Remove backports of JDK8 classes

Motivation:

Java8 is out now for some time and JDK7 is no longer supported officially. We should remove all our backports and just use what the JDK provides us. This also will allow us to use intrinsics that are offered by the JDK implementations.

Modifications:

Remove all backports of jdk8 classes.

Result:

Use what the JDK offers us. This also fixes [#5458]
This commit is contained in:
Norman Maurer 2017-02-14 19:20:01 +01:00
parent 847359fd36
commit 84188395be
10 changed files with 36 additions and 12643 deletions

View File

@ -0,0 +1,26 @@
/*
* Copyright 2017 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.util.internal;
import java.util.concurrent.atomic.LongAdder;
final class LongAdderCounter extends LongAdder implements LongCounter {
@Override
public long value() {
return longValue();
}
}

View File

@ -16,8 +16,6 @@
package io.netty.util.internal;
import io.netty.util.CharsetUtil;
import io.netty.util.internal.chmv8.ConcurrentHashMapV8;
import io.netty.util.internal.chmv8.LongAdderV8;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;
import org.jctools.queues.MpscArrayQueue;
@ -285,19 +283,15 @@ public final class PlatformDependent {
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static <K, V> ConcurrentMap<K, V> newConcurrentHashMap() {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8<K, V>();
} else {
return new ConcurrentHashMap<K, V>();
}
}
/**
* Creates a new fastest {@link LongCounter} implementaion for the current platform.
*/
public static LongCounter newLongCounter() {
if (HAS_UNSAFE) {
return new LongAdderV8();
if (javaVersion() >= 8) {
return new LongAdderCounter();
} else {
return new AtomicLongCounter();
}
@ -307,46 +301,30 @@ public final class PlatformDependent {
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static <K, V> ConcurrentMap<K, V> newConcurrentHashMap(int initialCapacity) {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8<K, V>(initialCapacity);
} else {
return new ConcurrentHashMap<K, V>(initialCapacity);
}
}
/**
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static <K, V> ConcurrentMap<K, V> newConcurrentHashMap(int initialCapacity, float loadFactor) {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8<K, V>(initialCapacity, loadFactor);
} else {
return new ConcurrentHashMap<K, V>(initialCapacity, loadFactor);
}
}
/**
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static <K, V> ConcurrentMap<K, V> newConcurrentHashMap(
int initialCapacity, float loadFactor, int concurrencyLevel) {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8<K, V>(initialCapacity, loadFactor, concurrencyLevel);
} else {
return new ConcurrentHashMap<K, V>(initialCapacity, loadFactor, concurrencyLevel);
}
}
/**
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static <K, V> ConcurrentMap<K, V> newConcurrentHashMap(Map<? extends K, ? extends V> map) {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8<K, V>(map);
} else {
return new ConcurrentHashMap<K, V>(map);
}
}
/**
* Try to deallocate the specified direct {@link ByteBuffer}. Please note this method does nothing if

