Handle the interface name in IPv6 address correctly

Motivation:

NetUtil.isValidIpV6Address() handles the interface name in IPv6 address
incorrectly. For example, it returns false for the following addresses:

- ::1%lo
- ::1%_%_in_name_

Modifications:

- Strip the square brackets before validation for simplicity
- Strip the part after the percent sign completely before validation for
  simplicity
- Simplify and reformat NetUtilTest

Result:

- The interface names in IPv6 addresses are handled correctly.
- NetUtilTest is cleaner
This commit is contained in:
Trustin Lee 2014-11-12 12:11:31 +09:00
parent bb94f05083
commit 59f222a821
2 changed files with 934 additions and 334 deletions

View File

@ -27,6 +27,7 @@ import java.net.Inet6Address;
import java.net.InetAddress; import java.net.InetAddress;
import java.net.NetworkInterface; import java.net.NetworkInterface;
import java.net.SocketException; import java.net.SocketException;
import java.net.UnknownHostException;
import java.util.ArrayList; import java.util.ArrayList;
import java.util.Enumeration; import java.util.Enumeration;
import java.util.List; import java.util.List;
@ -68,6 +69,51 @@ public final class NetUtil {
*/ */
public static final int SOMAXCONN; public static final int SOMAXCONN;
/**
* This defines how many words (represented as ints) are needed to represent an IPv6 address
*/
private static final int IPV6_WORD_COUNT = 8;
/**
* The maximum number of characters for an IPV6 string with no scope
*/
private static final int IPV6_MAX_CHAR_COUNT = 39;
/**
* Number of bytes needed to represent and IPV6 value
*/
private static final int IPV6_BYTE_COUNT = 16;
/**
* Maximum amount of value adding characters in between IPV6 separators
*/
private static final int IPV6_MAX_CHAR_BETWEEN_SEPARATOR = 4;
/**
* Minimum number of separators that must be present in an IPv6 string
*/
private static final int IPV6_MIN_SEPARATORS = 2;
/**
* Maximum number of separators that must be present in an IPv6 string
*/
private static final int IPV6_MAX_SEPARATORS = 8;
/**
* Number of bytes needed to represent and IPV4 value
*/
private static final int IPV4_BYTE_COUNT = 4;
/**
* Maximum amount of value adding characters in between IPV4 separators
*/
private static final int IPV4_MAX_CHAR_BETWEEN_SEPARATOR = 3;
/**
* Number of separators that must be present in an IPv4 string
*/
private static final int IPV4_SEPARATORS = 3;
/** /**
* The logger being used by this class * The logger being used by this class
*/ */
@ -223,8 +269,8 @@ public final class NetUtil {
StringTokenizer tokenizer = new StringTokenizer(ipAddressString, "."); StringTokenizer tokenizer = new StringTokenizer(ipAddressString, ".");
String token; String token;
int tempInt; int tempInt;
byte[] byteAddress = new byte[4]; byte[] byteAddress = new byte[IPV4_BYTE_COUNT];
for (int i = 0; i < 4; i ++) { for (int i = 0; i < IPV4_BYTE_COUNT; i ++) {
token = tokenizer.nextToken(); token = tokenizer.nextToken();
tempInt = Integer.parseInt(token); tempInt = Integer.parseInt(token);
byteAddress[i] = (byte) tempInt; byteAddress[i] = (byte) tempInt;
@ -299,11 +345,11 @@ public final class NetUtil {
} }
} }
byte[] ipByteArray = new byte[16]; byte[] ipByteArray = new byte[IPV6_BYTE_COUNT];
// Finally convert these strings to bytes... // Finally convert these strings to bytes...
for (int i = 0; i < hexStrings.size(); i ++) { for (int i = 0; i < hexStrings.size(); i ++) {
convertToBytes(hexStrings.get(i), ipByteArray, i * 2); convertToBytes(hexStrings.get(i), ipByteArray, i << 1);
} }
// Now if there are any decimal values, we know where they go... // Now if there are any decimal values, we know where they go...
@ -352,42 +398,42 @@ public final class NetUtil {
static int getIntValue(char c) { static int getIntValue(char c) {
switch (c) { switch (c) {
case '0': case '0':
return 0; return 0;
case '1': case '1':
return 1; return 1;
case '2': case '2':
return 2; return 2;
case '3': case '3':
return 3; return 3;
case '4': case '4':
return 4; return 4;
case '5': case '5':
return 5; return 5;
case '6': case '6':
return 6; return 6;
case '7': case '7':
return 7; return 7;
case '8': case '8':
return 8; return 8;
case '9': case '9':
return 9; return 9;
} }
c = Character.toLowerCase(c); c = Character.toLowerCase(c);
switch (c) { switch (c) {
case 'a': case 'a':
return 10; return 10;
case 'b': case 'b':
return 11; return 11;
case 'c': case 'c':
return 12; return 12;
case 'd': case 'd':
return 13; return 13;
case 'e': case 'e':
return 14; return 14;
case 'f': case 'f':
return 15; return 15;
} }
return 0; return 0;
} }
@ -397,123 +443,89 @@ public final class NetUtil {
boolean doubleColon = false; boolean doubleColon = false;
int numberOfColons = 0; int numberOfColons = 0;
int numberOfPeriods = 0; int numberOfPeriods = 0;
int numberOfPercent = 0;
StringBuilder word = new StringBuilder(); StringBuilder word = new StringBuilder();
char c = 0; char c = 0;
char prevChar; char prevChar;
int offset = 0; // offset for [] ip addresses int startOffset = 0; // offset for [] ip addresses
int endOffset = ipAddress.length();
if (length < 2) { if (endOffset < 2) {
return false; return false;
} }
for (int i = 0; i < length; i ++) { // Strip []
if (ipAddress.charAt(0) == '[') {
if (ipAddress.charAt(endOffset - 1) != ']') {
return false; // must have a close ]
}
startOffset = 1;
endOffset --;
}
// Strip the interface name/index after the percent sign.
int percentIdx = ipAddress.indexOf('%', startOffset);
if (percentIdx >= 0) {
endOffset = percentIdx;
}
for (int i = startOffset; i < endOffset; i ++) {
prevChar = c; prevChar = c;
c = ipAddress.charAt(i); c = ipAddress.charAt(i);
switch (c) { switch (c) {
// case for the last 32-bits represented as IPv4 x:x:x:x:x:x:d.d.d.d
case '.':
numberOfPeriods ++;
if (numberOfPeriods > 3) {
return false;
}
if (!isValidIp4Word(word.toString())) {
return false;
}
if (numberOfColons != 6 && !doubleColon) {
return false;
}
// a special case ::1:2:3:4:5:d.d.d.d allows 7 colons with an
// IPv4 ending, otherwise 7 :'s is bad
if (numberOfColons == 7 && ipAddress.charAt(startOffset) != ':' &&
ipAddress.charAt(1 + startOffset) != ':') {
return false;
}
word.delete(0, word.length());
break;
// case for an open bracket [x:x:x:...x] case ':':
case '[': // FIX "IP6 mechanism syntax #ip6-bad1"
if (i != 0) { // An IPV6 address cannot start with a single ":".
return false; // must be first character // Either it can starti with "::" or with a number.
