JZlib code cleanup

This commit is contained in:
Trustin Lee 2009-10-21 07:27:59 +00:00
parent eeb98c5f97
commit a7e7d12443
10 changed files with 4098 additions and 4022 deletions

View File

@ -8,8 +8,8 @@ modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
@ -34,61 +34,69 @@ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package org.jboss.netty.util.internal.jzlib;
final class Adler32{
final class Adler32 {
// largest prime smaller than 65536
static final private int BASE=65521;
// NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1
static final private int NMAX=5552;
// largest prime smaller than 65536
private static final int BASE = 65521;
// NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1
private static final int NMAX = 5552;
long adler32(long adler, byte[] buf, int index, int len){
if(buf == null){ return 1L; }
long s1=adler&0xffff;
long s2=(adler>>16)&0xffff;
int k;
while(len > 0) {
k=len<NMAX?len:NMAX;
len-=k;
while(k>=16){
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
s1+=buf[index++]&0xff; s2+=s1;
k-=16;
}
if(k!=0){
do{
s1+=buf[index++]&0xff; s2+=s1;
static long adler32(long adler, byte[] buf, int index, int len) {
if (buf == null) {
return 1L;
}
while(--k!=0);
}
s1%=BASE;
s2%=BASE;
}
return (s2<<16)|s1;
}
/*
private java.util.zip.Adler32 adler=new java.util.zip.Adler32();
long adler32(long value, byte[] buf, int index, int len){
if(value==1) {adler.reset();}
if(buf==null) {adler.reset();}
else{adler.update(buf, index, len);}
return adler.getValue();
}
*/
long s1 = adler & 0xffff;
long s2 = adler >> 16 & 0xffff;
int k;
while (len > 0) {
k = len < NMAX? len : NMAX;
len -= k;
while (k >= 16) {
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
s1 += buf[index ++] & 0xff;
s2 += s1;
k -= 16;
}
if (k != 0) {
do {
s1 += buf[index ++] & 0xff;
s2 += s1;
} while (-- k != 0);
}
s1 %= BASE;
s2 %= BASE;
}
return s2 << 16 | s1;
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -8,8 +8,8 @@ modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
@ -34,487 +34,432 @@ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package org.jboss.netty.util.internal.jzlib;
final class InfTree{
final class InfTree {
static final private int MANY=1440;
static final int fixed_bl = 9;
static final int fixed_bd = 5;
static final private int Z_OK=0;
static final private int Z_STREAM_END=1;
static final private int Z_NEED_DICT=2;
static final private int Z_ERRNO=-1;
