when it has a refcount > 1) to avoid having to allocate and copy the contained bytes just to obtain an "independent" cumulation. Modifications: - Optimize discardReadBytes() and discardReadComponents() implementations (start at first comp rather than performing a binary search for the readerIndex). - New addFlattenedComponents(boolean,ByteBuf) method which performs a shallow copy if the provided buffer is also composite and avoids adding any empty buffers, plus unit test. - Other minor optimizations to avoid unnecessary checks. Results: discardReadXX methods are faster, composite buffers can be easily appended without deepening the buffer "tree" or retaining unused components.
This commit is contained in:
parent
4c56e4bad6
commit
1f93bd36b6
@ -939,6 +939,12 @@ final class AdvancedLeakAwareCompositeByteBuf extends SimpleLeakAwareCompositeBy
|
||||
return super.addComponent(increaseWriterIndex, cIndex, buffer);
|
||||
}
|
||||
|
||||
@Override
|
||||
public CompositeByteBuf addFlattenedComponents(boolean increaseWriterIndex, ByteBuf buffer) {
|
||||
recordLeakNonRefCountingOperation(leak);
|
||||
return super.addFlattenedComponents(increaseWriterIndex, buffer);
|
||||
}
|
||||
|
||||
@Override
|
||||
public CompositeByteBuf removeComponent(int cIndex) {
|
||||
recordLeakNonRefCountingOperation(leak);
|
||||
|
@ -287,7 +287,7 @@ public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements
|
||||
c.reposition(components[cIndex - 1].endOffset);
|
||||
}
|
||||
if (increaseWriterIndex) {
|
||||
writerIndex(writerIndex() + readableBytes);
|
||||
writerIndex += readableBytes;
|
||||
}
|
||||
return cIndex;
|
||||
} finally {
|
||||
@ -370,7 +370,7 @@ public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements
|
||||
updateComponentOffsets(ci); // only need to do this here for components after the added ones
|
||||
}
|
||||
if (increaseWriterIndex && ci > cIndex && ci <= componentCount) {
|
||||
writerIndex(writerIndex() + components[ci - 1].endOffset - components[cIndex].offset);
|
||||
writerIndex += components[ci - 1].endOffset - components[cIndex].offset;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -413,6 +413,74 @@ public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements
|
||||
return addComponents(false, cIndex, buffers);
|
||||
}
|
||||
|
||||
/**
|
||||
* Add the given {@link ByteBuf} and increase the {@code writerIndex} if {@code increaseWriterIndex} is
|
||||
* {@code true}. If the provided buffer is a {@link CompositeByteBuf} itself, a "shallow copy" of its
|
||||
* readable components will be performed. Thus the actual number of new components added may vary
|
||||
* and in particular will be zero if the provided buffer is not readable.
|
||||
* <p>
|
||||
* {@link ByteBuf#release()} ownership of {@code buffer} is transferred to this {@link CompositeByteBuf}.
|
||||
* @param buffer the {@link ByteBuf} to add. {@link ByteBuf#release()} ownership is transferred to this
|
||||
* {@link CompositeByteBuf}.
|
||||
*/
|
||||
public CompositeByteBuf addFlattenedComponents(boolean increaseWriterIndex, ByteBuf buffer) {
|
||||
requireNonNull(buffer, "buffer");
|
||||
final int ridx = buffer.readerIndex();
|
||||
final int widx = buffer.writerIndex();
|
||||
if (ridx == widx) {
|
||||
buffer.release();
|
||||
return this;
|
||||
}
|
||||
if (!(buffer instanceof CompositeByteBuf)) {
|
||||
addComponent0(increaseWriterIndex, componentCount, buffer);
|
||||
consolidateIfNeeded();
|
||||
return this;
|
||||
}
|
||||
final CompositeByteBuf from = (CompositeByteBuf) buffer;
|
||||
from.checkIndex(ridx, widx - ridx);
|
||||
final Component[] fromComponents = from.components;
|
||||
final int compCountBefore = componentCount;
|
||||
final int writerIndexBefore = writerIndex;
|
||||
try {
|
||||
for (int cidx = from.toComponentIndex0(ridx), newOffset = capacity();; cidx++) {
|
||||
final Component component = fromComponents[cidx];
|
||||
final int compOffset = component.offset;
|
||||
final int fromIdx = Math.max(ridx, compOffset);
|
||||
final int toIdx = Math.min(widx, component.endOffset);
|
||||
final int len = toIdx - fromIdx;
|
||||
if (len > 0) { // skip empty components
|
||||
// Note that it's safe to just retain the unwrapped buf here, even in the case
|
||||
// of PooledSlicedByteBufs - those slices will still be properly released by the
|
||||
// source Component's free() method.