} if (i == startOffset && (ipAddress.length() <= i || ipAddress.charAt(i + 1) != ':')) {
if (ipAddress.charAt(length - 1) != ']') { return false;
return false; // must have a close ] }
} // END FIX "IP6 mechanism syntax #ip6-bad1"
offset = 1; numberOfColons ++;
if (length < 4) { if (numberOfColons > 7) {
return false;
}
if (numberOfPeriods > 0) {
return false;
}
if (prevChar == ':') {
if (doubleColon) {
return false; return false;
} }
break; doubleColon = true;
}
word.delete(0, word.length());
break;
// case for a closed bracket at end of IP [x:x:x:...x] default:
case ']': if (word != null && word.length() > 3) {
if (i != length - 1) { return false;
return false; // must be last charcter }
} if (!isValidHexChar(c)) {
if (ipAddress.charAt(0) != '[') { return false;
return false; // must have a open [ }
} word.append(c);
break;
// case for the last 32-bits represented as IPv4 x:x:x:x:x:x:d.d.d.d
case '.':
numberOfPeriods ++;
if (numberOfPeriods > 3) {
return false;
}
if (!isValidIp4Word(word.toString())) {
return false;
}
if (numberOfColons != 6 && !doubleColon) {
return false;
}
// a special case ::1:2:3:4:5:d.d.d.d allows 7 colons with an
// IPv4 ending, otherwise 7 :'s is bad
if (numberOfColons == 7 && ipAddress.charAt(offset) != ':' &&
ipAddress.charAt(1 + offset) != ':') {
return false;
}
word.delete(0, word.length());
break;
case ':':
// FIX "IP6 mechanism syntax #ip6-bad1"
// An IPV6 address cannot start with a single ":".
// Either it can starti with "::" or with a number.
if (i == offset && (ipAddress.length() <= i || ipAddress.charAt(i + 1) != ':')) {
return false;
}
// END FIX "IP6 mechanism syntax #ip6-bad1"
numberOfColons ++;
if (numberOfColons > 7) {
return false;
}
if (numberOfPeriods > 0) {
return false;
}
if (prevChar == ':') {
if (doubleColon) {
return false;
}
doubleColon = true;
}
word.delete(0, word.length());
break;
case '%':
if (numberOfColons == 0) {
return false;
}
numberOfPercent ++;
// validate that the stuff after the % is valid
if (i + 1 >= length) {
// in this case the percent is there but no number is
// available
return false;
}
try {
if (Integer.parseInt(ipAddress.substring(i + 1)) < 0) {
return false;
}
} catch (NumberFormatException e) {
// right now we just support an integer after the % so if
// this is not
// what is there then return
return false;
}
break;
default:
if (numberOfPercent == 0) {
if (word != null && word.length() > 3) {
return false;
}
if (!isValidHexChar(c)) {
return false;
}
}
word.append(c);
} }
} }
@ -533,11 +545,9 @@ public final class NetUtil {
// If we have an empty word at the end, it means we ended in either // If we have an empty word at the end, it means we ended in either
// a : or a . // a : or a .
// If we did not end in :: then this is invalid // If we did not end in :: then this is invalid
if (numberOfPercent == 0) { if (word.length() == 0 && ipAddress.charAt(length - 1 - startOffset) == ':' &&
if (word.length() == 0 && ipAddress.charAt(length - 1 - offset) == ':' && ipAddress.charAt(length - 2 - startOffset) != ':') {
ipAddress.charAt(length - 2 - offset) != ':') { return false;
return false;
}
} }
} }
@ -558,10 +568,14 @@ public final class NetUtil {
return Integer.parseInt(word) <= 255; return Integer.parseInt(word) <= 255;
} }
static boolean isValidHexChar(char c) { private static boolean isValidHexChar(char c) {
return c >= '0' && c <= '9' || c >= 'A' && c <= 'F' || c >= 'a' && c <= 'f'; return c >= '0' && c <= '9' || c >= 'A' && c <= 'F' || c >= 'a' && c <= 'f';
} }
private static boolean isValidNumericChar(char c) {
return c >= '0' && c <= '9';
}
/** /**
* Takes a string and parses it to see if it is a valid IPV4 address. * Takes a string and parses it to see if it is a valid IPV4 address.
* *
@ -610,6 +624,368 @@ public final class NetUtil {
return periods == 3; return periods == 3;
} }
/**
* Returns the {@link Inet6Address} representation of a {@link CharSequence} IP address.
* <p>
* This method will treat all IPv4 type addresses as "IPv4 mapped" (see {@link #getByName(CharSequence, boolean)})
* @param ip {@link CharSequence} IP address to be converted to a {@link Inet6Address}
* @return {@link Inet6Address} representation of the {@code ip} or {@code null} if not a valid IP address.
*/
public static Inet6Address getByName(CharSequence ip) {
return getByName(ip, true);
}
/**
* Returns the {@link Inet6Address} representation of a {@link CharSequence} IP address.
* <p>
* The {@code ipv4Mapped} parameter specifies how IPv4 addresses should be treated.
* "IPv4 mapped" format as
* defined in <a href="http://tools.ietf.org/html/rfc4291#section-2.5.5">rfc 4291 section 2</a> is supported.
* @param ip {@link CharSequence} IP address to be converted to a {@link Inet6Address}
* @param ipv4Mapped
* <ul>
* <li>{@code true} To allow IPv4 mapped inputs to be translated into {@link Inet6Address}</li>
* <li>{@code false} Don't turn IPv4 addressed to mapped addresses</li>
* </ul>
* @return {@link Inet6Address} representation of the {@code ip} or {@code null} if not a valid IP address.
*/
public static Inet6Address getByName(CharSequence ip, boolean ipv4Mapped) {
final byte[] bytes = new byte[IPV6_BYTE_COUNT];
final int ipLength = ip.length();
int compressBegin = 0;
int compressLength = 0;
int currentIndex = 0;
int value = 0;
int begin = -1;
int i = 0;
int ipv6Seperators = 0;
int ipv4Seperators = 0;
int tmp;
boolean needsShift = false;
for (; i < ipLength; ++i) {
final char c = ip.charAt(i);
switch (c) {
case ':':
++ipv6Seperators;
if (i - begin > IPV6_MAX_CHAR_BETWEEN_SEPARATOR ||
ipv4Seperators > 0 || ipv6Seperators > IPV6_MAX_SEPARATORS ||
currentIndex + 1 >= bytes.length) {
return null;
}
value <<= (IPV6_MAX_CHAR_BETWEEN_SEPARATOR - (i - begin)) << 2;
if (compressLength > 0) {
compressLength -= 2;
}
// The value integer holds at most 4 bytes from right (most significant) to left (least significant).