static final private int Z_STREAM_ERROR=-2;
static final private int Z_DATA_ERROR=-3;
static final private int Z_MEM_ERROR=-4;
static final private int Z_BUF_ERROR=-5;
static final private int Z_VERSION_ERROR=-6;
static final int[] fixed_tl = { 96, 7, 256, 0, 8, 80, 0, 8, 16, 84, 8, 115,
82, 7, 31, 0, 8, 112, 0, 8, 48, 0, 9, 192, 80, 7, 10, 0, 8, 96, 0,
8, 32, 0, 9, 160, 0, 8, 0, 0, 8, 128, 0, 8, 64, 0, 9, 224, 80, 7,
6, 0, 8, 88, 0, 8, 24, 0, 9, 144, 83, 7, 59, 0, 8, 120, 0, 8, 56,
0, 9, 208, 81, 7, 17, 0, 8, 104, 0, 8, 40, 0, 9, 176, 0, 8, 8, 0,
8, 136, 0, 8, 72, 0, 9, 240, 80, 7, 4, 0, 8, 84, 0, 8, 20, 85, 8,
227, 83, 7, 43, 0, 8, 116, 0, 8, 52, 0, 9, 200, 81, 7, 13, 0, 8,
100, 0, 8, 36, 0, 9, 168, 0, 8, 4, 0, 8, 132, 0, 8, 68, 0, 9, 232,
80, 7, 8, 0, 8, 92, 0, 8, 28, 0, 9, 152, 84, 7, 83, 0, 8, 124, 0,
8, 60, 0, 9, 216, 82, 7, 23, 0, 8, 108, 0, 8, 44, 0, 9, 184, 0, 8,
12, 0, 8, 140, 0, 8, 76, 0, 9, 248, 80, 7, 3, 0, 8, 82, 0, 8, 18,
85, 8, 163, 83, 7, 35, 0, 8, 114, 0, 8, 50, 0, 9, 196, 81, 7, 11,
0, 8, 98, 0, 8, 34, 0, 9, 164, 0, 8, 2, 0, 8, 130, 0, 8, 66, 0, 9,
228, 80, 7, 7, 0, 8, 90, 0, 8, 26, 0, 9, 148, 84, 7, 67, 0, 8, 122,
0, 8, 58, 0, 9, 212, 82, 7, 19, 0, 8, 106, 0, 8, 42, 0, 9, 180, 0,
8, 10, 0, 8, 138, 0, 8, 74, 0, 9, 244, 80, 7, 5, 0, 8, 86, 0, 8,
22, 192, 8, 0, 83, 7, 51, 0, 8, 118, 0, 8, 54, 0, 9, 204, 81, 7,
15, 0, 8, 102, 0, 8, 38, 0, 9, 172, 0, 8, 6, 0, 8, 134, 0, 8, 70,
0, 9, 236, 80, 7, 9, 0, 8, 94, 0, 8, 30, 0, 9, 156, 84, 7, 99, 0,
8, 126, 0, 8, 62, 0, 9, 220, 82, 7, 27, 0, 8, 110, 0, 8, 46, 0, 9,
188, 0, 8, 14, 0, 8, 142, 0, 8, 78, 0, 9, 252, 96, 7, 256, 0, 8,
81, 0, 8, 17, 85, 8, 131, 82, 7, 31, 0, 8, 113, 0, 8, 49, 0, 9,
194, 80, 7, 10, 0, 8, 97, 0, 8, 33, 0, 9, 162, 0, 8, 1, 0, 8, 129,
0, 8, 65, 0, 9, 226, 80, 7, 6, 0, 8, 89, 0, 8, 25, 0, 9, 146, 83,
7, 59, 0, 8, 121, 0, 8, 57, 0, 9, 210, 81, 7, 17, 0, 8, 105, 0, 8,
41, 0, 9, 178, 0, 8, 9, 0, 8, 137, 0, 8, 73, 0, 9, 242, 80, 7, 4,
0, 8, 85, 0, 8, 21, 80, 8, 258, 83, 7, 43, 0, 8, 117, 0, 8, 53, 0,
9, 202, 81, 7, 13, 0, 8, 101, 0, 8, 37, 0, 9, 170, 0, 8, 5, 0, 8,
133, 0, 8, 69, 0, 9, 234, 80, 7, 8, 0, 8, 93, 0, 8, 29, 0, 9, 154,
84, 7, 83, 0, 8, 125, 0, 8, 61, 0, 9, 218, 82, 7, 23, 0, 8, 109, 0,
8, 45, 0, 9, 186, 0, 8, 13, 0, 8, 141, 0, 8, 77, 0, 9, 250, 80, 7,
3, 0, 8, 83, 0, 8, 19, 85, 8, 195, 83, 7, 35, 0, 8, 115, 0, 8, 51,
0, 9, 198, 81, 7, 11, 0, 8, 99, 0, 8, 35, 0, 9, 166, 0, 8, 3, 0, 8,
131, 0, 8, 67, 0, 9, 230, 80, 7, 7, 0, 8, 91, 0, 8, 27, 0, 9, 150,