View File

@ -1,769 +0,0 @@
/*
* Copyright 2013 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package io.netty.util.internal.chmv8;
import java.util.concurrent.RecursiveAction;
/**
* A {@link ForkJoinTask} with a completion action performed when
* triggered and there are no remaining pending actions.
* CountedCompleters are in general more robust in the
* presence of subtask stalls and blockage than are other forms of
* ForkJoinTasks, but are less intuitive to program. Uses of
* CountedCompleter are similar to those of other completion based
* components (such as {@link java.nio.channels.CompletionHandler})
* except that multiple <em>pending</em> completions may be necessary
* to trigger the completion action {@link #onCompletion(CountedCompleter)},
* not just one.
* Unless initialized otherwise, the {@linkplain #getPendingCount pending
* count} starts at zero, but may be (atomically) changed using
* methods {@link #setPendingCount}, {@link #addToPendingCount}, and
* {@link #compareAndSetPendingCount}. Upon invocation of {@link
* #tryComplete}, if the pending action count is nonzero, it is
* decremented; otherwise, the completion action is performed, and if
* this completer itself has a completer, the process is continued
* with its completer. As is the case with related synchronization
* components such as {@link java.util.concurrent.Phaser Phaser} and
* {@link java.util.concurrent.Semaphore Semaphore}, these methods
* affect only internal counts; they do not establish any further
* internal bookkeeping. In particular, the identities of pending
* tasks are not maintained. As illustrated below, you can create
* subclasses that do record some or all pending tasks or their
* results when needed. As illustrated below, utility methods
* supporting customization of completion traversals are also
* provided. However, because CountedCompleters provide only basic
* synchronization mechanisms, it may be useful to create further
* abstract subclasses that maintain linkages, fields, and additional
* support methods appropriate for a set of related usages.
*
* <p>A concrete CountedCompleter class must define method {@link
* #compute}, that should in most cases (as illustrated below), invoke
* {@code tryComplete()} once before returning. The class may also
* optionally override method {@link #onCompletion(CountedCompleter)}
* to perform an action upon normal completion, and method
* {@link #onExceptionalCompletion(Throwable, CountedCompleter)} to
* perform an action upon any exception.
*
* <p>CountedCompleters most often do not bear results, in which case
* they are normally declared as {@code CountedCompleter<Void>}, and
* will always return {@code null} as a result value. In other cases,
* you should override method {@link #getRawResult} to provide a
* result from {@code join(), invoke()}, and related methods. In
* general, this method should return the value of a field (or a
* function of one or more fields) of the CountedCompleter object that
* holds the result upon completion. Method {@link #setRawResult} by
* default plays no role in CountedCompleters. It is possible, but
* rarely applicable, to override this method to maintain other
* objects or fields holding result data.
*
* <p>A CountedCompleter that does not itself have a completer (i.e.,
* one for which {@link #getCompleter} returns {@code null}) can be
* used as a regular ForkJoinTask with this added functionality.
* However, any completer that in turn has another completer serves
* only as an internal helper for other computations, so its own task
* status (as reported in methods such as {@link ForkJoinTask#isDone})
* is arbitrary; this status changes only upon explicit invocations of
* {@link #complete}, {@link ForkJoinTask#cancel},
* {@link ForkJoinTask#completeExceptionally(Throwable)} or upon
* exceptional completion of method {@code compute}. Upon any
* exceptional completion, the exception may be relayed to a task's
* completer (and its completer, and so on), if one exists and it has
* not otherwise already completed. Similarly, cancelling an internal
* CountedCompleter has only a local effect on that completer, so is
* not often useful.
*
* <p><b>Sample Usages.</b>
*
* <p><b>Parallel recursive decomposition.</b> CountedCompleters may
* be arranged in trees similar to those often used with {@link
* RecursiveAction}s, although the constructions involved in setting
* them up typically vary. Here, the completer of each task is its
* parent in the computation tree. Even though they entail a bit more
* bookkeeping, CountedCompleters may be better choices when applying
* a possibly time-consuming operation (that cannot be further
* subdivided) to each element of an array or collection; especially
* when the operation takes a significantly different amount of time
* to complete for some elements than others, either because of
* intrinsic variation (for example I/O) or auxiliary effects such as
* garbage collection. Because CountedCompleters provide their own
* continuations, other threads need not block waiting to perform
* them.
*
* <p>For example, here is an initial version of a class that uses
* divide-by-two recursive decomposition to divide work into single
* pieces (leaf tasks). Even when work is split into individual calls,
* tree-based techniques are usually preferable to directly forking
* leaf tasks, because they reduce inter-thread communication and
* improve load balancing. In the recursive case, the second of each
* pair of subtasks to finish triggers completion of its parent
* (because no result combination is performed, the default no-op
* implementation of method {@code onCompletion} is not overridden).
* A static utility method sets up the base task and invokes it
* (here, implicitly using the {@link ForkJoinPool#commonPool()}).
*
* <pre> {@code
* class MyOperation<E> { void apply(E e) { ... } }
*
* class ForEach<E> extends CountedCompleter<Void> {
*
* public static <E> void forEach(E[] array, MyOperation<E> op) {
* new ForEach<E>(null, array, op, 0, array.length).invoke();
* }
*
* final E[] array; final MyOperation<E> op; final int lo, hi;
* ForEach(CountedCompleter<?> p, E[] array, MyOperation<E> op, int lo, int hi) {
* super(p);
* this.array = array; this.op = op; this.lo = lo; this.hi = hi;
* }
*
* public void compute() { // version 1
* if (hi - lo >= 2) {
* int mid = (lo + hi) >>> 1;
* setPendingCount(2); // must set pending count before fork
* new ForEach(this, array, op, mid, hi).fork(); // right child
* new ForEach(this, array, op, lo, mid).fork(); // left child
* }
* else if (hi > lo)
