A new ChannelHandler that allows the user to control the flow of messages if upstream handlers emit more than one event for each read()

Motivation:

Some handlers such as HttpObjectDecoder can emit more than one event per read()
which leads to problems in downstream handlers that expect only one event and hope
that ChannelConfig#setAutoRead(false) prevents further events being sent while they're
processing the one they've just received.

Modifications:

A new handler called FlowControlHandler that feeds off read() and isAutoRead() and acts
as a holding buffer if auto reading gets turned off and more events arrive while auto reading
is off.

Result:

Fixes issues such as #4895.
This commit is contained in:
Roger Kapsi 2016-04-05 10:44:32 -04:00 committed by Scott Mitchell
parent 04e33fd2d8
commit 5eb0127c2a
3 changed files with 656 additions and 0 deletions

View File

@ -0,0 +1,247 @@
/*
* Copyright 2016 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License, version
* 2.0 (the "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package io.netty.handler.flow;
import java.util.ArrayDeque;
import java.util.Queue;
import io.netty.channel.Channel;
import io.netty.channel.ChannelConfig;
import io.netty.channel.ChannelDuplexHandler;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.ChannelPipeline;
import io.netty.handler.codec.ByteToMessageDecoder;
import io.netty.handler.codec.MessageToByteEncoder;
import io.netty.util.Recycler;
import io.netty.util.Recycler.Handle;
import io.netty.util.ReferenceCountUtil;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;
/**
* The {@link FlowControlHandler} ensures that only one message per {@code read()} is sent downstream.
*
* Classes such as {@link ByteToMessageDecoder} or {@link MessageToByteEncoder} are free to emit as
* many events as they like for any given input. A channel's auto reading configuration doesn't usually
* apply in these scenarios. This is causing problems in downstream {@link ChannelHandler}s that would
* like to hold subsequent events while they're processing one event. It's a common problem with the
* {@code HttpObjectDecoder} that will very often fire a {@code HttpRequest} that is immediately followed
* by a {@code LastHttpContent} event.
*
* <pre>
* {@link ChannelPipeline} pipeline = ...;
*
* pipeline.addLast(new HttpServerCodec());
* pipeline.addLast(new {@link FlowControlHandler}());
*
* pipeline.addLast(new MyExampleHandler());
*
* class MyExampleHandler extends {@link ChannelInboundHandlerAdapter} {
* @Override
* public void channelRead({@link ChannelHandlerContext} ctx, Object msg) {
* if (msg instanceof HttpRequest) {
* ctx.channel().config().setAutoRead(false);
*
* // The FlowControlHandler will hold any subsequent events that
* // were emitted by HttpObjectDecoder until auto reading is turned
* // back on or Channel#read() is being called.
* }
* }
* }
* </pre>
*
* @see ChannelConfig#setAutoRead(boolean)
*/
public class FlowControlHandler extends ChannelDuplexHandler {
private static final InternalLogger logger = InternalLoggerFactory.getInstance(FlowControlHandler.class);
private final boolean releaseMessages;
private RecyclableArrayDeque queue;
private ChannelConfig config;
private boolean shouldConsume;
public FlowControlHandler() {
this(true);
}
public FlowControlHandler(boolean releaseMessages) {
this.releaseMessages = releaseMessages;
}
/**
* Returns a copy of the underlying {@link Queue}. This method exists for
* testing, debugging and inspection purposes and it is not Thread safe!