84, 7, 67, 0, 8, 123, 0, 8, 59, 0, 9, 214, 82, 7, 19, 0, 8, 107, 0,
8, 43, 0, 9, 182, 0, 8, 11, 0, 8, 139, 0, 8, 75, 0, 9, 246, 80, 7,
5, 0, 8, 87, 0, 8, 23, 192, 8, 0, 83, 7, 51, 0, 8, 119, 0, 8, 55,
0, 9, 206, 81, 7, 15, 0, 8, 103, 0, 8, 39, 0, 9, 174, 0, 8, 7, 0,
8, 135, 0, 8, 71, 0, 9, 238, 80, 7, 9, 0, 8, 95, 0, 8, 31, 0, 9,
158, 84, 7, 99, 0, 8, 127, 0, 8, 63, 0, 9, 222, 82, 7, 27, 0, 8,
111, 0, 8, 47, 0, 9, 190, 0, 8, 15, 0, 8, 143, 0, 8, 79, 0, 9, 254,
96, 7, 256, 0, 8, 80, 0, 8, 16, 84, 8, 115, 82, 7, 31, 0, 8, 112,
0, 8, 48, 0, 9, 193,
80, 7, 10, 0, 8, 96, 0, 8, 32, 0, 9, 161, 0, 8, 0, 0, 8, 128, 0, 8,
64, 0, 9, 225, 80, 7, 6, 0, 8, 88, 0, 8, 24, 0, 9, 145, 83, 7, 59,
0, 8, 120, 0, 8, 56, 0, 9, 209, 81, 7, 17, 0, 8, 104, 0, 8, 40, 0,
9, 177, 0, 8, 8, 0, 8, 136, 0, 8, 72, 0, 9, 241, 80, 7, 4, 0, 8,
84, 0, 8, 20, 85, 8, 227, 83, 7, 43, 0, 8, 116, 0, 8, 52, 0, 9,
201, 81, 7, 13, 0, 8, 100, 0, 8, 36, 0, 9, 169, 0, 8, 4, 0, 8, 132,
0, 8, 68, 0, 9, 233, 80, 7, 8, 0, 8, 92, 0, 8, 28, 0, 9, 153, 84,
7, 83, 0, 8, 124, 0, 8, 60, 0, 9, 217, 82, 7, 23, 0, 8, 108, 0, 8,
44, 0, 9, 185, 0, 8, 12, 0, 8, 140, 0, 8, 76, 0, 9, 249, 80, 7, 3,
0, 8, 82, 0, 8, 18, 85, 8, 163, 83, 7, 35, 0, 8, 114, 0, 8, 50, 0,
9, 197, 81, 7, 11, 0, 8, 98, 0, 8, 34, 0, 9, 165, 0, 8, 2, 0, 8,
130, 0, 8, 66, 0, 9, 229, 80, 7, 7, 0, 8, 90, 0, 8, 26, 0, 9, 149,
84, 7, 67, 0, 8, 122, 0, 8, 58, 0, 9, 213, 82, 7, 19, 0, 8, 106, 0,
8, 42, 0, 9, 181, 0, 8, 10, 0, 8, 138, 0, 8, 74, 0, 9, 245, 80, 7,
5, 0, 8, 86, 0, 8, 22, 192, 8, 0, 83, 7, 51, 0, 8, 118, 0, 8, 54,
0, 9, 205, 81, 7, 15, 0, 8, 102, 0, 8, 38, 0, 9, 173, 0, 8, 6, 0,
8, 134, 0, 8, 70, 0, 9, 237, 80, 7, 9, 0, 8, 94, 0, 8, 30, 0, 9,
157, 84, 7, 99, 0, 8, 126, 0, 8, 62, 0, 9, 221, 82, 7, 27, 0, 8,
110, 0, 8, 46, 0, 9, 189, 0, 8, 14, 0, 8, 142, 0, 8, 78, 0, 9, 253,
96, 7, 256, 0, 8, 81, 0, 8, 17, 85, 8, 131, 82, 7, 31, 0, 8, 113,
0, 8, 49, 0, 9, 195, 80, 7, 10, 0, 8, 97, 0, 8, 33, 0, 9, 163, 0,
8, 1, 0, 8, 129, 0, 8, 65, 0, 9, 227, 80, 7, 6, 0, 8, 89, 0, 8, 25,
0, 9, 147, 83, 7, 59, 0, 8, 121, 0, 8, 57, 0, 9, 211, 81, 7, 17, 0,
8, 105, 0, 8, 41, 0, 9, 179, 0, 8, 9, 0, 8, 137, 0, 8, 73, 0, 9,
243, 80, 7, 4, 0, 8, 85, 0, 8, 21, 80, 8, 258, 83, 7, 43, 0, 8,
117, 0, 8, 53, 0, 9, 203, 81, 7, 13, 0, 8, 101, 0, 8, 37, 0, 9,
171, 0, 8, 5, 0, 8, 133, 0, 8, 69, 0, 9, 235, 80, 7, 8, 0, 8, 93,
0, 8, 29, 0, 9, 155, 84, 7, 83, 0, 8, 125, 0, 8, 61, 0, 9, 219, 82,