* op.apply(array[lo]);
* tryComplete();
* }
* }}</pre>
*
* This design can be improved by noticing that in the recursive case,
* the task has nothing to do after forking its right task, so can
* directly invoke its left task before returning. (This is an analog
* of tail recursion removal.) Also, because the task returns upon
* executing its left task (rather than falling through to invoke
* {@code tryComplete}) the pending count is set to one:
*
* <pre> {@code
* class ForEach<E> ...
* public void compute() { // version 2
* if (hi - lo >= 2) {
* int mid = (lo + hi) >>> 1;
* setPendingCount(1); // only one pending
* new ForEach(this, array, op, mid, hi).fork(); // right child
* new ForEach(this, array, op, lo, mid).compute(); // direct invoke
* }
* else {
* if (hi > lo)
* op.apply(array[lo]);
* tryComplete();
* }
* }
* }</pre>
*
* As a further improvement, notice that the left task need not even exist.
* Instead of creating a new one, we can iterate using the original task,
* and add a pending count for each fork. Additionally, because no task
* in this tree implements an {@link #onCompletion(CountedCompleter)} method,
* {@code tryComplete()} can be replaced with {@link #propagateCompletion}.
*
* <pre> {@code
* class ForEach<E> ...
* public void compute() { // version 3
* int l = lo, h = hi;
* while (h - l >= 2) {
* int mid = (l + h) >>> 1;
* addToPendingCount(1);
* new ForEach(this, array, op, mid, h).fork(); // right child
* h = mid;
* }
* if (h > l)
* op.apply(array[l]);
* propagateCompletion();
* }
* }</pre>
*
* Additional improvements of such classes might entail precomputing
* pending counts so that they can be established in constructors,
* specializing classes for leaf steps, subdividing by say, four,
* instead of two per iteration, and using an adaptive threshold
* instead of always subdividing down to single elements.
*
* <p><b>Searching.</b> A tree of CountedCompleters can search for a
* value or property in different parts of a data structure, and
* report a result in an {@link
* java.util.concurrent.atomic.AtomicReference AtomicReference} as
* soon as one is found. The others can poll the result to avoid
* unnecessary work. (You could additionally {@linkplain #cancel
* cancel} other tasks, but it is usually simpler and more efficient
* to just let them notice that the result is set and if so skip
* further processing.) Illustrating again with an array using full
* partitioning (again, in practice, leaf tasks will almost always
* process more than one element):
*
* <pre> {@code
* class Searcher<E> extends CountedCompleter<E> {
* final E[] array; final AtomicReference<E> result; final int lo, hi;
* Searcher(CountedCompleter<?> p, E[] array, AtomicReference<E> result, int lo, int hi) {
* super(p);
* this.array = array; this.result = result; this.lo = lo; this.hi = hi;
* }
* public E getRawResult() { return result.get(); }
* public void compute() { // similar to ForEach version 3
* int l = lo, h = hi;
* while (result.get() == null && h >= l) {
* if (h - l >= 2) {
* int mid = (l + h) >>> 1;
* addToPendingCount(1);
* new Searcher(this, array, result, mid, h).fork();
* h = mid;
* }
* else {
* E x = array[l];
* if (matches(x) && result.compareAndSet(null, x))
* quietlyCompleteRoot(); // root task is now joinable
* break;
* }
* }
* tryComplete(); // normally complete whether or not found
* }
* boolean matches(E e) { ... } // return true if found
*
* public static <E> E search(E[] array) {
* return new Searcher<E>(null, array, new AtomicReference<E>(), 0, array.length).invoke();
* }
* }}</pre>
*
* In this example, as well as others in which tasks have no other
* effects except to compareAndSet a common result, the trailing
* unconditional invocation of {@code tryComplete} could be made
* conditional ({@code if (result.get() == null) tryComplete();})
* because no further bookkeeping is required to manage completions
* once the root task completes.
*
* <p><b>Recording subtasks.</b> CountedCompleter tasks that combine
* results of multiple subtasks usually need to access these results
* in method {@link #onCompletion(CountedCompleter)}. As illustrated in the following
* class (that performs a simplified form of map-reduce where mappings
* and reductions are all of type {@code E}), one way to do this in
* divide and conquer designs is to have each subtask record its
* sibling, so that it can be accessed in method {@code onCompletion}.
* This technique applies to reductions in which the order of
* combining left and right results does not matter; ordered
* reductions require explicit left/right designations. Variants of
* other streamlinings seen in the above examples may also apply.
*
* <pre> {@code
* class MyMapper<E> { E apply(E v) { ... } }
* class MyReducer<E> { E apply(E x, E y) { ... } }
* class MapReducer<E> extends CountedCompleter<E> {
* final E[] array; final MyMapper<E> mapper;
* final MyReducer<E> reducer; final int lo, hi;
* MapReducer<E> sibling;
* E result;
* MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
* MyReducer<E> reducer, int lo, int hi) {
* super(p);
* this.array = array; this.mapper = mapper;
* this.reducer = reducer; this.lo = lo; this.hi = hi;
* }
* public void compute() {
* if (hi - lo >= 2) {
* int mid = (lo + hi) >>> 1;
* MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
* MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
* left.sibling = right;
* right.sibling = left;
* setPendingCount(1); // only right is pending
* right.fork();
* left.compute(); // directly execute left
* }
* else {
* if (hi > lo)
* result = mapper.apply(array[lo]);
* tryComplete();
* }
* }
* public void onCompletion(CountedCompleter<?> caller) {
* if (caller != this) {
* MapReducer<E> child = (MapReducer<E>)caller;
* MapReducer<E> sib = child.sibling;
* if (sib == null || sib.result == null)
* result = child.result;
* else
* result = reducer.apply(child.result, sib.result);
* }
* }
* public E getRawResult() { return result; }
*
* public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
* return new MapReducer<E>(null, array, mapper, reducer,
* 0, array.length).invoke();
* }
* }}</pre>
*
* Here, method {@code onCompletion} takes a form common to many
* completion designs that combine results. This callback-style method
* is triggered once per task, in either of the two different contexts
* in which the pending count is, or becomes, zero: (1) by a task
* itself, if its pending count is zero upon invocation of {@code
* tryComplete}, or (2) by any of its subtasks when they complete and
* decrement the pending count to zero. The {@code caller} argument