*/
Queue<Object> queue() {
RecyclableArrayDeque queue = this.queue;
if (queue == null) {
return new ArrayDeque<Object>(0);
}
return new ArrayDeque<Object>(queue);
}
/**
* Releases all messages and destroys the {@link Queue}.
*/
private void destroy() {
if (queue != null) {
if (!queue.isEmpty()) {
logger.trace("Non-empty queue: {}", queue);
if (releaseMessages) {
Object msg;
while ((msg = queue.poll()) != null) {
ReferenceCountUtil.safeRelease(msg);
}
}
}
queue.recycle();
queue = null;
}
}
@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
config = ctx.channel().config();
}
@Override
public void channelInactive(ChannelHandlerContext ctx) throws Exception {
destroy();
ctx.fireChannelInactive();
}
@Override
public void read(ChannelHandlerContext ctx) throws Exception {
if (dequeue(ctx, 1) == 0) {
// It seems no messages were consumed. We need to read() some
// messages from upstream and once one arrives it need to be
// relayed to downstream to keep the flow going.
shouldConsume = true;
ctx.read();
}
}
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
if (queue == null) {
queue = RecyclableArrayDeque.newInstance();
}
queue.offer(msg);
// We just received one message. Do we need to relay it regardless
// of the auto reading configuration? The answer is yes if this
// method was called as a result of a prior read() call.
int minConsume = shouldConsume ? 1 : 0;
shouldConsume = false;
dequeue(ctx, minConsume);
}
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
// Don't relay completion events from upstream as they
// make no sense in this context. See dequeue() where
// a new set of completion events is being produced.
}
/**
* Dequeues one or many (or none) messages depending on the channel's auto
* reading state and returns the number of messages that were consumed from
* the internal queue.
*
* The {@code minConsume} argument is used to force {@code dequeue()} into
* consuming that number of messages regardless of the channel's auto
* reading configuration.
*
* @see #read(ChannelHandlerContext)
* @see #channelRead(ChannelHandlerContext, Object)
*/
private int dequeue(ChannelHandlerContext ctx, int minConsume) {
if (queue != null) {
int consumed = 0;
Object msg;
while ((consumed < minConsume) || config.isAutoRead()) {
msg = queue.poll();
if (msg == null) {
break;
}
++consumed;
ctx.fireChannelRead(msg);
}
// We're firing a completion event every time one (or more)
// messages were consumed and the queue ended up being drained
// to an empty state.
if (queue.isEmpty() && consumed > 0) {
ctx.fireChannelReadComplete();
}
return consumed;
}
return 0;
}
/**
* A recyclable {@link ArrayDeque}.
*/
private static final class RecyclableArrayDeque extends ArrayDeque<Object> {
private static final long serialVersionUID = 0L;
/**
* A value of {@code 2} should be a good choice for most scenarios.
*/
private static final int DEFAULT_NUM_ELEMENTS = 2;
private static final Recycler<RecyclableArrayDeque> RECYCLER = new Recycler<RecyclableArrayDeque>() {
@Override
protected RecyclableArrayDeque newObject(Handle<RecyclableArrayDeque> handle) {
return new RecyclableArrayDeque(DEFAULT_NUM_ELEMENTS, handle);
}
};
public static RecyclableArrayDeque newInstance() {
return RECYCLER.get();
}
private final Handle<RecyclableArrayDeque> handle;
private RecyclableArrayDeque(int numElements, Handle<RecyclableArrayDeque> handle) {
super(numElements);
this.handle = handle;
}
public void recycle() {
clear();
handle.recycle(this);
}
}
}