// The following bit shifting is used to extract and re-order the individual bytes to achieve a
// left (most significant) to right (least significant) ordering.
bytes[currentIndex++] = (byte) (((value & 0xf) << 4) | ((value >> 4) & 0xf));
bytes[currentIndex++] = (byte) ((((value >> 8) & 0xf) << 4) | ((value >> 12) & 0xf));
tmp = i + 1;
if (tmp < ipLength && ip.charAt(tmp) == ':') {
++tmp;
if (compressBegin != 0 || (tmp < ipLength && ip.charAt(tmp) == ':')) {
return null;
}
++ipv6Seperators;
needsShift = ipv6Seperators == 2 && value == 0;
compressBegin = currentIndex;
compressLength = bytes.length - compressBegin - 2;
++i;
}
value = 0;
begin = -1;
break;
case '.':
++ipv4Seperators;
if (i - begin > IPV4_MAX_CHAR_BETWEEN_SEPARATOR
|| ipv4Seperators > IPV4_SEPARATORS
|| (ipv6Seperators > 0 && (currentIndex + compressLength < 12))
|| i + 1 >= ipLength
|| currentIndex >= bytes.length
|| begin < 0
|| (begin == 0 && (i == 3 && (!isValidNumericChar(ip.charAt(2)) ||
!isValidNumericChar(ip.charAt(1)) ||
!isValidNumericChar(ip.charAt(0))) ||
i == 2 && (!isValidNumericChar(ip.charAt(1)) ||
!isValidNumericChar(ip.charAt(0))) ||
i == 1 && !isValidNumericChar(ip.charAt(0))))) {
return null;
}
value <<= (IPV4_MAX_CHAR_BETWEEN_SEPARATOR - (i - begin)) << 2;
// The value integer holds at most 3 bytes from right (most significant) to left (least significant).
// The following bit shifting is to restructure the bytes to be left (most significant) to
// right (least significant) while also accounting for each IPv4 digit is base 10.
begin = (value & 0xf) * 100 + ((value >> 4) & 0xf) * 10 + ((value >> 8) & 0xf);
if (begin < 0 || begin > 255) {
return null;
}
bytes[currentIndex++] = (byte) begin;
value = 0;
begin = -1;
break;
default:
if (!isValidHexChar(c) || (ipv4Seperators > 0 && !isValidNumericChar(c))) {
return null;
}
if (begin < 0) {
begin = i;
} else if (i - begin > IPV6_MAX_CHAR_BETWEEN_SEPARATOR) {
return null;
}
// The value is treated as a sort of array of numbers because we are dealing with
// at most 4 consecutive bytes we can use bit shifting to accomplish this.
// The most significant byte will be encountered first, and reside in the right most
// position of the following integer
value += getIntValue(c) << ((i - begin) << 2);
break;
}
}
final boolean isCompressed = compressBegin > 0;
// Finish up last set of data that was accumulated in the loop (or before the loop)
if (ipv4Seperators > 0) {
if (begin > 0 && i - begin > IPV4_MAX_CHAR_BETWEEN_SEPARATOR ||
ipv4Seperators != IPV4_SEPARATORS ||
currentIndex >= bytes.length) {
return null;
}
if (ipv6Seperators == 0) {
compressLength = 12;
} else if (ipv6Seperators >= IPV6_MIN_SEPARATORS &&
ip.charAt(ipLength - 1) != ':' &&
(!isCompressed && (ipv6Seperators == 6 && ip.charAt(0) != ':') ||
isCompressed && (ipv6Seperators + 1 < IPV6_MAX_SEPARATORS &&
(ip.charAt(0) != ':' || compressBegin <= 2)))) {
compressLength -= 2;
} else {
return null;
}
value <<= (IPV4_MAX_CHAR_BETWEEN_SEPARATOR - (i - begin)) << 2;
// The value integer holds at most 3 bytes from right (most significant) to left (least significant).
// The following bit shifting is to restructure the bytes to be left (most significant) to
// right (least significant) while also accounting for each IPv4 digit is base 10.
begin = (value & 0xf) * 100 + ((value >> 4) & 0xf) * 10 + ((value >> 8) & 0xf);
if (begin < 0 || begin > 255) {
return null;
}
bytes[currentIndex++] = (byte) begin;
} else {
tmp = ipLength - 1;
if (begin > 0 && i - begin > IPV6_MAX_CHAR_BETWEEN_SEPARATOR ||
ipv6Seperators < IPV6_MIN_SEPARATORS ||
!isCompressed && (ipv6Seperators + 1 != IPV6_MAX_SEPARATORS ||
ip.charAt(0) == ':' || ip.charAt(tmp) == ':') ||
isCompressed && (ipv6Seperators > IPV6_MAX_SEPARATORS ||
(ipv6Seperators == IPV6_MAX_SEPARATORS &&
(compressBegin <= 2 && ip.charAt(0) != ':' ||
compressBegin >= 14 && ip.charAt(tmp) != ':'))) ||
currentIndex + 1 >= bytes.length) {
return null;
}
if (begin >= 0 && i - begin <= IPV6_MAX_CHAR_BETWEEN_SEPARATOR) {
value <<= (IPV6_MAX_CHAR_BETWEEN_SEPARATOR - (i - begin)) << 2;
}
// The value integer holds at most 4 bytes from right (most significant) to left (least significant).
// The following bit shifting is used to extract and re-order the individual bytes to achieve a
// left (most significant) to right (least significant) ordering.
bytes[currentIndex++] = (byte) (((value & 0xf) << 4) | ((value >> 4) & 0xf));
bytes[currentIndex++] = (byte) ((((value >> 8) & 0xf) << 4) | ((value >> 12) & 0xf));
}
i = currentIndex + compressLength;
if (needsShift || i >= bytes.length) {
// Right shift array
if (i >= bytes.length) {
++compressBegin;
}
for (i = currentIndex; i < bytes.length; ++i) {
for (begin = bytes.length - 1; begin >= compressBegin; --begin) {
bytes[begin] = bytes[begin - 1];
}
bytes[begin] = 0;
++compressBegin;
}
} else {
// Selectively move elements
for (i = 0; i < compressLength; ++i) {
begin = i + compressBegin;
currentIndex = begin + compressLength;
if (currentIndex < bytes.length) {
bytes[currentIndex] = bytes[begin];
bytes[begin] = 0;
} else {
break;
}
}
}
if (ipv4Mapped && ipv4Seperators > 0 &&
bytes[0] == 0 && bytes[1] == 0 && bytes[2] == 0 && bytes[3] == 0 && bytes[4] == 0 &&
bytes[5] == 0 && bytes[6] == 0 && bytes[7] == 0 && bytes[8] == 0 && bytes[9] == 0) {
bytes[10] = bytes[11] = (byte) 0xff;
}
try {
return Inet6Address.getByAddress(null, bytes, -1);
} catch (UnknownHostException e) {
throw new RuntimeException(e); // Should never happen
}
}
/**
* Returns the {@link String} representation of an {@link InetAddress}.