* distinguishes cases. Most often, when the caller is {@code this},
* no action is necessary. Otherwise the caller argument can be used
* (usually via a cast) to supply a value (and/or links to other
* values) to be combined. Assuming proper use of pending counts, the
* actions inside {@code onCompletion} occur (once) upon completion of
* a task and its subtasks. No additional synchronization is required
* within this method to ensure thread safety of accesses to fields of
* this task or other completed tasks.
*
* <p><b>Completion Traversals</b>. If using {@code onCompletion} to
* process completions is inapplicable or inconvenient, you can use
* methods {@link #firstComplete} and {@link #nextComplete} to create
* custom traversals. For example, to define a MapReducer that only
* splits out right-hand tasks in the form of the third ForEach
* example, the completions must cooperatively reduce along
* unexhausted subtask links, which can be done as follows:
*
* <pre> {@code
* class MapReducer<E> extends CountedCompleter<E> { // version 2
* final E[] array; final MyMapper<E> mapper;
* final MyReducer<E> reducer; final int lo, hi;
* MapReducer<E> forks, next; // record subtask forks in list
* E result;
* MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
* MyReducer<E> reducer, int lo, int hi, MapReducer<E> next) {
* super(p);
* this.array = array; this.mapper = mapper;
* this.reducer = reducer; this.lo = lo; this.hi = hi;
* this.next = next;
* }
* public void compute() {
* int l = lo, h = hi;
* while (h - l >= 2) {
* int mid = (l + h) >>> 1;
* addToPendingCount(1);
* (forks = new MapReducer(this, array, mapper, reducer, mid, h, forks)).fork();
* h = mid;
* }
* if (h > l)
* result = mapper.apply(array[l]);
* // process completions by reducing along and advancing subtask links
* for (CountedCompleter<?> c = firstComplete(); c != null; c = c.nextComplete()) {
* for (MapReducer t = (MapReducer)c, s = t.forks; s != null; s = t.forks = s.next)
* t.result = reducer.apply(t.result, s.result);
* }
* }
* public E getRawResult() { return result; }
*
* public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
* return new MapReducer<E>(null, array, mapper, reducer,
* 0, array.length, null).invoke();
* }
* }}</pre>
*
* <p><b>Triggers.</b> Some CountedCompleters are themselves never
* forked, but instead serve as bits of plumbing in other designs;
* including those in which the completion of one or more async tasks
* triggers another async task. For example:
*
* <pre> {@code
* class HeaderBuilder extends CountedCompleter<...> { ... }
* class BodyBuilder extends CountedCompleter<...> { ... }
* class PacketSender extends CountedCompleter<...> {
* PacketSender(...) { super(null, 1); ... } // trigger on second completion
* public void compute() { } // never called
* public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
* }
* // sample use:
* PacketSender p = new PacketSender();
* new HeaderBuilder(p, ...).fork();
* new BodyBuilder(p, ...).fork();
* }</pre>
*
* @since 1.8
* @author Doug Lea
*/
@SuppressWarnings("all")
public abstract class CountedCompleter<T> extends ForkJoinTask<T> {
private static final long serialVersionUID = 5232453752276485070L;
/** This task's completer, or null if none */
final CountedCompleter<?> completer;
/** The number of pending tasks until completion */
volatile int pending;
/**
* Creates a new CountedCompleter with the given completer
* and initial pending count.
*
* @param completer this task's completer, or {@code null} if none
* @param initialPendingCount the initial pending count
*/
protected CountedCompleter(CountedCompleter<?> completer,
int initialPendingCount) {
this.completer = completer;
this.pending = initialPendingCount;
}
/**
* Creates a new CountedCompleter with the given completer
* and an initial pending count of zero.
*
* @param completer this task's completer, or {@code null} if none
*/
protected CountedCompleter(CountedCompleter<?> completer) {
this.completer = completer;
}
/**
* Creates a new CountedCompleter with no completer
* and an initial pending count of zero.
*/
protected CountedCompleter() {
this.completer = null;
}
/**
* The main computation performed by this task.
*/
public abstract void compute();
/**
* Performs an action when method {@link #tryComplete} is invoked
* and the pending count is zero, or when the unconditional
* method {@link #complete} is invoked. By default, this method
* does nothing. You can distinguish cases by checking the
* identity of the given caller argument. If not equal to {@code
* this}, then it is typically a subtask that may contain results
* (and/or links to other results) to combine.
*
* @param caller the task invoking this method (which may
* be this task itself)
*/
public void onCompletion(CountedCompleter<?> caller) {
}
/**
* Performs an action when method {@link
* #completeExceptionally(Throwable)} is invoked or method {@link
* #compute} throws an exception, and this task has not already
* otherwise completed normally. On entry to this method, this task
* {@link ForkJoinTask#isCompletedAbnormally}. The return value
* of this method controls further propagation: If {@code true}
* and this task has a completer that has not completed, then that
* completer is also completed exceptionally, with the same
* exception as this completer. The default implementation of
* this method does nothing except return {@code true}.
*
* @param ex the exception
* @param caller the task invoking this method (which may
* be this task itself)
* @return {@code true} if this exception should be propagated to this
* task's completer, if one exists
*/
public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) {
return true;
}
/**
* Returns the completer established in this task's constructor,
* or {@code null} if none.
*
* @return the completer
*/
public final CountedCompleter<?> getCompleter() {
return completer;
}
/**
* Returns the current pending count.
*
* @return the current pending count
*/
public final int getPendingCount() {
return pending;
}
/**
* Sets the pending count to the given value.
*
* @param count the count
*/
public final void setPendingCount(int count) {
pending = count;
}
/**
* Adds (atomically) the given value to the pending count.
*
* @param delta the value to add
*/
public final void addToPendingCount(int delta) {
int c;
do {} while (!U.compareAndSwapInt(this, PENDING, c = pending, c+delta));
}
/**
* Sets (atomically) the pending count to the given count only if
* it currently holds the given expected value.
*
* @param expected the expected value
* @param count the new value
* @return {@code true} if successful
*/