|
||||
addComp(componentCount, new Component(
|
||||
component.buf.retain(), component.idx(fromIdx), newOffset, len, null));
|
||||
}
|
||||
if (widx == toIdx) {
|
||||
break;
|
||||
}
|
||||
newOffset += len;
|
||||
}
|
||||
if (increaseWriterIndex) {
|
||||
writerIndex = writerIndexBefore + (widx - ridx);
|
||||
}
|
||||
consolidateIfNeeded();
|
||||
buffer.release();
|
||||
buffer = null;
|
||||
return this;
|
||||
} finally {
|
||||
if (buffer != null) {
|
||||
// if we did not succeed, attempt to rollback any components that were added
|
||||
if (increaseWriterIndex) {
|
||||
writerIndex = writerIndexBefore;
|
||||
}
|
||||
for (int cidx = componentCount - 1; cidx >= compCountBefore; cidx--) {
|
||||
components[cidx].free();
|
||||
removeComp(cidx);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO optimize further, similar to ByteBuf[] version
|
||||
// (difference here is that we don't know *always* know precise size increase in advance,
|
||||
// but we do in the most common case that the Iterable is a Collection)
|
||||
@ -766,9 +834,9 @@ public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements
|
||||
removeCompRange(i + 1, size);
|
||||
|
||||
if (readerIndex() > newCapacity) {
|
||||
setIndex(newCapacity, newCapacity);
|
||||
} else if (writerIndex() > newCapacity) {
|
||||
writerIndex(newCapacity);
|
||||
setIndex0(newCapacity, newCapacity);
|
||||
} else if (writerIndex > newCapacity) {
|
||||
writerIndex = newCapacity;
|
||||
}
|
||||
}
|
||||
return this;
|
||||
@ -815,6 +883,9 @@ public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements
|
||||
}
|
||||
}
|
||||
}
|
||||
if (size <= 2) { // fast-path for 1 and 2 component count
|
||||
return size == 1 || offset < components[0].endOffset ? 0 : 1;
|
||||
}
|
||||
for (int low = 0, high = size; low <= high;) {
|
||||
int mid = low + high >>> 1;
|
||||
Component c = components[mid];
|
||||
@ -1678,16 +1749,26 @@ public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements
|
||||
}
|
||||
|
||||
// Remove read components.
|
||||
int firstComponentId = toComponentIndex0(readerIndex);
|
||||
for (int i = 0; i < firstComponentId; i ++) {
|
||||
components[i].free();
|
||||
int firstComponentId = 0;
|
||||
Component c = null;
|
||||
for (int size = componentCount; firstComponentId < size; firstComponentId++) {
|
||||
c = components[firstComponentId];
|
||||
if (c.endOffset > readerIndex) {
|
||||
break;
|
||||
}
|
||||
c.free();
|
||||
}
|
||||
if (firstComponentId == 0) {
|
||||
return this; // Nothing to discard
|
||||
}
|
||||
Component la = lastAccessed;
|
||||
if (la != null && la.endOffset < readerIndex) {
|
||||
lastAccessed = null;
|
||||
}
|
||||
lastAccessed = null;
|
||||
removeCompRange(0, firstComponentId);
|
||||
|
||||
// Update indexes and markers.
|
||||
Component first = components[0];
|
||||
int offset = first.offset;
|
||||
int offset = c.offset;
|
||||
updateComponentOffsets(0);
|
||||
setIndex(readerIndex - offset, writerIndex - offset);
|
||||
return this;
|
||||
@ -1713,36 +1794,30 @@ public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements
|
||||
return this;
|
||||
}
|
||||
|
||||
// Remove read components.
|
||||
int firstComponentId = toComponentIndex0(readerIndex);
|
||||
for (int i = 0; i < firstComponentId; i ++) {
|
||||
Component c = components[i];
|
||||
c.free();
|
||||
if (lastAccessed == c) {
|
||||
lastAccessed = null;
|
||||
int firstComponentId = 0;
|
||||
Component c = null;
|
||||
for (int size = componentCount; firstComponentId < size; firstComponentId++) {
|
||||
c = components[firstComponentId];
|
||||
if (c.endOffset > readerIndex) {
|
||||
break;
|
||||
}
|
||||
c.free();
|
||||
}
|
||||
|
||||
// Remove or replace the first readable component with a new slice.
|
||||
Component c = components[firstComponentId];
|
||||
if (readerIndex == c.endOffset) {
|
||||
// new slice would be empty, so remove instead
|
||||
c.free();
|
||||
if (lastAccessed == c) {
|
||||
lastAccessed = null;
|
||||
}
|
||||
firstComponentId++;
|
||||
} else {
|
||||
int trimmedBytes = readerIndex - c.offset;
|
||||
c.offset = 0;
|
||||
c.endOffset -= readerIndex;
|
||||
c.adjustment += readerIndex;
|
||||
ByteBuf slice = c.slice;
|
||||
if (slice != null) {
|
||||
// We must replace the cached slice with a derived one to ensure that
|
||||
// it can later be released properly in the case of PooledSlicedByteBuf.