View File

@ -0,0 +1,20 @@
/*
* Copyright 2016 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
/**
* Package to control the flow of messages.
*/
package io.netty.handler.flow;

View File

@ -0,0 +1,389 @@
/*
* Copyright 2016 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License, version
* 2.0 (the "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package io.netty.handler.flow;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertThat;
import static org.junit.Assert.assertTrue;
import static org.junit.Assert.fail;
import java.net.SocketAddress;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Exchanger;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;
import org.hamcrest.collection.IsIterableContainingInOrder;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
import io.netty.bootstrap.Bootstrap;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.Channel;
import io.netty.channel.ChannelConfig;
import io.netty.channel.ChannelDuplexHandler;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelOption;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.ByteToMessageDecoder;
import io.netty.util.ReferenceCountUtil;
public class FlowControlHandlerTest {
private static EventLoopGroup GROUP;
@BeforeClass
public static void init() {
GROUP = new NioEventLoopGroup();
}
@AfterClass
public static void destroy() {
GROUP.shutdownGracefully();
}
/**
* The {@link OneByteToThreeStringsDecoder} decodes this {@code byte[]} into three messages.
*/
private static ByteBuf newOneMessage() {
return Unpooled.wrappedBuffer(new byte[]{ 1 });
}
private static Channel newServer(final boolean autoRead, final ChannelHandler... handlers) {
assertTrue(handlers.length >= 1);
ServerBootstrap serverBootstrap = new ServerBootstrap();
serverBootstrap.group(GROUP)
.channel(NioServerSocketChannel.class)
.childOption(ChannelOption.AUTO_READ, autoRead)
.childHandler(new ChannelInitializer<Channel>() {
@Override
protected void initChannel(Channel ch) throws Exception {
ChannelPipeline pipeline = ch.pipeline();
pipeline.addLast(new OneByteToThreeStringsDecoder());
pipeline.addLast(handlers);
}
});
return serverBootstrap.bind(0)
.syncUninterruptibly()
.channel();
}
private static Channel newClient(SocketAddress server) {
Bootstrap bootstrap = new Bootstrap();
bootstrap.group(GROUP)
.channel(NioSocketChannel.class)
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 1000)
.handler(new ChannelInboundHandlerAdapter() {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
fail("In this test the client is never receiving a message from the server.");
}
});
return bootstrap.connect(server)
.syncUninterruptibly()
.channel();
}
/**
* This test demonstrates the default behavior if auto reading
* is turned on from the get-go and you're trying to turn it off
* once you've received your first message.
*
* NOTE: This test waits for the client to disconnect which is
* interpreted as the signal that all {@code byte}s have been
* transferred to the server.
*/
@Test
public void testAutoReadingOn() throws Exception {
final CountDownLatch latch = new CountDownLatch(3);
ChannelInboundHandlerAdapter handler = new ChannelInboundHandlerAdapter() {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ReferenceCountUtil.release(msg);
// We're turning off auto reading in the hope that no
// new messages are being sent but that is not true.
ctx.channel().config().setAutoRead(false);
latch.countDown();
}
};
Channel server = newServer(true, handler);
Channel client = newClient(server.localAddress());
try {
client.writeAndFlush(newOneMessage())
.syncUninterruptibly();
// We received three messages even through auto reading
// was turned off after we received the first message.
assertTrue(latch.await(1L, TimeUnit.SECONDS));
} finally {
client.close();
server.close();
}
}
/**
* This test demonstrates the default behavior if auto reading
* is turned off from the get-go and you're calling read() in
* the hope that only one message will be returned.
*
* NOTE: This test waits for the client to disconnect which is
* interpreted as the signal that all {@code byte}s have been
* transferred to the server.
*/
@Test
public void testAutoReadingOff() throws Exception {
final Exchanger<Channel> peerRef = new Exchanger<Channel>();
final CountDownLatch latch = new CountDownLatch(3);
ChannelInboundHandlerAdapter handler = new ChannelInboundHandlerAdapter() {
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
peerRef.exchange(ctx.channel(), 1L, TimeUnit.SECONDS);
ctx.fireChannelActive();
}
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ReferenceCountUtil.release(msg);
latch.countDown();
}
};
Channel server = newServer(false, handler);
Channel client = newClient(server.localAddress());
try {
// The client connection on the server side
Channel peer = peerRef.exchange(null, 1L, TimeUnit.SECONDS);
// Write the message
client.writeAndFlush(newOneMessage())
.syncUninterruptibly();
// Read the message
peer.read();
// We received all three messages but hoped that only one
// message was read because auto reading was off and we
// invoked the read() method only once.