public final boolean compareAndSetPendingCount(int expected, int count) {
return U.compareAndSwapInt(this, PENDING, expected, count);
}
/**
* If the pending count is nonzero, (atomically) decrements it.
*
* @return the initial (undecremented) pending count holding on entry
* to this method
*/
public final int decrementPendingCountUnlessZero() {
int c;
do {} while ((c = pending) != 0 &&
!U.compareAndSwapInt(this, PENDING, c, c - 1));
return c;
}
/**
* Returns the root of the current computation; i.e., this
* task if it has no completer, else its completer's root.
*
* @return the root of the current computation
*/
public final CountedCompleter<?> getRoot() {
CountedCompleter<?> a = this, p;
while ((p = a.completer) != null)
a = p;
return a;
}
/**
* If the pending count is nonzero, decrements the count;
* otherwise invokes {@link #onCompletion(CountedCompleter)}
* and then similarly tries to complete this task's completer,
* if one exists, else marks this task as complete.
*/
public final void tryComplete() {
CountedCompleter<?> a = this, s = a;
for (int c;;) {
if ((c = a.pending) == 0) {
a.onCompletion(s);
if ((a = (s = a).completer) == null) {
s.quietlyComplete();
return;
}
}
else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
return;
}
}
/**
* Equivalent to {@link #tryComplete} but does not invoke {@link
* #onCompletion(CountedCompleter)} along the completion path:
* If the pending count is nonzero, decrements the count;
* otherwise, similarly tries to complete this task's completer, if
* one exists, else marks this task as complete. This method may be
* useful in cases where {@code onCompletion} should not, or need
* not, be invoked for each completer in a computation.
*/
public final void propagateCompletion() {
CountedCompleter<?> a = this, s = a;
for (int c;;) {
if ((c = a.pending) == 0) {
if ((a = (s = a).completer) == null) {
s.quietlyComplete();
return;
}
}
else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
return;
}
}
/**
* Regardless of pending count, invokes
* {@link #onCompletion(CountedCompleter)}, marks this task as
* complete and further triggers {@link #tryComplete} on this
* task's completer, if one exists. The given rawResult is
* used as an argument to {@link #setRawResult} before invoking
* {@link #onCompletion(CountedCompleter)} or marking this task
* as complete; its value is meaningful only for classes
* overriding {@code setRawResult}. This method does not modify
* the pending count.
*
* <p>This method may be useful when forcing completion as soon as
* any one (versus all) of several subtask results are obtained.
* However, in the common (and recommended) case in which {@code
* setRawResult} is not overridden, this effect can be obtained
* more simply using {@code quietlyCompleteRoot();}.
*
* @param rawResult the raw result
*/
public void complete(T rawResult) {
CountedCompleter<?> p;
setRawResult(rawResult);
onCompletion(this);
quietlyComplete();
if ((p = completer) != null)
p.tryComplete();
}
/**
* If this task's pending count is zero, returns this task;
* otherwise decrements its pending count and returns {@code
* null}. This method is designed to be used with {@link
* #nextComplete} in completion traversal loops.
*
* @return this task, if pending count was zero, else {@code null}
*/
public final CountedCompleter<?> firstComplete() {
for (int c;;) {
if ((c = pending) == 0)
return this;
else if (U.compareAndSwapInt(this, PENDING, c, c - 1))
return null;
}
}
/**
* If this task does not have a completer, invokes {@link
* ForkJoinTask#quietlyComplete} and returns {@code null}. Or, if
* the completer's pending count is non-zero, decrements that
* pending count and returns {@code null}. Otherwise, returns the
* completer. This method can be used as part of a completion
* traversal loop for homogeneous task hierarchies:
*
* <pre> {@code
* for (CountedCompleter<?> c = firstComplete();
* c != null;
* c = c.nextComplete()) {
* // ... process c ...
* }}</pre>
*
* @return the completer, or {@code null} if none
*/
public final CountedCompleter<?> nextComplete() {
CountedCompleter<?> p;
if ((p = completer) != null)
return p.firstComplete();
else {
quietlyComplete();
return null;
}
}
/**
* Equivalent to {@code getRoot().quietlyComplete()}.
*/
public final void quietlyCompleteRoot() {
for (CountedCompleter<?> a = this, p;;) {
if ((p = a.completer) == null) {
a.quietlyComplete();
return;
}
a = p;
}
}
/**
* Supports ForkJoinTask exception propagation.
*/
void internalPropagateException(Throwable ex) {
CountedCompleter<?> a = this, s = a;
while (a.onExceptionalCompletion(ex, s) &&
(a = (s = a).completer) != null && a.status >= 0 &&
a.recordExceptionalCompletion(ex) == EXCEPTIONAL)
;
}
/**
* Implements execution conventions for CountedCompleters.
*/
protected final boolean exec() {
compute();
return false;
}
/**
* Returns the result of the computation. By default
* returns {@code null}, which is appropriate for {@code Void}
* actions, but in other cases should be overridden, almost
* always to return a field or function of a field that
* holds the result upon completion.
*
* @return the result of the computation
*/
public T getRawResult() { return null; }
/**
* A method that result-bearing CountedCompleters may optionally
* use to help maintain result data. By default, does nothing.
* Overrides are not recommended. However, if this method is
* overridden to update existing objects or fields, then it must
* in general be defined to be thread-safe.
*/
protected void setRawResult(T t) { }
// Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long PENDING;
static {
try {
U = getUnsafe();
PENDING = U.objectFieldOffset
(CountedCompleter.class.getDeclaredField("pending"));
} catch (Exception e) {
throw new Error(e);
}
}
/**
* Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
* Replace with a simple call to Unsafe.getUnsafe when integrating
* into a jdk.
*
* @return a sun.misc.Unsafe
*/
private static sun.misc.Unsafe getUnsafe() {
try {
return sun.misc.Unsafe.getUnsafe();
} catch (SecurityException tryReflectionInstead) {}
try {
return java.security.AccessController.doPrivileged
(new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
public sun.misc.Unsafe run() throws Exception {
Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
for (java.lang.reflect.Field f : k.getDeclaredFields()) {
f.setAccessible(true);
Object x = f.get(null);
if (k.isInstance(x))
return k.cast(x);
}
throw new NoSuchFieldError("the Unsafe");
}});
} catch (java.security.PrivilegedActionException e) {
throw new RuntimeException("Could not initialize intrinsics",
e.getCause());
}
}
}