7, 23, 0, 8, 109, 0, 8, 45, 0, 9, 187, 0, 8, 13, 0, 8, 141, 0, 8,
77, 0, 9, 251, 80, 7, 3, 0, 8, 83, 0, 8, 19, 85, 8, 195, 83, 7, 35,
0, 8, 115, 0, 8, 51, 0, 9, 199, 81, 7, 11, 0, 8, 99, 0, 8, 35, 0,
9, 167, 0, 8, 3, 0, 8, 131, 0, 8, 67, 0, 9, 231, 80, 7, 7, 0, 8,
91, 0, 8, 27, 0, 9, 151, 84, 7, 67, 0, 8, 123, 0, 8, 59, 0, 9, 215,
82, 7, 19, 0, 8, 107, 0, 8, 43, 0, 9, 183, 0, 8, 11, 0, 8, 139, 0,
8, 75, 0, 9, 247, 80, 7, 5, 0, 8, 87, 0, 8, 23, 192, 8, 0, 83, 7,
51, 0, 8, 119, 0, 8, 55, 0, 9, 207, 81, 7, 15, 0, 8, 103, 0, 8, 39,
0, 9, 175, 0, 8, 7, 0, 8, 135, 0, 8, 71, 0, 9, 239, 80, 7, 9, 0, 8,
95, 0, 8, 31, 0, 9, 159, 84, 7, 99, 0, 8, 127, 0, 8, 63, 0, 9, 223,
82, 7, 27, 0, 8, 111, 0, 8, 47, 0, 9, 191, 0, 8, 15, 0, 8, 143, 0,
8, 79, 0, 9, 255 };
static final int fixed_bl = 9;
static final int fixed_bd = 5;
static final int[] fixed_td = { 80, 5, 1, 87, 5, 257, 83, 5, 17, 91, 5,
4097, 81, 5, 5, 89, 5, 1025, 85, 5, 65, 93, 5, 16385, 80, 5, 3, 88,
5, 513, 84, 5, 33, 92, 5, 8193, 82, 5, 9, 90, 5, 2049, 86, 5, 129,
192, 5, 24577, 80, 5, 2, 87, 5, 385, 83, 5, 25, 91, 5, 6145, 81, 5,
7, 89, 5, 1537, 85, 5, 97, 93, 5, 24577, 80, 5, 4, 88, 5, 769, 84,
5, 49, 92, 5, 12289, 82, 5, 13, 90, 5, 3073, 86, 5, 193, 192, 5,
24577 };
static final int[] fixed_tl = {
96,7,256, 0,8,80, 0,8,16, 84,8,115,
82,7,31, 0,8,112, 0,8,48, 0,9,192,
80,7,10, 0,8,96, 0,8,32, 0,9,160,
0,8,0, 0,8,128, 0,8,64, 0,9,224,
80,7,6, 0,8,88, 0,8,24, 0,9,144,
83,7,59, 0,8,120, 0,8,56, 0,9,208,
81,7,17, 0,8,104, 0,8,40, 0,9,176,
0,8,8, 0,8,136, 0,8,72, 0,9,240,
80,7,4, 0,8,84, 0,8,20, 85,8,227,
83,7,43, 0,8,116, 0,8,52, 0,9,200,
81,7,13, 0,8,100, 0,8,36, 0,9,168,
0,8,4, 0,8,132, 0,8,68, 0,9,232,
80,7,8, 0,8,92, 0,8,28, 0,9,152,
84,7,83, 0,8,124, 0,8,60, 0,9,216,
82,7,23, 0,8,108, 0,8,44, 0,9,184,
0,8,12, 0,8,140, 0,8,76, 0,9,248,
80,7,3, 0,8,82, 0,8,18, 85,8,163,
83,7,35, 0,8,114, 0,8,50, 0,9,196,
81,7,11, 0,8,98, 0,8,34, 0,9,164,
0,8,2, 0,8,130, 0,8,66, 0,9,228,
80,7,7, 0,8,90, 0,8,26, 0,9,148,
84,7,67, 0,8,122, 0,8,58, 0,9,212,
82,7,19, 0,8,106, 0,8,42, 0,9,180,
0,8,10, 0,8,138, 0,8,74, 0,9,244,
80,7,5, 0,8,86, 0,8,22, 192,8,0,
83,7,51, 0,8,118, 0,8,54, 0,9,204,
81,7,15, 0,8,102, 0,8,38, 0,9,172,
0,8,6, 0,8,134, 0,8,70, 0,9,236,
80,7,9, 0,8,94, 0,8,30, 0,9,156,
84,7,99, 0,8,126, 0,8,62, 0,9,220,
82,7,27, 0,8,110, 0,8,46, 0,9,188,
0,8,14, 0,8,142, 0,8,78, 0,9,252,
96,7,256, 0,8,81, 0,8,17, 85,8,131,
82,7,31, 0,8,113, 0,8,49, 0,9,194,