* <ul>
* <li>Inet4Address results are identical to {@link InetAddress#getHostAddress()}</li>
* <li>Inet6Address results adhere to
* <a href="http://tools.ietf.org/html/rfc5952#section-4">rfc 5952 section 4</a></li>
* </ul>
* <p>
* The output does not include Scope ID.
* @param ip {@link InetAddress} to be converted to an address string
* @return {@code String} containing the text-formatted IP address
*/
public static String toAddressString(InetAddress ip) {
return toAddressString(ip, false);
}
/**
* Returns the {@link String} representation of an {@link InetAddress}.
* <ul>
* <li>Inet4Address results are identical to {@link InetAddress#getHostAddress()}</li>
* <li>Inet6Address results adhere to
* <a href="http://tools.ietf.org/html/rfc5952#section-4">rfc 5952 section 4</a> if
* {@code ipv4Mapped} is false. If {@code ipv4Mapped} is true then "IPv4 mapped" format
* from <a href="http://tools.ietf.org/html/rfc4291#section-2.5.5">rfc 4291 section 2</a> will be supported.
* The compressed result will always obey the compression rules defined in
* <a href="http://tools.ietf.org/html/rfc5952#section-4">rfc 5952 section 4</a></li>
* </ul>
* <p>
* The output does not include Scope ID.
* @param ip {@link InetAddress} to be converted to an address string
* @param ipv4Mapped
* <ul>
* <li>{@code true} to stray from strict rfc 5952 and support the "IPv4 mapped" format
* defined in <a href="http://tools.ietf.org/html/rfc4291#section-2.5.5">rfc 4291 section 2</a> while still
* following the updated guidelines in
* <a href="http://tools.ietf.org/html/rfc5952#section-4">rfc 5952 section 4</a></li>
* <li>{@code false} to strictly follow rfc 5952</li>
* </ul>
* @return {@code String} containing the text-formatted IP address
*/
public static String toAddressString(InetAddress ip, boolean ipv4Mapped) {
if (ip instanceof Inet4Address) {
return ip.getHostAddress();
}
if (!(ip instanceof Inet6Address)) {
throw new IllegalArgumentException("Unhandled type: " + ip.getClass());
}
final byte[] bytes = ip.getAddress();
final int[] words = new int[IPV6_WORD_COUNT];
int i;
for (i = 0; i < words.length; ++i) {
words[i] = ((bytes[i << 1] & 0xff) << 8) | (bytes[(i << 1) + 1] & 0xff);
}
// Find longest run of 0s, tie goes to first found instance
int currentStart = -1;
int currentLength = 0;
int shortestStart = -1;
int shortestLength = 0;
for (i = 0; i < words.length; ++i) {
if (words[i] == 0) {
if (currentStart < 0) {
currentStart = i;
}
} else if (currentStart >= 0) {
currentLength = i - currentStart;
if (currentLength > shortestLength) {
shortestStart = currentStart;
shortestLength = currentLength;
}
currentStart = -1;
}
}
// If the array ends on a streak of zeros, make sure we account for it
if (currentStart >= 0) {
currentLength = i - currentStart;
if (currentLength > shortestLength) {
shortestStart = currentStart;
shortestLength = currentLength;
}
}
// Ignore the longest streak if it is only 1 long
if (shortestLength == 1) {
shortestLength = 0;
shortestStart = -1;
}
// Translate to string taking into account longest consecutive 0s
final int shortestEnd = shortestStart + shortestLength;
final StringBuilder b = new StringBuilder(IPV6_MAX_CHAR_COUNT);
if (shortestEnd < 0) { // Optimization when there is no compressing needed
b.append(Integer.toHexString(words[0]));
for (i = 1; i < words.length; ++i) {
b.append(':');
b.append(Integer.toHexString(words[i]));
}
} else { // General case that can handle compressing (and not compressing)
// Loop unroll the first index (so we don't constantly check i==0 cases in loop)
final boolean isIpv4Mapped;
if (inRangeEndExclusive(0, shortestStart, shortestEnd)) {
b.append("::");
isIpv4Mapped = ipv4Mapped && (shortestEnd == 5 && words[5] == 0xffff);
} else {
b.append(Integer.toHexString(words[0]));
isIpv4Mapped = false;
}
for (i = 1; i < words.length; ++i) {
if (!inRangeEndExclusive(i, shortestStart, shortestEnd)) {
if (!inRangeEndExclusive(i - 1, shortestStart, shortestEnd)) {
// If the last index was not part of the shortened sequence
if (!isIpv4Mapped || i == 6) {
b.append(':');
} else {
b.append('.');
}
}
if (isIpv4Mapped && i > 5) {
b.append(words[i] >> 8);
b.append('.');
b.append(words[i] & 0xff);
} else {
b.append(Integer.toHexString(words[i]));
}
} else if (!inRangeEndExclusive(i - 1, shortestStart, shortestEnd)) {
// If we are in the shortened sequence and the last index was not
b.append("::");
}
}
}
return b.toString();
}
/**
* Does a range check on {@code value} if is within {@code start} (inclusive) and {@code end} (exclusive).
* @param value The value to checked if is within {@code start} (inclusive) and {@code end} (exclusive)
* @param start The start of the range (inclusive)
* @param end The end of the range (exclusive)
* @return
* <ul>
* <li>{@code true} if {@code value} if is within {@code start} (inclusive) and {@code end} (exclusive)</li>
* <li>{@code false} otherwise</li>
* </ul>
*/
private static boolean inRangeEndExclusive(int value, int start, int end) {
return value >= start && value < end;
}
/** /**
* A constructor to stop this class being constructed. * A constructor to stop this class being constructed.