View File

@ -1,140 +0,0 @@
/*
* Copyright 2013 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package io.netty.util.internal.chmv8;
/**
* A thread managed by a {@link ForkJoinPool}, which executes
* {@link ForkJoinTask}s.
* This class is subclassable solely for the sake of adding
* functionality -- there are no overridable methods dealing with
* scheduling or execution. However, you can override initialization
* and termination methods surrounding the main task processing loop.
* If you do create such a subclass, you will also need to supply a
* custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to
* {@linkplain ForkJoinPool#ForkJoinPool use it} in a {@code ForkJoinPool}.
*
* @since 1.7
* @author Doug Lea
*/
@SuppressWarnings("all")
public class ForkJoinWorkerThread extends Thread {
/*
* ForkJoinWorkerThreads are managed by ForkJoinPools and perform
* ForkJoinTasks. For explanation, see the internal documentation
* of class ForkJoinPool.
*
* This class just maintains links to its pool and WorkQueue. The
* pool field is set immediately upon construction, but the
* workQueue field is not set until a call to registerWorker
* completes. This leads to a visibility race, that is tolerated
* by requiring that the workQueue field is only accessed by the
* owning thread.
*/
final ForkJoinPool pool; // the pool this thread works in
final ForkJoinPool.WorkQueue workQueue; // work-stealing mechanics
/**
* Creates a ForkJoinWorkerThread operating in the given pool.
*
* @param pool the pool this thread works in
* @throws NullPointerException if pool is null
*/
protected ForkJoinWorkerThread(ForkJoinPool pool) {
// Use a placeholder until a useful name can be set in registerWorker
super("aForkJoinWorkerThread");
this.pool = pool;
this.workQueue = pool.registerWorker(this);
}
/**
* Returns the pool hosting this thread.
*
* @return the pool
*/
public ForkJoinPool getPool() {
return pool;
}
/**
* Returns the unique index number of this thread in its pool.
* The returned value ranges from zero to the maximum number of
* threads (minus one) that may exist in the pool, and does not
* change during the lifetime of the thread. This method may be
* useful for applications that track status or collect results
* per-worker-thread rather than per-task.
*
* @return the index number
*/
public int getPoolIndex() {
return workQueue.poolIndex >>> 1; // ignore odd/even tag bit
}
/**
* Initializes internal state after construction but before
* processing any tasks. If you override this method, you must
* invoke {@code super.onStart()} at the beginning of the method.
* Initialization requires care: Most fields must have legal
* default values, to ensure that attempted accesses from other
* threads work correctly even before this thread starts
* processing tasks.
*/
protected void onStart() {
}
/**
* Performs cleanup associated with termination of this worker
* thread. If you override this method, you must invoke
* {@code super.onTermination} at the end of the overridden method.
*
* @param exception the exception causing this thread to abort due
* to an unrecoverable error, or {@code null} if completed normally
*/
protected void onTermination(Throwable exception) {
}
/**
* This method is required to be public, but should never be
* called explicitly. It performs the main run loop to execute
* {@link ForkJoinTask}s.
*/
public void run() {
Throwable exception = null;
try {
onStart();
pool.runWorker(workQueue);
} catch (Throwable ex) {
exception = ex;
} finally {
try {
onTermination(exception);
} catch (Throwable ex) {
if (exception == null)
exception = ex;
} finally {
pool.deregisterWorker(this, exception);
}
}
}
}

View File

@ -1,225 +0,0 @@
/*
* Copyright 2015 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package io.netty.util.internal.chmv8;
import io.netty.util.internal.LongCounter;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.concurrent.atomic.AtomicLong;
/**
* One or more variables that together maintain an initially zero
* {@code long} sum. When updates (method {@link #add}) are contended
* across threads, the set of variables may grow dynamically to reduce
* contention. Method {@link #sum} (or, equivalently, {@link
* #longValue}) returns the current total combined across the
* variables maintaining the sum.
*
* <p>This class is usually preferable to {@link AtomicLong} when
* multiple threads update a common sum that is used for purposes such
* as collecting statistics, not for fine-grained synchronization
* control. Under low update contention, the two classes have similar
* characteristics. But under high contention, expected throughput of
* this class is significantly higher, at the expense of higher space
* consumption.
*
* <p>This class extends {@link Number}, but does <em>not</em> define
* methods such as {@code equals}, {@code hashCode} and {@code
* compareTo} because instances are expected to be mutated, and so are
* not useful as collection keys.
*
* <p><em>jsr166e note: This class is targeted to be placed in
* java.util.concurrent.atomic.</em>
*
* @since 1.8
* @author Doug Lea
*/
@SuppressWarnings("all")
public class LongAdderV8 extends Striped64 implements Serializable, LongCounter {
private static final long serialVersionUID = 7249069246863182397L;
/**
* Version of plus for use in retryUpdate
*/
final long fn(long v, long x) { return v + x; }
/**
* Creates a new adder with initial sum of zero.
*/
public LongAdderV8() {
}
/**
* Adds the given value.
*
* @param x the value to add
*/
public void add(long x) {
Cell[] as; long b, v; int[] hc; Cell a; int n;
if ((as = cells) != null || !casBase(b = base, b + x)) {
boolean uncontended = true;
if ((hc = threadHashCode.get()) == null ||
as == null || (n = as.length) < 1 ||
(a = as[(n - 1) & hc[0]]) == null ||
!(uncontended = a.cas(v = a.value, v + x)))
retryUpdate(x, hc, uncontended);
}
}
/**
* Equivalent to {@code add(1)}.
*/
public void increment() {
add(1L);
}
/**
* Equivalent to {@code add(-1)}.
*/
public void decrement() {
add(-1L);
}
/**
* Returns the current sum. The returned value is <em>NOT</em> an
* atomic snapshot; invocation in the absence of concurrent
* updates returns an accurate result, but concurrent updates that
* occur while the sum is being calculated might not be
* incorporated.
*
* @return the sum
*/
public long sum() {
long sum = base;
Cell[] as = cells;
if (as != null) {
int n = as.length;
for (int i = 0; i < n; ++i) {
Cell a = as[i];
if (a != null)
sum += a.value;
}
}
return sum;
}
/**
* Resets variables maintaining the sum to zero. This method may
* be a useful alternative to creating a new adder, but is only
* effective if there are no concurrent updates. Because this
* method is intrinsically racy, it should only be used when it is
* known that no threads are concurrently updating.
*/
public void reset() {
internalReset(0L);
}
/**
* Equivalent in effect to {@link #sum} followed by {@link
* #reset}. This method may apply for example during quiescent
* points between multithreaded computations. If there are
* updates concurrent with this method, the returned value is
* <em>not</em> guaranteed to be the final value occurring before
* the reset.
*
* @return the sum
*/
public long sumThenReset() {
long sum = base;
Cell[] as = cells;
base = 0L;
if (as != null) {
int n = as.length;
for (int i = 0; i < n; ++i) {
Cell a = as[i];
if (a != null) {
sum += a.value;
a.value = 0L;
}
}
}
return sum;
}
/**
* Returns the String representation of the {@link #sum}.
* @return the String representation of the {@link #sum}
*/
public String toString() {
return Long.toString(sum());
}
/**
* Equivalent to {@link #sum}.
*
* @return the sum
*/
public long longValue() {
return sum();
}
/**
* Returns the {@link #sum} as an {@code int} after a narrowing
* primitive conversion.
*/
public int intValue() {
return (int)sum();
}
/**
* Returns the {@link #sum} as a {@code float}
* after a widening primitive conversion.
*/
public float floatValue() {
return (float)sum();
}
/**
* Returns the {@link #sum} as a {@code double} after a widening
* primitive conversion.
*/
public double doubleValue() {
return (double)sum();
}
private void writeObject(ObjectOutputStream s) throws IOException {
s.defaultWriteObject();
s.writeLong(sum());
}
private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {
s.defaultReadObject();
busy = 0;
cells = null;
base = s.readLong();
}
@Override
public long value() {
return sum();
}
}