|
||||
c.slice = slice.slice(trimmedBytes, c.length());
|
||||
}
|
||||
// Replace the first readable component with a new slice.
|
||||
int trimmedBytes = readerIndex - c.offset;
|
||||
c.offset = 0;
|
||||
c.endOffset -= readerIndex;
|
||||
c.adjustment += readerIndex;
|
||||
ByteBuf slice = c.slice;
|
||||
if (slice != null) {
|
||||
// We must replace the cached slice with a derived one to ensure that
|
||||
// it can later be released properly in the case of PooledSlicedByteBuf.
|
||||
c.slice = slice.slice(trimmedBytes, c.length());
|
||||
}
|
||||
Component la = lastAccessed;
|
||||
if (la != null && la.endOffset < readerIndex) {
|
||||
lastAccessed = null;
|
||||
}
|
||||
|
||||
removeCompRange(0, firstComponentId);
|
||||
|
@ -548,6 +548,12 @@ class WrappedCompositeByteBuf extends CompositeByteBuf {
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public CompositeByteBuf addFlattenedComponents(boolean increaseWriterIndex, ByteBuf buffer) {
|
||||
wrapped.addFlattenedComponents(increaseWriterIndex, buffer);
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public CompositeByteBuf removeComponent(int cIndex) {
|
||||
wrapped.removeComponent(cIndex);
|
||||
|
@ -1086,6 +1086,71 @@ public abstract class AbstractCompositeByteBufTest extends AbstractByteBufTest {
|
||||
cbuf.release();
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAddFlattenedComponents() {
|
||||
ByteBuf b1 = Unpooled.wrappedBuffer(new byte[] { 1, 2, 3 });
|
||||
CompositeByteBuf newComposite = Unpooled.compositeBuffer()
|
||||
.addComponent(true, b1)
|
||||
.addFlattenedComponents(true, b1.retain())
|
||||
.addFlattenedComponents(true, Unpooled.EMPTY_BUFFER);
|
||||
|
||||
assertEquals(2, newComposite.numComponents());
|
||||
assertEquals(6, newComposite.capacity());
|
||||
assertEquals(6, newComposite.writerIndex());
|
||||
|
||||
// It is important to use a pooled allocator here to ensure
|
||||
// the slices returned by readRetainedSlice are of type
|
||||
// PooledSlicedByteBuf, which maintains an independent refcount
|
||||
// (so that we can be sure to cover this case)
|
||||
ByteBuf buffer = PooledByteBufAllocator.DEFAULT.buffer()
|
||||
.writeBytes(new byte[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
||||
|
||||
// use mixture of slice and retained slice
|
||||
ByteBuf s1 = buffer.readRetainedSlice(2);
|
||||
ByteBuf s2 = s1.retainedSlice(0, 2);
|
||||
ByteBuf s3 = buffer.slice(0, 2).retain();
|
||||
ByteBuf s4 = s2.retainedSlice(0, 2);
|
||||
buffer.release();
|
||||
|
||||
ByteBuf compositeToAdd = Unpooled.compositeBuffer()
|
||||
.addComponent(s1)
|
||||
.addComponent(Unpooled.EMPTY_BUFFER)
|
||||
.addComponents(s2, s3, s4);
|
||||
// set readable range to be from middle of first component
|
||||
// to middle of penultimate component
|
||||
compositeToAdd.setIndex(1, 5);
|
||||
|
||||
assertEquals(1, compositeToAdd.refCnt());
|
||||
assertEquals(1, s4.refCnt());
|
||||
|
||||
ByteBuf compositeCopy = compositeToAdd.copy();
|
||||
|
||||
newComposite.addFlattenedComponents(true, compositeToAdd);
|
||||
|
||||
// verify that added range matches
|
||||
ByteBufUtil.equals(compositeCopy, 0,
|
||||
newComposite, 6, compositeCopy.readableBytes());
|
||||
|
||||
// should not include empty component or last component
|
||||
// (latter outside of the readable range)
|
||||
assertEquals(5, newComposite.numComponents());
|
||||
assertEquals(10, newComposite.capacity());
|
||||
assertEquals(10, newComposite.writerIndex());
|
||||
|
||||
assertEquals(0, compositeToAdd.refCnt());
|
||||
// s4 wasn't in added range so should have been jettisoned
|
||||
assertEquals(0, s4.refCnt());
|
||||
assertEquals(1, newComposite.refCnt());
|
||||
|
||||
// releasing composite should release the remaining components
|
||||
newComposite.release();
|
||||
assertEquals(0, newComposite.refCnt());
|
||||
assertEquals(0, s1.refCnt());
|
||||
assertEquals(0, s2.refCnt());
|
||||
assertEquals(0, s3.refCnt());
|
||||
assertEquals(0, b1.refCnt());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testIterator() {
|
||||
CompositeByteBuf cbuf = compositeBuffer();
|
||||
|
Loading…
x
Reference in New Issue
Block a user