*/ */

View File

@ -17,6 +17,8 @@ package io.netty.util;
import org.junit.Test; import org.junit.Test;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.HashMap; import java.util.HashMap;
import java.util.Map; import java.util.Map;
import java.util.Map.Entry; import java.util.Map.Entry;
@ -24,230 +26,385 @@ import java.util.Map.Entry;
import static org.junit.Assert.*; import static org.junit.Assert.*;
public class NetUtilTest { public class NetUtilTest {
private static final Map<String, byte[]> validIpV4Hosts = new HashMap<String, byte[]>() {
private static final long serialVersionUID = 2629792739366724032L; private static final class TestMap extends HashMap<String, String> {
{ private static final long serialVersionUID = -298642816998608473L;
put("192.168.1.0", new byte[]{
(byte) 0xc0, (byte) 0xa8, 0x01, 0x00} TestMap(String... values) {
); for (int i = 0; i < values.length; i += 2) {
put("10.255.255.254", new byte[]{ String key = values[i];
0x0a, (byte) 0xff, (byte) 0xff, (byte) 0xfe String value = values[i + 1];
}); put(key, value);
put("172.18.5.4", new byte[]{ }
(byte) 0xac, 0x12, 0x05, 0x04
});
put("0.0.0.0", new byte[]{
0x00, 0x00, 0x00, 0x00
});
put("127.0.0.1", new byte[]{
0x7f, 0x00, 0x00, 0x01
});
} }
}; }
private static final Map<String, byte[]> invalidIpV4Hosts = new HashMap<String, byte[]>() {
private static final long serialVersionUID = 1299215199895717282L; private static final Map<String, String> validIpV4Hosts = new TestMap(
{ "192.168.1.0", "c0a80100",
put("1.256.3.4", null); "10.255.255.254", "0afffffe",
put("256.0.0.1", null); "172.18.5.4", "ac120504",
put("1.1.1.1.1", null); "0.0.0.0", "00000000",
} "127.0.0.1", "7f000001");
};
private static final Map<String, byte[]> validIpV6Hosts = new HashMap<String, byte[]>() { private static final Map<String, String> invalidIpV4Hosts = new TestMap(
private static final long serialVersionUID = 3999763170377573184L; "1.256.3.4", null,
{ "256.0.0.1", null,
put("::ffff:5.6.7.8", new byte[]{ "1.1.1.1.1", null,
0x00, 0x00, 0x00, 0x00, "x.255.255.255", null,
0x00, 0x00, 0x00, 0x00, "0.1:0.0", null,
0x00, 0x00, (byte) 0xff, (byte) 0xff, "0.1.0.0:", null,
0x05, 0x06, 0x07, 0x08} "127.0.0.", null,
); "1.2..4", null,
put("fdf8:f53b:82e4::53", new byte[]{ "192.0.1", null,
(byte) 0xfd, (byte) 0xf8, (byte) 0xf5, 0x3b, "192.0.1.1.1", null,
(byte) 0x82, (byte) 0xe4, 0x00, 0x00, "192.0.1.a", null,
0x00, 0x00, 0x00, 0x00, "19a.0.1.1", null,
0x00, 0x00, 0x00, 0x53} "a.0.1.1", null,
); ".0.1.1", null,
put("fe80::200:5aee:feaa:20a2", new byte[]{ "...", null);
(byte) 0xfe, (byte) 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, private static final Map<String, String> validIpV6Hosts = new TestMap(
0x02, 0x00, 0x5a, (byte) 0xee, "::ffff:5.6.7.8", "00000000000000000000ffff05060708",
(byte) 0xfe, (byte) 0xaa, 0x20, (byte) 0xa2} "fdf8:f53b:82e4::53", "fdf8f53b82e400000000000000000053",
); "fe80::200:5aee:feaa:20a2", "fe8000000000000002005aeefeaa20a2",
put("2001::1", new byte[]{ "2001::1", "20010000000000000000000000000001",
0x20, 0x01, 0x00, 0x00, "2001:0000:4136:e378:8000:63bf:3fff:fdd2", "200100004136e378800063bf3ffffdd2",
0x00, 0x00, 0x00, 0x00, "2001:0002:6c::430", "20010002006c00000000000000000430",
0x00, 0x00, 0x00, 0x00, "2001:10:240:ab::a", "20010010024000ab000000000000000a",
0x00, 0x00, 0x00, 0x01} "2002:cb0a:3cdd:1::1", "2002cb0a3cdd00010000000000000001",
); "2001:db8:8:4::2", "20010db8000800040000000000000002",
put("2001:0000:4136:e378:8000:63bf:3fff:fdd2", new byte[]{ "ff01:0:0:0:0:0:0:2", "ff010000000000000000000000000002",
0x20, 0x01, 0x00, 0x00, "[fdf8:f53b:82e4::53]", "fdf8f53b82e400000000000000000053",
0x41, 0x36, (byte) 0xe3, 0x78, "[fe80::200:5aee:feaa:20a2]", "fe8000000000000002005aeefeaa20a2",
(byte) 0x80, 0x00, 0x63, (byte) 0xbf, "[2001::1]", "20010000000000000000000000000001",
0x3f, (byte) 0xff, (byte) 0xfd, (byte) 0xd2} "[2001:0000:4136:e378:8000:63bf:3fff:fdd2]", "200100004136e378800063bf3ffffdd2",
); "0:1:2:3:4:5:6:789a", "0000000100020003000400050006789a",
put("2001:0002:6c::430", new byte[]{ "0:1:2:3::f", "0000000100020003000000000000000f",
0x20, 0x01, 0x00, 0x02, "0:0:0:0:0:0:10.0.0.1", "0000000000000000000000000a000001",
0x00, 0x6c, 0x00, 0x00, "::ffff:192.168.0.1", "00000000000000000000ffffc0a80001",
0x00, 0x00, 0x00, 0x00, // Test if various interface names after the percent sign are recognized.
0x00, 0x00, 0x04, 0x30} "[::1%1]", "00000000000000000000000000000001",
); "[::1%eth0]", "00000000000000000000000000000001",
put("2001:10:240:ab::a", new byte[]{ "[::1%%]", "00000000000000000000000000000001",
0x20, 0x01, 0x00, 0x10, "::1%1", "00000000000000000000000000000001",
0x02, 0x40, 0x00, (byte) 0xab, "::1%eth0", "00000000000000000000000000000001",
0x00, 0x00, 0x00, 0x00, "::1%%", "00000000000000000000000000000001");
0x00, 0x00, 0x00, 0x0a});
put("2002:cb0a:3cdd:1::1", new byte[]{ private static final Map<String, String> invalidIpV6Hosts = new TestMap(
0x20, 0x02, (byte) 0xcb, 0x0a,
0x3c, (byte) 0xdd, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01}
);
put("2001:db8:8:4::2", new byte[]{
0x20, 0x01, 0x0d, (byte) 0xb8,
0x00, 0x08, 0x00, 0x04,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x02}
);
put("ff01:0:0:0:0:0:0:2", new byte[]{
(byte) 0xff, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x02}
);
put("[fdf8:f53b:82e4::53]", new byte[]{
(byte) 0xfd, (byte) 0xf8, (byte) 0xf5, 0x3b,
(byte) 0x82, (byte) 0xe4, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x53}
);
put("[fe80::200:5aee:feaa:20a2]", new byte[]{
(byte) 0xfe, (byte) 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x5a, (byte) 0xee,
(byte) 0xfe, (byte) 0xaa, 0x20, (byte) 0xa2}
);
put("[2001::1]", new byte[]{
0x20, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01}
);
put("[2001:0000:4136:e378:8000:63bf:3fff:fdd2]", new byte[]{
0x20, 0x01, 0x00, 0x00,
0x41, 0x36, (byte) 0xe3, 0x78,
(byte) 0x80, 0x00, 0x63, (byte) 0xbf,
0x3f, (byte) 0xff, (byte) 0xfd, (byte) 0xd2}
);
put("0:1:2:3:4:5:6:789a", new byte[]{
0x00, 0x00, 0x00, 0x01,
0x00, 0x02, 0x00, 0x03,
0x00, 0x04, 0x00, 0x05,
0x00, 0x06, 0x78, (byte) 0x9a}
);
put("0:1:2:3::f", new byte[]{
0x00, 0x00, 0x00, 0x01,
0x00, 0x02, 0x00, 0x03,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x0f}
);
put("0:0:0:0:0:0:10.0.0.1", new byte[]{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x0a, 0x00, 0x00, 0x01}
);
put("::ffff:192.168.0.1", new byte[]{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, (byte) 0xff, (byte) 0xff,
(byte) 0xc0, (byte) 0xa8, 0x00, 0x01}
);
}
};
private static final Map<String, byte[]> invalidIpV6Hosts = new HashMap<String, byte[]>() {
private static final long serialVersionUID = -5870810805409009696L;
{
// Test method with garbage. // Test method with garbage.