80,7,10, 0,8,97, 0,8,33, 0,9,162,
0,8,1, 0,8,129, 0,8,65, 0,9,226,
80,7,6, 0,8,89, 0,8,25, 0,9,146,
83,7,59, 0,8,121, 0,8,57, 0,9,210,
81,7,17, 0,8,105, 0,8,41, 0,9,178,
0,8,9, 0,8,137, 0,8,73, 0,9,242,
80,7,4, 0,8,85, 0,8,21, 80,8,258,
83,7,43, 0,8,117, 0,8,53, 0,9,202,
81,7,13, 0,8,101, 0,8,37, 0,9,170,
0,8,5, 0,8,133, 0,8,69, 0,9,234,
80,7,8, 0,8,93, 0,8,29, 0,9,154,
84,7,83, 0,8,125, 0,8,61, 0,9,218,
82,7,23, 0,8,109, 0,8,45, 0,9,186,
0,8,13, 0,8,141, 0,8,77, 0,9,250,
80,7,3, 0,8,83, 0,8,19, 85,8,195,
83,7,35, 0,8,115, 0,8,51, 0,9,198,
81,7,11, 0,8,99, 0,8,35, 0,9,166,
0,8,3, 0,8,131, 0,8,67, 0,9,230,
80,7,7, 0,8,91, 0,8,27, 0,9,150,
84,7,67, 0,8,123, 0,8,59, 0,9,214,
82,7,19, 0,8,107, 0,8,43, 0,9,182,
0,8,11, 0,8,139, 0,8,75, 0,9,246,
80,7,5, 0,8,87, 0,8,23, 192,8,0,
83,7,51, 0,8,119, 0,8,55, 0,9,206,
81,7,15, 0,8,103, 0,8,39, 0,9,174,
0,8,7, 0,8,135, 0,8,71, 0,9,238,
80,7,9, 0,8,95, 0,8,31, 0,9,158,
84,7,99, 0,8,127, 0,8,63, 0,9,222,
82,7,27, 0,8,111, 0,8,47, 0,9,190,
0,8,15, 0,8,143, 0,8,79, 0,9,254,
96,7,256, 0,8,80, 0,8,16, 84,8,115,
82,7,31, 0,8,112, 0,8,48, 0,9,193,
// Tables for deflate from PKZIP's appnote.txt.
static final int[] cplens = { // Copy lengths for literal codes 257..285
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59,
67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 };
80,7,10, 0,8,96, 0,8,32, 0,9,161,
0,8,0, 0,8,128, 0,8,64, 0,9,225,
80,7,6, 0,8,88, 0,8,24, 0,9,145,
83,7,59, 0,8,120, 0,8,56, 0,9,209,
81,7,17, 0,8,104, 0,8,40, 0,9,177,
0,8,8, 0,8,136, 0,8,72, 0,9,241,
80,7,4, 0,8,84, 0,8,20, 85,8,227,
83,7,43, 0,8,116, 0,8,52, 0,9,201,
81,7,13, 0,8,100, 0,8,36, 0,9,169,
0,8,4, 0,8,132, 0,8,68, 0,9,233,
80,7,8, 0,8,92, 0,8,28, 0,9,153,
84,7,83, 0,8,124, 0,8,60, 0,9,217,
82,7,23, 0,8,108, 0,8,44, 0,9,185,
0,8,12, 0,8,140, 0,8,76, 0,9,249,
80,7,3, 0,8,82, 0,8,18, 85,8,163,
83,7,35, 0,8,114, 0,8,50, 0,9,197,
81,7,11, 0,8,98, 0,8,34, 0,9,165,
0,8,2, 0,8,130, 0,8,66, 0,9,229,
80,7,7, 0,8,90, 0,8,26, 0,9,149,
84,7,67, 0,8,122, 0,8,58, 0,9,213,
82,7,19, 0,8,106, 0,8,42, 0,9,181,
0,8,10, 0,8,138, 0,8,74, 0,9,245,
80,7,5, 0,8,86, 0,8,22, 192,8,0,
83,7,51, 0,8,118, 0,8,54, 0,9,205,
81,7,15, 0,8,102, 0,8,38, 0,9,173,
0,8,6, 0,8,134, 0,8,70, 0,9,237,
80,7,9, 0,8,94, 0,8,30, 0,9,157,
84,7,99, 0,8,126, 0,8,62, 0,9,221,
82,7,27, 0,8,110, 0,8,46, 0,9,189,
0,8,14, 0,8,142, 0,8,78, 0,9,253,
96,7,256, 0,8,81, 0,8,17, 85,8,131,
82,7,31, 0,8,113, 0,8,49, 0,9,195,
80,7,10, 0,8,97, 0,8,33, 0,9,163,