View File

@ -1,351 +0,0 @@
/*
* Copyright 2015 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package io.netty.util.internal.chmv8;
import java.util.Random;
/**
* A package-local class holding common representation and mechanics
* for classes supporting dynamic striping on 64bit values. The class
* extends Number so that concrete subclasses must publicly do so.
*/
@SuppressWarnings("all")
abstract class Striped64 extends Number {
/*
* This class maintains a lazily-initialized table of atomically
* updated variables, plus an extra "base" field. The table size
* is a power of two. Indexing uses masked per-thread hash codes.
* Nearly all declarations in this class are package-private,
* accessed directly by subclasses.
*
* Table entries are of class Cell; a variant of AtomicLong padded
* to reduce cache contention on most processors. Padding is
* overkill for most Atomics because they are usually irregularly
* scattered in memory and thus don't interfere much with each
* other. But Atomic objects residing in arrays will tend to be
* placed adjacent to each other, and so will most often share
* cache lines (with a huge negative performance impact) without
* this precaution.
*
* In part because Cells are relatively large, we avoid creating
* them until they are needed. When there is no contention, all
* updates are made to the base field. Upon first contention (a
* failed CAS on base update), the table is initialized to size 2.
* The table size is doubled upon further contention until
* reaching the nearest power of two greater than or equal to the
* number of CPUS. Table slots remain empty (null) until they are
* needed.
*
* A single spinlock ("busy") is used for initializing and
* resizing the table, as well as populating slots with new Cells.
* There is no need for a blocking lock; when the lock is not
* available, threads try other slots (or the base). During these
* retries, there is increased contention and reduced locality,
* which is still better than alternatives.
*
* Per-thread hash codes are initialized to random values.
* Contention and/or table collisions are indicated by failed
* CASes when performing an update operation (see method
* retryUpdate). Upon a collision, if the table size is less than
* the capacity, it is doubled in size unless some other thread
* holds the lock. If a hashed slot is empty, and lock is
* available, a new Cell is created. Otherwise, if the slot
* exists, a CAS is tried. Retries proceed by "double hashing",
* using a secondary hash (Marsaglia XorShift) to try to find a
* free slot.
*
* The table size is capped because, when there are more threads
* than CPUs, supposing that each thread were bound to a CPU,
* there would exist a perfect hash function mapping threads to
* slots that eliminates collisions. When we reach capacity, we
* search for this mapping by randomly varying the hash codes of
* colliding threads. Because search is random, and collisions
* only become known via CAS failures, convergence can be slow,
* and because threads are typically not bound to CPUS forever,
* may not occur at all. However, despite these limitations,
* observed contention rates are typically low in these cases.
*
* It is possible for a Cell to become unused when threads that
* once hashed to it terminate, as well as in the case where
* doubling the table causes no thread to hash to it under
* expanded mask. We do not try to detect or remove such cells,
* under the assumption that for long-running instances, observed
* contention levels will recur, so the cells will eventually be
* needed again; and for short-lived ones, it does not matter.
*/
/**
* Padded variant of AtomicLong supporting only raw accesses plus CAS.
* The value field is placed between pads, hoping that the JVM doesn't
* reorder them.
*
* JVM intrinsics note: It would be possible to use a release-only
* form of CAS here, if it were provided.
*/
static final class Cell {
volatile long p0, p1, p2, p3, p4, p5, p6;
volatile long value;
volatile long q0, q1, q2, q3, q4, q5, q6;
Cell(long x) { value = x; }
final boolean cas(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long valueOffset;
static {
try {
UNSAFE = getUnsafe();
Class<?> ak = Cell.class;
valueOffset = UNSAFE.objectFieldOffset
(ak.getDeclaredField("value"));
} catch (Exception e) {
throw new Error(e);
}
}
}
/**
* ThreadLocal holding a single-slot int array holding hash code.
* Unlike the JDK8 version of this class, we use a suboptimal
* int[] representation to avoid introducing a new type that can
* impede class-unloading when ThreadLocals are not removed.
*/
static final ThreadLocal<int[]> threadHashCode = new ThreadLocal<int[]>();
/**
* Generator of new random hash codes
*/
static final Random rng = new Random();
/** Number of CPUS, to place bound on table size */
static final int NCPU = Runtime.getRuntime().availableProcessors();