put("Obvious Garbage", null); "Obvious Garbage", null,
// Test method with preferred style, too many : // Test method with preferred style, too many :
put("0:1:2:3:4:5:6:7:8", null); "0:1:2:3:4:5:6:7:8", null,
// Test method with preferred style, not enough : // Test method with preferred style, not enough :
put("0:1:2:3:4:5:6", null); "0:1:2:3:4:5:6", null,
// Test method with preferred style, bad digits. // Test method with preferred style, bad digits.
put("0:1:2:3:4:5:6:x", null); "0:1:2:3:4:5:6:x", null,
// Test method with preferred style, adjacent : // Test method with preferred style, adjacent :
put("0:1:2:3:4:5:6::7", null); "0:1:2:3:4:5:6::7", null,
// Too many : separators trailing
"0:1:2:3:4:5:6:7::", null,
// Too many : separators leading
"::0:1:2:3:4:5:6:7", null,
// Too many : separators trailing
"1:2:3:4:5:6:7:", null,
// Too many : separators leading
":1:2:3:4:5:6:7", null,
// Too many : separators leading 0
"0::1:2:3:4:5:6:7", null,
// Test method with preferred style, too many digits. // Test method with preferred style, too many digits.
put("0:1:2:3:4:5:6:789abcdef", null); "0:1:2:3:4:5:6:789abcdef", null,
// Test method with compressed style, bad digits. // Test method with compressed style, bad digits.
put("0:1:2:3::x", null); "0:1:2:3::x", null,
// Test method with compressed style, too many adjacent : // Test method with compressed style, too many adjacent :
put("0:1:2:::3", null); "0:1:2:::3", null,
// Test method with compressed style, too many digits. // Test method with compressed style, too many digits.
put("0:1:2:3::abcde", null); "0:1:2:3::abcde", null,
// Test method with preferred style, too many : // Test method with preferred style, too many :
put("0:1:2:3:4:5:6:7:8", null); "0:1:2:3:4:5:6:7:8", null,
// Test method with compressed style, not enough : // Test method with compressed style, not enough :
put("0:1", null); "0:1", null,
// Test method with ipv4 style, bad ipv6 digits. // Test method with ipv4 style, bad ipv6 digits.
put("0:0:0:0:0:x:10.0.0.1", null); "0:0:0:0:0:x:10.0.0.1", null,
// Test method with ipv4 style, bad ipv4 digits. // Test method with ipv4 style, bad ipv4 digits.
put("0:0:0:0:0:0:10.0.0.x", null); "0:0:0:0:0:0:10.0.0.x", null,
// Test method with ipv4 style, adjacent : // Test method with ipv4 style, adjacent :
put("0:0:0:0:0::0:10.0.0.1", null); "0:0:0:0:0::0:10.0.0.1", null,
// Test method with ipv4 style, too many ipv6 digits. // Test method with ipv4 style, too many ipv6 digits.
put("0:0:0:0:0:00000:10.0.0.1", null); "0:0:0:0:0:00000:10.0.0.1", null,
// Test method with ipv4 style, too many : // Test method with ipv4 style, too many :
put("0:0:0:0:0:0:0:10.0.0.1", null); "0:0:0:0:0:0:0:10.0.0.1", null,
// Test method with ipv4 style, not enough : // Test method with ipv4 style, not enough :
put("0:0:0:0:0:10.0.0.1", null); "0:0:0:0:0:10.0.0.1", null,
// Test method with ipv4 style, too many . // Test method with ipv4 style, too many .
put("0:0:0:0:0:0:10.0.0.0.1", null); "0:0:0:0:0:0:10.0.0.0.1", null,
// Test method with ipv4 style, not enough . // Test method with ipv4 style, not enough .
put("0:0:0:0:0:0:10.0.1", null); "0:0:0:0:0:0:10.0.1", null,
// Test method with ipv4 style, adjacent . // Test method with ipv4 style, adjacent .
put("0:0:0:0:0:0:10..0.0.1", null); "0:0:0:0:0:0:10..0.0.1", null,
// Test method with ipv4 style, leading .
"0:0:0:0:0:0:.0.0.1", null,
// Test method with ipv4 style, leading .
"0:0:0:0:0:0:.10.0.0.1", null,
// Test method with ipv4 style, trailing .
"0:0:0:0:0:0:10.0.0.", null,
// Test method with ipv4 style, trailing .
"0:0:0:0:0:0:10.0.0.1.", null,
// Test method with compressed ipv4 style, bad ipv6 digits. // Test method with compressed ipv4 style, bad ipv6 digits.
put("::fffx:192.168.0.1", null); "::fffx:192.168.0.1", null,
// Test method with compressed ipv4 style, bad ipv4 digits. // Test method with compressed ipv4 style, bad ipv4 digits.
put("::ffff:192.168.0.x", null); "::ffff:192.168.0.x", null,
// Test method with compressed ipv4 style, too many adjacent : // Test method with compressed ipv4 style, too many adjacent :
put(":::ffff:192.168.0.1", null); ":::ffff:192.168.0.1", null,
// Test method with compressed ipv4 style, too many ipv6 digits. // Test method with compressed ipv4 style, too many ipv6 digits.
put("::fffff:192.168.0.1", null); "::fffff:192.168.0.1", null,
// Test method with compressed ipv4 style, too many ipv4 digits. // Test method with compressed ipv4 style, too many ipv4 digits.
put("::ffff:1923.168.0.1", null); "::ffff:1923.168.0.1", null,
// Test method with compressed ipv4 style, not enough : // Test method with compressed ipv4 style, not enough :
put(":ffff:192.168.0.1", null); ":ffff:192.168.0.1", null,
// Test method with compressed ipv4 style, too many . // Test method with compressed ipv4 style, too many .
put("::ffff:192.168.0.1.2", null); "::ffff:192.168.0.1.2", null,
// Test method with compressed ipv4 style, not enough . // Test method with compressed ipv4 style, not enough .
put("::ffff:192.168.0", null); "::ffff:192.168.0", null,
// Test method with compressed ipv4 style, adjacent . // Test method with compressed ipv4 style, adjacent .
put("::ffff:192.168..0.1", null); "::ffff:192.168..0.1", null,
// Test method, garbage. // Test method, garbage.
put("absolute, and utter garbage", null); "absolute, and utter garbage", null,
// Test method, bad ipv6 digits. // Test method, bad ipv6 digits.
put("x:0:0:0:0:0:10.0.0.1", null); "x:0:0:0:0:0:10.0.0.1", null,
// Test method, bad ipv4 digits. // Test method, bad ipv4 digits.