0,8,1, 0,8,129, 0,8,65, 0,9,227,
80,7,6, 0,8,89, 0,8,25, 0,9,147,
83,7,59, 0,8,121, 0,8,57, 0,9,211,
81,7,17, 0,8,105, 0,8,41, 0,9,179,
0,8,9, 0,8,137, 0,8,73, 0,9,243,
80,7,4, 0,8,85, 0,8,21, 80,8,258,
83,7,43, 0,8,117, 0,8,53, 0,9,203,
81,7,13, 0,8,101, 0,8,37, 0,9,171,
0,8,5, 0,8,133, 0,8,69, 0,9,235,
80,7,8, 0,8,93, 0,8,29, 0,9,155,
84,7,83, 0,8,125, 0,8,61, 0,9,219,
82,7,23, 0,8,109, 0,8,45, 0,9,187,
0,8,13, 0,8,141, 0,8,77, 0,9,251,
80,7,3, 0,8,83, 0,8,19, 85,8,195,
83,7,35, 0,8,115, 0,8,51, 0,9,199,
81,7,11, 0,8,99, 0,8,35, 0,9,167,
0,8,3, 0,8,131, 0,8,67, 0,9,231,
80,7,7, 0,8,91, 0,8,27, 0,9,151,
84,7,67, 0,8,123, 0,8,59, 0,9,215,
82,7,19, 0,8,107, 0,8,43, 0,9,183,
0,8,11, 0,8,139, 0,8,75, 0,9,247,
80,7,5, 0,8,87, 0,8,23, 192,8,0,
83,7,51, 0,8,119, 0,8,55, 0,9,207,
81,7,15, 0,8,103, 0,8,39, 0,9,175,
0,8,7, 0,8,135, 0,8,71, 0,9,239,
80,7,9, 0,8,95, 0,8,31, 0,9,159,
84,7,99, 0,8,127, 0,8,63, 0,9,223,
82,7,27, 0,8,111, 0,8,47, 0,9,191,
0,8,15, 0,8,143, 0,8,79, 0,9,255
};
static final int[] fixed_td = {
80,5,1, 87,5,257, 83,5,17, 91,5,4097,
81,5,5, 89,5,1025, 85,5,65, 93,5,16385,
80,5,3, 88,5,513, 84,5,33, 92,5,8193,
82,5,9, 90,5,2049, 86,5,129, 192,5,24577,
80,5,2, 87,5,385, 83,5,25, 91,5,6145,
81,5,7, 89,5,1537, 85,5,97, 93,5,24577,
80,5,4, 88,5,769, 84,5,49, 92,5,12289,
82,5,13, 90,5,3073, 86,5,193, 192,5,24577
};
// see note #13 above about 258
static final int[] cplext = { // Extra bits for literal codes 257..285
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5,
5, 5, 5, 0, 112, 112 // 112==invalid
};
// Tables for deflate from PKZIP's appnote.txt.
static final int[] cplens = { // Copy lengths for literal codes 257..285
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
};
static final int[] cpdist = { // Copy offsets for distance codes 0..29
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513,
769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577 };
// see note #13 above about 258
static final int[] cplext = { // Extra bits for literal codes 257..285
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112 // 112==invalid
};
static final int[] cpdext = { // Extra bits for distance codes
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10,
11, 11, 12, 12, 13, 13 };
static final int[] cpdist = { // Copy offsets for distance codes 0..29
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577
};
// If BMAX needs to be larger than 16, then h and x[] should be uLong.