assertTrue(latch.await(1L, TimeUnit.SECONDS));
} finally {
client.close();
server.close();
}
}
/**
* The {@link FlowControlHandler} will simply pass-through all messages
* if auto reading is on and remains on.
*/
@Test
public void testFlowAutoReadOn() throws Exception {
final CountDownLatch latch = new CountDownLatch(3);
ChannelInboundHandlerAdapter handler = new ChannelDuplexHandler() {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
latch.countDown();
}
};
FlowControlHandler flow = new FlowControlHandler();
Channel server = newServer(true, flow, handler);
Channel client = newClient(server.localAddress());
try {
// Write the message
client.writeAndFlush(newOneMessage())
.syncUninterruptibly();
// We should receive 3 messages
assertTrue(latch.await(1L, TimeUnit.SECONDS));
assertTrue(flow.queue().isEmpty());
} finally {
client.close();
server.close();
}
}
/**
* The {@link FlowControlHandler} will pass down messages one by one
* if {@link ChannelConfig#setAutoRead(boolean)} is being toggled.
*/
@Test
public void testFlowToggleAutoRead() throws Exception {
final Exchanger<Channel> peerRef = new Exchanger<Channel>();
final AtomicReference<CountDownLatch> latchRef
= new AtomicReference<CountDownLatch>(new CountDownLatch(1));
final AtomicInteger counter = new AtomicInteger();
ChannelInboundHandlerAdapter handler = new ChannelInboundHandlerAdapter() {
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
peerRef.exchange(ctx.channel(), 1L, TimeUnit.SECONDS);
ctx.fireChannelActive();
}
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ReferenceCountUtil.release(msg);
// Disable auto reading after each message
counter.incrementAndGet();
ctx.channel().config().setAutoRead(false);
CountDownLatch latch = latchRef.get();
latch.countDown();
}
};
FlowControlHandler flow = new FlowControlHandler();
Channel server = newServer(true, flow, handler);
Channel client = newClient(server.localAddress());
try {
// The client connection on the server side
Channel peer = peerRef.exchange(null, 1L, TimeUnit.SECONDS);
client.writeAndFlush(newOneMessage())
.syncUninterruptibly();
// channelRead(1)
assertTrue(latchRef.get().await(1L, TimeUnit.SECONDS));
assertFalse(peer.config().isAutoRead());
assertEquals(1, counter.get());
assertThat(flow.queue(), IsIterableContainingInOrder.<Object>contains("2", "3"));
// channelRead(2)
latchRef.set(new CountDownLatch(1));
peer.config().setAutoRead(true);
assertTrue(latchRef.get().await(1L, TimeUnit.SECONDS));
assertFalse(peer.config().isAutoRead());
assertEquals(2, counter.get());
assertThat(flow.queue(), IsIterableContainingInOrder.<Object>contains("3"));
// channelRead(3)
latchRef.set(new CountDownLatch(1));
peer.config().setAutoRead(true);
assertTrue(latchRef.get().await(1L, TimeUnit.SECONDS));
assertFalse(peer.config().isAutoRead());
assertEquals(3, counter.get());
assertTrue(flow.queue().isEmpty());
} finally {
client.close();
server.close();
}
}
/**
* The {@link FlowControlHandler} will pass down messages one by one
* if auto reading is off and the user is calling {@code read()} on
* their own.
*/
@Test
public void testFlowAutoReadOff() throws Exception {
final Exchanger<Channel> peerRef = new Exchanger<Channel>();
final AtomicReference<CountDownLatch> latchRef
= new AtomicReference<CountDownLatch>(new CountDownLatch(1));
final AtomicInteger counter = new AtomicInteger();
ChannelInboundHandlerAdapter handler = new ChannelDuplexHandler() {
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
peerRef.exchange(ctx.channel(), 1L, TimeUnit.SECONDS);
ctx.fireChannelActive();
}
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
counter.incrementAndGet();
CountDownLatch latch = latchRef.get();
latch.countDown();
}
};
FlowControlHandler flow = new FlowControlHandler();
Channel server = newServer(false, flow, handler);
Channel client = newClient(server.localAddress());
try {
// The client connection on the server side
Channel peer = peerRef.exchange(null, 1L, TimeUnit.SECONDS);
// Write the message
client.writeAndFlush(newOneMessage())
.syncUninterruptibly();
// channelRead(1)
peer.read();
assertTrue(latchRef.get().await(1L, TimeUnit.SECONDS));
assertEquals(1, counter.get());
assertThat(flow.queue(), IsIterableContainingInOrder.<Object>contains("2", "3"));
// channelRead(2)
latchRef.set(new CountDownLatch(1));
peer.read();
assertTrue(latchRef.get().await(1L, TimeUnit.SECONDS));
assertEquals(2, counter.get());
assertThat(flow.queue(), IsIterableContainingInOrder.<Object>contains("3"));
// channelRead(3)
latchRef.set(new CountDownLatch(1));
peer.read();
assertTrue(latchRef.get().await(1L, TimeUnit.SECONDS));
assertEquals(3, counter.get());
assertTrue(flow.queue().isEmpty());
} finally {
client.close();
server.close();
}
}
/**
* This is a fictional message decoder. It decodes each {@code byte}
* into three strings.
*/
private static final class OneByteToThreeStringsDecoder extends ByteToMessageDecoder {
@Override
protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
for (int i = 0; i < in.readableBytes(); i++) {
out.add("1");
out.add("2");
out.add("3");
}
in.readerIndex(in.readableBytes());
}
}
}