put("0:0:0:0:0:0:x.0.0.1", null); "0:0:0:0:0:0:x.0.0.1", null,
// Test method, too many ipv6 digits. // Test method, too many ipv6 digits.
put("00000:0:0:0:0:0:10.0.0.1", null); "00000:0:0:0:0:0:10.0.0.1", null,
// Test method, too many ipv4 digits. // Test method, too many ipv4 digits.
put("0:0:0:0:0:0:10.0.0.1000", null); "0:0:0:0:0:0:10.0.0.1000", null,
// Test method, too many : // Test method, too many :
put("0:0:0:0:0:0:0:10.0.0.1", null); "0:0:0:0:0:0:0:10.0.0.1", null,
// Test method, not enough : // Test method, not enough :
put("0:0:0:0:0:10.0.0.1", null); "0:0:0:0:0:10.0.0.1", null,
// Test method, out of order trailing :
"0:0:0:0:0:10.0.0.1:", null,
// Test method, out of order leading :
":0:0:0:0:0:10.0.0.1", null,
// Test method, out of order leading :
"0:0:0:0::10.0.0.1:", null,
// Test method, out of order trailing :
":0:0:0:0::10.0.0.1", null,
// Test method, too many . // Test method, too many .
put("0:0:0:0:0:0:10.0.0.0.1", null); "0:0:0:0:0:0:10.0.0.0.1", null,
// Test method, not enough . // Test method, not enough .
put("0:0:0:0:0:0:10.0.1", null); "0:0:0:0:0:0:10.0.1", null,
// Test method, adjacent . // Test method, adjacent .
put("0:0:0:0:0:0:10.0.0..1", null); "0:0:0:0:0:0:10.0.0..1", null,
// Double compression symbol
"::0::", null,
// Empty contents
"", null,
// Trailing : (max number of : = 8)
"2001:0:4136:e378:8000:63bf:3fff:fdd2:", null,
// Leading : (max number of : = 8)
":aaaa:bbbb:cccc:dddd:eeee:ffff:1111:2222", null,
// Invalid character
"1234:2345:3456:4567:5678:6789::X890", null,
// Trailing . in IPv4
"::ffff:255.255.255.255.", null,
// To many characters in IPv4
"::ffff:0.0.1111.0", null,
// Test method, adjacent .
"::ffff:0.0..0", null,
// Not enough IPv4 entries trailing .
"::ffff:127.0.0.", null,
// Not enough IPv4 entries no trailing .
"::ffff:1.2.4", null,
// Extra IPv4 entry
"::ffff:192.168.0.1.255", null,
// Not enough IPv6 content
":ffff:192.168.0.1.255", null,
// Intermixed IPv4 and IPv6 symbols
"::ffff:255.255:255.255.", null);
private static final Map<byte[], String> ipv6ToAddressStrings = new HashMap<byte[], String>() {
private static final long serialVersionUID = 2999763170377573184L;
{
// From the RFC 5952 http://tools.ietf.org/html/rfc5952#section-4
put(new byte[] {
32, 1, 13, -72,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 1
},
"2001:db8::1");
put(new byte[] {
32, 1, 13, -72,
0, 0, 0, 0,
0, 0, 0, 0,
0, 2, 0, 1
},
"2001:db8::2:1");
put(new byte[] {
32, 1, 13, -72,
0, 0, 0, 1,
0, 1, 0, 1,
0, 1, 0, 1
},
"2001:db8:0:1:1:1:1:1");
// Other examples
put(new byte[] {
32, 1, 13, -72,
0, 0, 0, 0,
0, 0, 0, 0,
0, 2, 0, 1
},
"2001:db8::2:1");
put(new byte[] {
32, 1, 0, 0,
0, 0, 0, 1,
0, 0, 0, 0,
0, 0, 0, 1
},
"2001:0:0:1::1");
put(new byte[] {
32, 1, 13, -72,
0, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 1
},
"2001:db8::1:0:0:1");
put(new byte[] {
32, 1, 13, -72,
0, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 0
},
"2001:db8:0:0:1::");
put(new byte[] {
32, 1, 13, -72,
0, 0, 0, 0,
0, 0, 0, 0,
0, 2, 0, 0
},
"2001:db8::2:0");
put(new byte[] {
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 1
},
"::1");
put(new byte[] {
0, 0, 0, 0,
0, 0, 0, 1,
0, 0, 0, 0,
0, 0, 0, 1
},
"::1:0:0:0:1");
put(new byte[] {
0, 0, 0, 0,
1, 0, 0, 1,
0, 0, 0, 0,
1, 0, 0, 0
},
"::100:1:0:0:100:0");
put(new byte[] {
32, 1, 0, 0,
65, 54, -29, 120,
-128, 0, 99, -65,
63, -1, -3, -46
},
"2001:0:4136:e378:8000:63bf:3fff:fdd2");
put(new byte[] {
-86, -86, -69, -69,
-52, -52, -35, -35,
-18, -18, -1, -1,
17, 17, 34, 34
},
"aaaa:bbbb:cccc:dddd:eeee:ffff:1111:2222");
put(new byte[] {
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0
},
"::");
} }
}; };
private static final Map<String, String> ipv4MappedToIPv6AddressStrings = new TestMap(
// IPv4 addresses
"255.255.255.255", "::ffff:255.255.255.255",
"0.0.0.0", "::ffff:0.0.0.0",
"127.0.0.1", "::ffff:127.0.0.1",
"1.2.3.4", "::ffff:1.2.3.4",
"192.168.0.1", "::ffff:192.168.0.1",
// IPv6 addresses
// Fully specified
"2001:0:4136:e378:8000:63bf:3fff:fdd2", "2001:0:4136:e378:8000:63bf:3fff:fdd2",
"aaaa:bbbb:cccc:dddd:eeee:ffff:1111:2222", "aaaa:bbbb:cccc:dddd:eeee:ffff:1111:2222",
"0:0:0:0:0:0:0:0", "::",
"0:0:0:0:0:0:0:1", "::1",
// Compressing at the beginning
"::1:0:0:0:1", "::1:0:0:0:1",
"::1:ffff:ffff", "::1:ffff:ffff",
"::", "::",
"::1", "::1",
"::ffff", "::ffff",
"::ffff:0", "::ffff:0",
"::ffff:ffff", "::ffff:ffff",
"::0987:9876:8765", "::987:9876:8765",
"::0987:9876:8765:7654", "::987:9876:8765:7654",
"::0987:9876:8765:7654:6543", "::987:9876:8765:7654:6543",
"::0987:9876:8765:7654:6543:5432", "::987:9876:8765:7654:6543:5432",
// Note the compression is removed (rfc 5952 section 4.2.2)
"::0987:9876:8765:7654:6543:5432:3210", "0:987:9876:8765:7654:6543:5432:3210",
// Compressing at the end
// Note the compression is removed (rfc 5952 section 4.2.2)
"2001:db8:abcd:bcde:cdef:def1:ef12::", "2001:db8:abcd:bcde:cdef:def1:ef12:0",
"2001:db8:abcd:bcde:cdef:def1::", "2001:db8:abcd:bcde:cdef:def1::",
"2001:db8:abcd:bcde:cdef::", "2001:db8:abcd:bcde:cdef::",
"2001:db8:abcd:bcde::", "2001:db8:abcd:bcde::",
"2001:db8:abcd::", "2001:db8:abcd::",
"2001:1234::", "2001:1234::",
"2001::", "2001::",
"0::", "::",
// Compressing in the middle