/**
* Table of cells. When non-null, size is a power of 2.
*/
transient volatile Cell[] cells;
/**
* Base value, used mainly when there is no contention, but also as
* a fallback during table initialization races. Updated via CAS.
*/
transient volatile long base;
/**
* Spinlock (locked via CAS) used when resizing and/or creating Cells.
*/
transient volatile int busy;
/**
* Package-private default constructor
*/
Striped64() {
}
/**
* CASes the base field.
*/
final boolean casBase(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, baseOffset, cmp, val);
}
/**
* CASes the busy field from 0 to 1 to acquire lock.
*/
final boolean casBusy() {
return UNSAFE.compareAndSwapInt(this, busyOffset, 0, 1);
}
/**
* Computes the function of current and new value. Subclasses
* should open-code this update function for most uses, but the
* virtualized form is needed within retryUpdate.
*
* @param currentValue the current value (of either base or a cell)
* @param newValue the argument from a user update call
* @return result of the update function
*/
abstract long fn(long currentValue, long newValue);
/**
* Handles cases of updates involving initialization, resizing,
* creating new Cells, and/or contention. See above for
* explanation. This method suffers the usual non-modularity
* problems of optimistic retry code, relying on rechecked sets of
* reads.
*
* @param x the value
* @param hc the hash code holder
* @param wasUncontended false if CAS failed before call
*/
final void retryUpdate(long x, int[] hc, boolean wasUncontended) {
int h;
if (hc == null) {
threadHashCode.set(hc = new int[1]); // Initialize randomly
int r = rng.nextInt(); // Avoid zero to allow xorShift rehash
h = hc[0] = (r == 0) ? 1 : r;
}
else
h = hc[0];
boolean collide = false; // True if last slot nonempty
for (;;) {
Cell[] as; Cell a; int n; long v;
if ((as = cells) != null && (n = as.length) > 0) {
if ((a = as[(n - 1) & h]) == null) {
if (busy == 0) { // Try to attach new Cell
Cell r = new Cell(x); // Optimistically create
if (busy == 0 && casBusy()) {
boolean created = false;
try { // Recheck under lock
Cell[] rs; int m, j;
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
busy = 0;
}
if (created)
break;
continue; // Slot is now non-empty
}
}
collide = false;
}
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
else if (a.cas(v = a.value, fn(v, x)))
break;
else if (n >= NCPU || cells != as)
collide = false; // At max size or stale
else if (!collide)
collide = true;
else if (busy == 0 && casBusy()) {
try {
if (cells == as) { // Expand table unless stale
Cell[] rs = new Cell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
cells = rs;
}
} finally {
busy = 0;
}
collide = false;
continue; // Retry with expanded table
}
h ^= h << 13; // Rehash
h ^= h >>> 17;
h ^= h << 5;
hc[0] = h; // Record index for next time
}
else if (busy == 0 && cells == as && casBusy()) {
boolean init = false;
try { // Initialize table
if (cells == as) {
Cell[] rs = new Cell[2];
rs[h & 1] = new Cell(x);
cells = rs;
init = true;
}
} finally {
busy = 0;
}
if (init)
break;
}
else if (casBase(v = base, fn(v, x)))
break; // Fall back on using base
}
}
/**
* Sets base and all cells to the given value.
*/
final void internalReset(long initialValue) {
Cell[] as = cells;
base = initialValue;
if (as != null) {
int n = as.length;
for (int i = 0; i < n; ++i) {
Cell a = as[i];
if (a != null)
a.value = initialValue;
}
}
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long baseOffset;
private static final long busyOffset;
static {
try {
UNSAFE = getUnsafe();
Class<?> sk = Striped64.class;
baseOffset = UNSAFE.objectFieldOffset
(sk.getDeclaredField("base"));
busyOffset = UNSAFE.objectFieldOffset
(sk.getDeclaredField("busy"));
} catch (Exception e) {
throw new Error(e);
}
}
/**
* Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
* Replace with a simple call to Unsafe.getUnsafe when integrating
* into a jdk.
*
* @return a sun.misc.Unsafe
*/
private static sun.misc.Unsafe getUnsafe() {
try {
return sun.misc.Unsafe.getUnsafe();
} catch (SecurityException tryReflectionInstead) {}
try {
return java.security.AccessController.doPrivileged
(new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
public sun.misc.Unsafe run() throws Exception {
Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
for (java.lang.reflect.Field f : k.getDeclaredFields()) {
f.setAccessible(true);
Object x = f.get(null);
if (k.isInstance(x))
return k.cast(x);
}
throw new NoSuchFieldError("the Unsafe");
}});
} catch (java.security.PrivilegedActionException e) {
throw new RuntimeException("Could not initialize intrinsics",
e.getCause());
}
}
}

View File

@ -713,6 +713,9 @@
<ignore>java.nio.ByteBuffer</ignore>
<ignore>java.nio.CharBuffer</ignore>
<!-- JDK 8 -->
<ignore>java.util.concurrent.atomic.LongAdder</ignore>
<!-- Resolver -->
<ignore>java.net.InetAddress</ignore>
</ignores>