static final int BMAX = 15; // maximum bit length of any code
static final int[] cpdext = { // Extra bits for distance codes
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13};
private int[] hn; // hufts used in space
private int[] v; // work area for huft_build
private int[] c; // bit length count table
private int[] r; // table entry for structure assignment
private int[] u; // table stack
private int[] x; // bit offsets, then code stack
// If BMAX needs to be larger than 16, then h and x[] should be uLong.
static final int BMAX=15; // maximum bit length of any code
private int huft_build(int[] b, // code lengths in bits (all assumed <= BMAX)
int bindex, int n, // number of codes (assumed <= 288)
int s, // number of simple-valued codes (0..s-1)
int[] d, // list of base values for non-simple codes
int[] e, // list of extra bits for non-simple codes
int[] t, // result: starting table
int[] m, // maximum lookup bits, returns actual
int[] hp,// space for trees
int[] hn,// hufts used in space
int[] v // working area: values in order of bit length
) {
// Given a list of code lengths and a maximum table size, make a set of
// tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
// if the given code set is incomplete (the tables are still built in this
// case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
// lengths), or Z_MEM_ERROR if not enough memory.
int[] hn = null; // hufts used in space
int[] v = null; // work area for huft_build
int[] c = null; // bit length count table
int[] r = null; // table entry for structure assignment
int[] u = null; // table stack
int[] x = null; // bit offsets, then code stack
int a; // counter for codes of length k
int f; // i repeats in table every f entries
int g; // maximum code length
int h; // table level
int i; // counter, current code
int j; // counter
int k; // number of bits in current code
int l; // bits per table (returned in m)
int mask; // (1 << w) - 1, to avoid cc -O bug on HP
int p; // pointer into c[], b[], or v[]
int q; // points to current table
int w; // bits before this table == (l * h)
int xp; // pointer into x
int y; // number of dummy codes added
int z; // number of entries in current table
private int huft_build(int[] b, // code lengths in bits (all assumed <= BMAX)
int bindex,
int n, // number of codes (assumed <= 288)
int s, // number of simple-valued codes (0..s-1)
int[] d, // list of base values for non-simple codes
int[] e, // list of extra bits for non-simple codes
int[] t, // result: starting table
int[] m, // maximum lookup bits, returns actual
int[] hp,// space for trees
int[] hn,// hufts used in space
int[] v // working area: values in order of bit length
){
// Given a list of code lengths and a maximum table size, make a set of
// tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
// if the given code set is incomplete (the tables are still built in this
// case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
// lengths), or Z_MEM_ERROR if not enough memory.
// Generate counts for each bit length
int a; // counter for codes of length k
int f; // i repeats in table every f entries
int g; // maximum code length
int h; // table level
int i; // counter, current code
int j; // counter
int k; // number of bits in current code
int l; // bits per table (returned in m)
int mask; // (1 << w) - 1, to avoid cc -O bug on HP
int p; // pointer into c[], b[], or v[]
int q; // points to current table
int w; // bits before this table == (l * h)
int xp; // pointer into x
int y; // number of dummy codes added
int z; // number of entries in current table
p = 0;
i = n;
do {
c[b[bindex + p]] ++;
p ++;
i --; // assume all entries <= BMAX
} while (i != 0);
// Generate counts for each bit length
p = 0; i = n;
do {
c[b[bindex+p]]++; p++; i--; // assume all entries <= BMAX
}while(i!=0);
if(c[0] == n){ // null input--all zero length codes
t[0] = -1;
m[0] = 0;