"1234:2345::7890", "1234:2345::7890",
"1234::2345:7890", "1234::2345:7890",
"1234:2345:3456::7890", "1234:2345:3456::7890",
"1234:2345::3456:7890", "1234:2345::3456:7890",
"1234::2345:3456:7890", "1234::2345:3456:7890",
"1234:2345:3456:4567::7890", "1234:2345:3456:4567::7890",
"1234:2345:3456::4567:7890", "1234:2345:3456::4567:7890",
"1234:2345::3456:4567:7890", "1234:2345::3456:4567:7890",
"1234::2345:3456:4567:7890", "1234::2345:3456:4567:7890",
"1234:2345:3456:4567:5678::7890", "1234:2345:3456:4567:5678::7890",
"1234:2345:3456:4567::5678:7890", "1234:2345:3456:4567::5678:7890",
"1234:2345:3456::4567:5678:7890", "1234:2345:3456::4567:5678:7890",
"1234:2345::3456:4567:5678:7890", "1234:2345::3456:4567:5678:7890",
"1234::2345:3456:4567:5678:7890", "1234::2345:3456:4567:5678:7890",
// Note the compression is removed (rfc 5952 section 4.2.2)
"1234:2345:3456:4567:5678:6789::7890", "1234:2345:3456:4567:5678:6789:0:7890",
// Note the compression is removed (rfc 5952 section 4.2.2)
"1234:2345:3456:4567:5678::6789:7890", "1234:2345:3456:4567:5678:0:6789:7890",
// Note the compression is removed (rfc 5952 section 4.2.2)
"1234:2345:3456:4567::5678:6789:7890", "1234:2345:3456:4567:0:5678:6789:7890",
// Note the compression is removed (rfc 5952 section 4.2.2)
"1234:2345:3456::4567:5678:6789:7890", "1234:2345:3456:0:4567:5678:6789:7890",
// Note the compression is removed (rfc 5952 section 4.2.2)
"1234:2345::3456:4567:5678:6789:7890", "1234:2345:0:3456:4567:5678:6789:7890",
// Note the compression is removed (rfc 5952 section 4.2.2)
"1234::2345:3456:4567:5678:6789:7890", "1234:0:2345:3456:4567:5678:6789:7890",
// IPv4 mapped addresses
"::ffff:255.255.255.255", "::ffff:255.255.255.255",
"::ffff:0.0.0.0", "::ffff:0.0.0.0",
"::ffff:127.0.0.1", "::ffff:127.0.0.1",
"::ffff:1.2.3.4", "::ffff:1.2.3.4",
"::ffff:192.168.0.1", "::ffff:192.168.0.1");
@Test @Test
public void testLocalhost() { public void testLocalhost() {
assertNotNull(NetUtil.LOCALHOST); assertNotNull(NetUtil.LOCALHOST);
@ -280,17 +437,84 @@ public class NetUtilTest {
@Test @Test
public void testCreateByteArrayFromIpAddressString() { public void testCreateByteArrayFromIpAddressString() {
for (Entry<String, byte[]> stringEntry : validIpV4Hosts.entrySet()) { for (Entry<String, String> e : validIpV4Hosts.entrySet()) {
assertArrayEquals(stringEntry.getValue(), NetUtil.createByteArrayFromIpAddressString(stringEntry.getKey())); assertHexDumpEquals(e.getValue(), NetUtil.createByteArrayFromIpAddressString(e.getKey()));
} }
for (Entry<String, byte[]> stringEntry : invalidIpV4Hosts.entrySet()) { for (Entry<String, String> e : invalidIpV4Hosts.entrySet()) {
assertArrayEquals(stringEntry.getValue(), NetUtil.createByteArrayFromIpAddressString(stringEntry.getKey())); assertHexDumpEquals(e.getValue(), NetUtil.createByteArrayFromIpAddressString(e.getKey()));
} }
for (Entry<String, byte[]> stringEntry : validIpV6Hosts.entrySet()) { for (Entry<String, String> e : validIpV6Hosts.entrySet()) {
assertArrayEquals(stringEntry.getValue(), NetUtil.createByteArrayFromIpAddressString(stringEntry.getKey())); assertHexDumpEquals(e.getValue(), NetUtil.createByteArrayFromIpAddressString(e.getKey()));
} }
for (Entry<String, byte[]> stringEntry : invalidIpV6Hosts.entrySet()) { for (Entry<String, String> e : invalidIpV6Hosts.entrySet()) {
assertArrayEquals(stringEntry.getValue(), NetUtil.createByteArrayFromIpAddressString(stringEntry.getKey())); assertHexDumpEquals(e.getValue(), NetUtil.createByteArrayFromIpAddressString(e.getKey()));
} }
} }
@Test
public void testIp6AddressToString() throws UnknownHostException {
for (Entry<byte[], String> testEntry : ipv6ToAddressStrings.entrySet()) {
assertEquals(testEntry.getValue(), NetUtil.toAddressString(InetAddress.getByAddress(testEntry.getKey())));
}
}
@Test
public void testIp4AddressToString() throws UnknownHostException {
for (Entry<String, String> e : validIpV4Hosts.entrySet()) {
assertEquals(e.getKey(), NetUtil.toAddressString(InetAddress.getByAddress(unhex(e.getValue()))));
}
}
@Test
public void testIpv4MappedIp6GetByName() {
for (Entry<String, String> testEntry : ipv4MappedToIPv6AddressStrings.entrySet()) {
assertEquals(
testEntry.getValue(),
NetUtil.toAddressString(NetUtil.getByName(testEntry.getKey(), true), true));
}
}
@Test
public void testinvalidIpv4MappedIp6GetByName() {
for (String testEntry : invalidIpV4Hosts.keySet()) {
assertNull(NetUtil.getByName(testEntry, true));
}
for (String testEntry : invalidIpV6Hosts.keySet()) {
assertNull(NetUtil.getByName(testEntry, true));
}
}
private static void assertHexDumpEquals(String expected, byte[] actual) {
assertEquals(expected, hex(actual));
}
private static String hex(byte[] value) {
if (value == null) {
return null;
}
StringBuilder buf = new StringBuilder(value.length << 1);
for (byte b: value) {
String hex = Integer.toHexString(b & 0xFF);
if (hex.length() == 1) {
buf.append('0');
}
buf.append(hex);
}
return buf.toString();
}
private static byte[] unhex(String value) {
if (value == null) {
return null;
}
byte[] buf = new byte[value.length() >>> 1];
for (int i = 0; i < buf.length; i ++) {
buf[i] = (byte) Integer.parseInt(value.substring(i << 1, i + 1 << 1), 16);
}
return buf;
}
} }