diff --git a/buffer/src/main/java/io/netty/buffer/PoolChunk.java b/buffer/src/main/java/io/netty/buffer/PoolChunk.java index 25505d1226..73aebda6d0 100644 --- a/buffer/src/main/java/io/netty/buffer/PoolChunk.java +++ b/buffer/src/main/java/io/netty/buffer/PoolChunk.java @@ -16,25 +16,124 @@ package io.netty.buffer; +import io.netty.util.collection.IntObjectHashMap; + +/** + * Description of algorithm for PageRun/PoolSubpage allocation from PoolChunk + * + * Notation: The following terms are important to understand the code + * > page - a page is the smallest unit of memory chunk that can be allocated + * > chunk - a chunk is a collection of pages + * > in this code chunkSize = 2^{maxOrder} * pageSize + * + * To begin we allocate a byte array of size = chunkSize + * Whenever a ByteBuf of given size needs to be created we search for the first position + * in the byte array that has enough empty space to accommodate the requested size and + * return a (long) handle that encodes this offset information, (this memory segment is then + * marked as reserved so it is always used by exactly one ByteBuf and no more) + * + * For simplicity all sizes are normalized according to PoolArena#normalizeCapacity method + * This ensures that when we request for memory segments of size >= pageSize the normalizedCapacity + * equals the next nearest power of 2 + * + * To search for the first offset in chunk that has at least requested size available we construct a + * complete balanced binary tree and store it in an array (just like heaps) - memoryMap + * + * The tree looks like this (the size of each node being mentioned in the parenthesis) + * + * depth=0 1 node (chunkSize) + * depth=1 2 nodes (chunkSize/2) + * .. + * .. + * depth=d 2^d nodes (chunkSize/2^d) + * .. + * depth=maxOrder 2^maxOrder nodes (chunkSize/2^{maxOrder} = pageSize) + * + * depth=maxOrder is the last level and the leafs consist of pages + * + * With this tree available searching in chunkArray translates like this: + * To allocate a memory segment of size chunkSize/2^k we search for the first node (from left) at height k + * which is unused + * + * Algorithm: + * ---------- + * Encode the tree in memoryMap with the notation + * memoryMap[id] = x => in the subtree rooted at id, the first node that is free to be allocated + * is at depth x (counted from depth=0) i.e., at depths [depth_of_id, x), there is no node that is free + * + * As we allocate & free nodes, we update values stored in memoryMap so that the property is maintained + * + * Initialization - + * In the beginning we construct the memoryMap array by storing the depth of a node at each node + * i.e., memoryMap[id] = depth_of_id + * + * Observations: + * ------------- + * 1) memoryMap[id] = depth_of_id => it is free / unallocated + * 2) memoryMap[id] > depth_of_id => at least one of its child nodes is allocated, so we cannot allocate it, but + * some of its children can still be allocated based on their availability + * 3) memoryMap[id] = maxOrder + 1 => the node is fully allocated & thus none of its children can be allocated, it + * is thus marked as unusable + * + * Algorithm: [allocateNode(d) => we want to find the first node (from left) at height h that can be allocated] + * ---------- + * 1) start at root (i.e., depth = 0 or id = 1) + * 2) if memoryMap[1] > d => cannot be allocated from this chunk + * 3) if left node value <= h; we can allocate from left subtree so move to left and repeat until found + * 4) else try in right subtree + * + * Algorithm: [allocateRun(size)] + * ---------- + * 1) Compute d = log_2(chunkSize/size) + * 2) Return allocateNode(d) + * + * Algorithm: [allocateSubpage(size)] + * ---------- + * All subpages allocated are stored in a map at key = elemSize + * 1) if subpage at elemSize != null: try allocating from it. + * if it fails: allocateSubpageSimple + * 2) else: just allocateSubpageSimple + * + * Algorithm: [allocateSubpageSimple(size)] + * ---------- + * 1) use allocateRun(maxOrder) to find an empty (i.e., unused) leaf (i.e., page) + * 2) use this handle to construct the poolsubpage object or if it already exists just initialize it + * with required normCapacity + * 3) store (insert/ overwrite) the subpage in elemSubpages map for easier access + * + * Note: + * ----- + * In the implementation for improving cache coherence, + * we store 2 pieces of information (i.e, 2 byte vals) as a short value in memoryMap + * + * memoryMap[id]= (depth_of_id, x) + * where as per convention defined above + * the second value (i.e, x) indicates that the first node which is free to be allocated is at depth x (from root) + */ + final class PoolChunk { - private static final int ST_UNUSED = 0; - private static final int ST_BRANCH = 1; - private static final int ST_ALLOCATED = 2; - private static final int ST_ALLOCATED_SUBPAGE = 3; + + private static final int BYTE_LENGTH = 8; + private static final int BYTE_MASK = 0xFF; + private static final int INV_BYTE_MASK = ~ BYTE_MASK; final PoolArena arena; final T memory; final boolean unpooled; - private final int[] memoryMap; + private final short[] memoryMap; private final PoolSubpage[] subpages; + private final IntObjectHashMap> elemSubpages; /** Used to determine if the requested capacity is equal to or greater than pageSize. */ private final int subpageOverflowMask; private final int pageSize; private final int pageShifts; - + private final int maxOrder; private final int chunkSize; + private final int log2ChunkSize; private final int maxSubpageAllocs; + /** Used to mark memory as unusable */ + private final byte unusable; private int freeBytes; @@ -51,25 +150,31 @@ final class PoolChunk { this.memory = memory; this.pageSize = pageSize; this.pageShifts = pageShifts; + this.maxOrder = maxOrder; this.chunkSize = chunkSize; + unusable = (byte) (maxOrder + 1); + log2ChunkSize = Integer.SIZE - 1 - Integer.numberOfLeadingZeros(chunkSize); subpageOverflowMask = ~(pageSize - 1); freeBytes = chunkSize; - int chunkSizeInPages = chunkSize >>> pageShifts; + assert maxOrder < 30 : "maxOrder should be < 30, but is : " + maxOrder; maxSubpageAllocs = 1 << maxOrder; // Generate the memory map. - memoryMap = new int[maxSubpageAllocs << 1]; + memoryMap = new short[maxSubpageAllocs << 1]; int memoryMapIndex = 1; - for (int i = 0; i <= maxOrder; i ++) { - int runSizeInPages = chunkSizeInPages >>> i; - for (int j = 0; j < chunkSizeInPages; j += runSizeInPages) { - //noinspection PointlessBitwiseExpression - memoryMap[memoryMapIndex ++] = j << 17 | runSizeInPages << 2 | ST_UNUSED; + for (int d = 0; d <= maxOrder; ++d) { // move down the tree one level at a time + short dd = (short) ((d << BYTE_LENGTH) | d); + for (int p = 0; p < (1 << d); ++p) { + // in each level traverse left to right and set the depth of subtree + // that is completely free to be my depth since I am totally free to start with + memoryMap[memoryMapIndex] = dd; + memoryMapIndex += 1; } } subpages = newSubpageArray(maxSubpageAllocs); + elemSubpages = new IntObjectHashMap>(pageShifts); } /** Creates a special chunk that is not pooled. */ @@ -79,10 +184,14 @@ final class PoolChunk { this.memory = memory; memoryMap = null; subpages = null; + elemSubpages = null; subpageOverflowMask = 0; pageSize = 0; pageShifts = 0; + maxOrder = 0; + unusable = (byte) (maxOrder + 1); chunkSize = size; + log2ChunkSize = Integer.SIZE - 1 - Integer.numberOfLeadingZeros(chunkSize); maxSubpageAllocs = 0; } @@ -104,218 +213,141 @@ final class PoolChunk { } long allocate(int normCapacity) { - int firstVal = memoryMap[1]; if ((normCapacity & subpageOverflowMask) != 0) { // >= pageSize - return allocateRun(normCapacity, 1, firstVal); + return allocateRun(normCapacity); } else { - return allocateSubpage(normCapacity, 1, firstVal); + return allocateSubpage(normCapacity); } } - private long allocateRun(int normCapacity, int curIdx, int val) { - switch (val & 3) { - case ST_UNUSED: - return allocateRunSimple(normCapacity, curIdx, val); - case ST_BRANCH: - // Try the right node first because it is more likely to be ST_UNUSED. - // It is because allocateRunSimple() always chooses the left node. - final int nextIdxLeft = curIdx << 1; - final int nextIdxRight = nextIdxLeft ^ 1; - final int nextValRight = memoryMap[nextIdxRight]; - final boolean recurseRight; - - switch (nextValRight & 3) { - case ST_UNUSED: - return allocateRunSimple(normCapacity, nextIdxRight, nextValRight); - case ST_BRANCH: - recurseRight = true; - break; - default: - recurseRight = false; - } - - final int nextValLeft = memoryMap[nextIdxLeft]; - final boolean recurseLeft; - - switch (nextValLeft & 3) { - case ST_UNUSED: - return allocateRunSimple(normCapacity, nextIdxLeft, nextValLeft); - case ST_BRANCH: - recurseLeft = true; - break; - default: - recurseLeft = false; - } - - if (recurseRight) { - long res = branchRun(normCapacity, nextIdxRight); - if (res > 0) { - return res; - } - } - - if (recurseLeft) { - return branchRun(normCapacity, nextIdxLeft); - } + /** + * Update method used by allocate + * This is triggered only when a successor is allocated and all its predecessors + * need to update their state + * The minimal depth at which subtree rooted at id has some free space + * @param id id + */ + private void updateParentsAlloc(int id) { + while (id > 1) { + int parentId = id >>> 1; + byte mem1 = value(id); + byte mem2 = value(id ^ 1); + byte mem = mem1 < mem2 ? mem1 : mem2; + setVal(parentId, mem); + id = parentId; } - - return -1; } - private long branchRun(int normCapacity, int nextIdx) { - int nextNextIdx = nextIdx << 1; - int nextNextVal = memoryMap[nextNextIdx]; - long res = allocateRun(normCapacity, nextNextIdx, nextNextVal); - if (res > 0) { - return res; - } + /** + * Update method used by free + * This needs to handle the special case when both children are completely free + * in which case parent be directly allocated on request of size = child-size * 2 + * @param id id + */ + private void updateParentsFree(int id) { + int logChild = depth(id) + 1; + while (id > 1) { + int parentId = id >>> 1; + byte mem1 = value(id); + byte mem2 = value(id ^ 1); + byte mem = mem1 < mem2 ? mem1 : mem2; + setVal(parentId, mem); + logChild -= 1; // in first iteration equals log, subsequently reduce 1 from logChild as we traverse up - nextNextIdx ^= 1; - nextNextVal = memoryMap[nextNextIdx]; - return allocateRun(normCapacity, nextNextIdx, nextNextVal); + if (mem1 == logChild && mem2 == logChild) { + setVal(parentId, (byte) (logChild - 1)); + } + + id = parentId; + } } - private long allocateRunSimple(int normCapacity, int curIdx, int val) { - int runLength = runLength(val); - if (normCapacity > runLength) { + private int allocateNode(int d) { + int id = 1; + byte mem = value(id); + if (mem > d) { // unusable return -1; } - - for (;;) { - if (normCapacity == runLength) { - // Found the run that fits. - // Note that capacity has been normalized already, so we don't need to deal with - // the values that are not power of 2. - memoryMap[curIdx] = val & ~3 | ST_ALLOCATED; - freeBytes -= runLength; - return curIdx; + while (mem < d || (id & (1 << d)) == 0) { + id = id << 1; + mem = value(id); + if (mem > d) { + id = id ^ 1; + mem = value(id); } - - int nextIdx = curIdx << 1; - int unusedIdx = nextIdx ^ 1; - - memoryMap[curIdx] = val & ~3 | ST_BRANCH; - //noinspection PointlessBitwiseExpression - memoryMap[unusedIdx] = memoryMap[unusedIdx] & ~3 | ST_UNUSED; - - runLength >>>= 1; - curIdx = nextIdx; - val = memoryMap[curIdx]; } + setVal(id, unusable); // mark as unusable : because, maximum input d = maxOrder + updateParentsAlloc(id); + return id; } - private long allocateSubpage(int normCapacity, int curIdx, int val) { - switch (val & 3) { - case ST_UNUSED: - return allocateSubpageSimple(normCapacity, curIdx, val); - case ST_BRANCH: - // Try the right node first because it is more likely to be ST_UNUSED. - // It is because allocateSubpageSimple() always chooses the left node. - final int nextIdxLeft = curIdx << 1; - final int nextIdxRight = nextIdxLeft ^ 1; - - long res = branchSubpage(normCapacity, nextIdxRight); - if (res > 0) { - return res; - } - - return branchSubpage(normCapacity, nextIdxLeft); - case ST_ALLOCATED_SUBPAGE: - PoolSubpage subpage = subpages[subpageIdx(curIdx)]; - int elemSize = subpage.elemSize; - if (normCapacity != elemSize) { - return -1; - } - - return subpage.allocate(); + private long allocateRun(int normCapacity) { + int numPages = normCapacity >>> pageShifts; + int d = maxOrder - (Integer.SIZE - 1 - Integer.numberOfLeadingZeros(numPages)); + int id = allocateNode(d); + if (id < 0) { + return id; } - - return -1; + freeBytes -= runLength(id); + return id; } - private long allocateSubpageSimple(int normCapacity, int curIdx, int val) { - int runLength = runLength(val); - for (;;) { - if (runLength == pageSize) { - memoryMap[curIdx] = val & ~3 | ST_ALLOCATED_SUBPAGE; - freeBytes -= runLength; - - int subpageIdx = subpageIdx(curIdx); - PoolSubpage subpage = subpages[subpageIdx]; - if (subpage == null) { - subpage = new PoolSubpage(this, curIdx, runOffset(val), pageSize, normCapacity); - subpages[subpageIdx] = subpage; - } else { - subpage.init(normCapacity); - } - return subpage.allocate(); + private long allocateSubpage(int normCapacity) { + PoolSubpage subpage = elemSubpages.get(normCapacity); + if (subpage != null) { + long handle = subpage.allocate(); + if (handle >= 0) { + return handle; } - - int nextIdx = curIdx << 1; - int unusedIdx = nextIdx ^ 1; - - memoryMap[curIdx] = val & ~3 | ST_BRANCH; - //noinspection PointlessBitwiseExpression - memoryMap[unusedIdx] = memoryMap[unusedIdx] & ~3 | ST_UNUSED; - - runLength >>>= 1; - curIdx = nextIdx; - val = memoryMap[curIdx]; + // if subpage full (i.e., handle < 0) then replace in elemSubpage with new subpage } + return allocateSubpageSimple(normCapacity); } - private long branchSubpage(int normCapacity, int nextIdx) { - int nextVal = memoryMap[nextIdx]; - if ((nextVal & 3) != ST_ALLOCATED) { - return allocateSubpage(normCapacity, nextIdx, nextVal); + private long allocateSubpageSimple(int normCapacity) { + int d = maxOrder; // subpages are only be allocated from pages i.e., leaves + int id = allocateNode(d); + if (id < 0) { + return id; } - return -1; + freeBytes -= pageSize; + + int subpageIdx = subpageIdx(id); + PoolSubpage subpage = subpages[subpageIdx]; + if (subpage == null) { + subpage = new PoolSubpage(this, id, runOffset(id), pageSize, normCapacity); + subpages[subpageIdx] = subpage; + } else { + subpage.init(normCapacity); + } + elemSubpages.put(normCapacity, subpage); // store subpage at proper elemSize pos + return subpage.allocate(); } void free(long handle) { int memoryMapIdx = (int) handle; int bitmapIdx = (int) (handle >>> 32); - int val = memoryMap[memoryMapIdx]; - int state = val & 3; - if (state == ST_ALLOCATED_SUBPAGE) { - assert bitmapIdx != 0; + if (bitmapIdx != 0) { // free a subpage PoolSubpage subpage = subpages[subpageIdx(memoryMapIdx)]; assert subpage != null && subpage.doNotDestroy; if (subpage.free(bitmapIdx & 0x3FFFFFFF)) { return; } - } else { - assert state == ST_ALLOCATED : "state: " + state; - assert bitmapIdx == 0; } - freeBytes += runLength(val); - - for (;;) { - //noinspection PointlessBitwiseExpression - memoryMap[memoryMapIdx] = val & ~3 | ST_UNUSED; - if (memoryMapIdx == 1) { - assert freeBytes == chunkSize; - return; - } - - if ((memoryMap[siblingIdx(memoryMapIdx)] & 3) != ST_UNUSED) { - break; - } - - memoryMapIdx = parentIdx(memoryMapIdx); - val = memoryMap[memoryMapIdx]; - } + freeBytes += runLength(memoryMapIdx); + setVal(memoryMapIdx, depth(memoryMapIdx)); + updateParentsFree(memoryMapIdx); } void initBuf(PooledByteBuf buf, long handle, int reqCapacity) { int memoryMapIdx = (int) handle; int bitmapIdx = (int) (handle >>> 32); if (bitmapIdx == 0) { - int val = memoryMap[memoryMapIdx]; - assert (val & 3) == ST_ALLOCATED : String.valueOf(val & 3); - buf.init(this, handle, runOffset(val), reqCapacity, runLength(val)); + byte val = value(memoryMapIdx); + assert val == (maxOrder + 1) : String.valueOf(val); + buf.init(this, handle, runOffset(memoryMapIdx), reqCapacity, runLength(memoryMapIdx)); } else { initBufWithSubpage(buf, handle, bitmapIdx, reqCapacity); } @@ -329,38 +361,45 @@ final class PoolChunk { assert bitmapIdx != 0; int memoryMapIdx = (int) handle; - int val = memoryMap[memoryMapIdx]; - assert (val & 3) == ST_ALLOCATED_SUBPAGE; PoolSubpage subpage = subpages[subpageIdx(memoryMapIdx)]; assert subpage.doNotDestroy; assert reqCapacity <= subpage.elemSize; buf.init( - this, handle, - runOffset(val) + (bitmapIdx & 0x3FFFFFFF) * subpage.elemSize, reqCapacity, subpage.elemSize); + this, handle, + runOffset(memoryMapIdx) + (bitmapIdx & 0x3FFFFFFF) * subpage.elemSize, reqCapacity, subpage.elemSize); } - private static int parentIdx(int memoryMapIdx) { - return memoryMapIdx >>> 1; + private byte value(int id) { + return (byte) (memoryMap[id] & BYTE_MASK); } - private static int siblingIdx(int memoryMapIdx) { - return memoryMapIdx ^ 1; + private void setVal(int id, byte val) { + memoryMap[id] = (short) ((memoryMap[id] & INV_BYTE_MASK) | val); } - private int runLength(int val) { - return (val >>> 2 & 0x7FFF) << pageShifts; + private byte depth(int id) { + short val = memoryMap[id]; + return (byte) (val >>> BYTE_LENGTH); } - private int runOffset(int val) { - return val >>> 17 << pageShifts; + private int runLength(int id) { + // represents the size in #bytes supported by node 'id' in the tree + return 1 << (log2ChunkSize - depth(id)); + } + + private int runOffset(int id) { + // represents the 0-based offset in #bytes from start of the byte-array chunk + int shift = id - (1 << depth(id)); + return shift * runLength(id); } private int subpageIdx(int memoryMapIdx) { return memoryMapIdx - maxSubpageAllocs; } + @Override public String toString() { StringBuilder buf = new StringBuilder(); buf.append("Chunk(");