return Z_OK;
}
// Find minimum and maximum length, bound *m by those
l = m[0];
for (j = 1; j <= BMAX; j++)
if(c[j]!=0) break;
k = j; // minimum code length
if(l < j){
l = j;
}
for (i = BMAX; i!=0; i--){
if(c[i]!=0) break;
}
g = i; // maximum code length
if(l > i){
l = i;
}
m[0] = l;
// Adjust last length count to fill out codes, if needed
for (y = 1 << j; j < i; j++, y <<= 1){
if ((y -= c[j]) < 0){
return Z_DATA_ERROR;
}
}
if ((y -= c[i]) < 0){
return Z_DATA_ERROR;
}
c[i] += y;
// Generate starting offsets into the value table for each length
x[1] = j = 0;
p = 1; xp = 2;
while (--i!=0) { // note that i == g from above
x[xp] = (j += c[p]);
xp++;
p++;
}
// Make a table of values in order of bit lengths
i = 0; p = 0;
do {
if ((j = b[bindex+p]) != 0){
v[x[j]++] = i;
}
p++;
}
while (++i < n);
n = x[g]; // set n to length of v
// Generate the Huffman codes and for each, make the table entries
x[0] = i = 0; // first Huffman code is zero
p = 0; // grab values in bit order
h = -1; // no tables yet--level -1
w = -l; // bits decoded == (l * h)
u[0] = 0; // just to keep compilers happy
q = 0; // ditto
z = 0; // ditto
// go through the bit lengths (k already is bits in shortest code)
for (; k <= g; k++){
a = c[k];
while (a--!=0){
// here i is the Huffman code of length k bits for value *p
// make tables up to required level
while (k > w + l){
h++;
w += l; // previous table always l bits
// compute minimum size table less than or equal to l bits
z = g - w;
z = (z > l) ? l : z; // table size upper limit
if((f=1<<(j=k-w))>a+1){ // try a k-w bit table
// too few codes for k-w bit table
f -= a + 1; // deduct codes from patterns left
xp = k;
if(j < z){
while (++j < z){ // try smaller tables up to z bits
if((f <<= 1) <= c[++xp])
break; // enough codes to use up j bits
f -= c[xp]; // else deduct codes from patterns
}
}
}
z = 1 << j; // table entries for j-bit table
// allocate new table
if (hn[0] + z > MANY){ // (note: doesn't matter for fixed)
return Z_DATA_ERROR; // overflow of MANY
}
u[h] = q = /*hp+*/ hn[0]; // DEBUG
hn[0] += z;
// connect to last table, if there is one
if(h!=0){
x[h]=i; // save pattern for backing up
r[0]=(byte)j; // bits in this table
r[1]=(byte)l; // bits to dump before this table
j=i>>>(w - l);
r[2] = (int)(q - u[h-1] - j); // offset to this table
System.arraycopy(r, 0, hp, (u[h-1]+j)*3, 3); // connect to last table
}
else{
t[0] = q; // first table is returned result
}
if (c[0] == n) { // null input--all zero length codes
t[0] = -1;
m[0] = 0;
return JZlib.Z_OK;
}
// set up table entry in r
r[1] = (byte)(k - w);
if (p >= n){
r[0] = 128 + 64; // out of values--invalid code
}
else if (v[p] < s){
r[0] = (byte)(v[p] < 256 ? 0 : 32 + 64); // 256 is end-of-block
r[2] = v[p++]; // simple code is just the value
// Find minimum and maximum length, bound *m by those
l = m[0];
for (j = 1; j <= BMAX; j ++) {
if (c[j] != 0) {
break;
}
}
else{
r[0]=(byte)(e[v[p]-s]+16+64); // non-simple--look up in lists
r[2]=d[v[p++] - s];
k = j; // minimum code length
if (l < j) {
l = j;
}
for (i = BMAX; i != 0; i --) {
if (c[i] != 0) {
break;
}
}
g = i; // maximum code length
if (l > i) {
l = i;
}
m[0] = l;
// Adjust last length count to fill out codes, if needed
for (y = 1 << j; j < i; j ++, y <<= 1) {
if ((y -= c[j]) < 0) {
return JZlib.Z_DATA_ERROR;
}
}
if ((y -= c[i]) < 0) {
return JZlib.Z_DATA_ERROR;
}
c[i] += y;
// Generate starting offsets into the value table for each length
x[1] = j = 0;
p = 1;
xp = 2;
while (-- i != 0) { // note that i == g from above
x[xp] = j += c[p];
xp ++;
p ++;
}
// fill code-like entries with r
f=1<<(k-w);
for (j=i>>>w;j<z;j+=f){
System.arraycopy(r, 0, hp, (q+j)*3, 3);
}
// Make a table of values in order of bit lengths
i = 0;
p = 0;
do {
if ((j = b[bindex + p]) != 0) {
v[x[j] ++] = i;
}
p ++;
} while (++ i < n);
n = x[g]; // set n to length of v
// backwards increment the k-bit code i
for (j = 1 << (k - 1); (i & j)!=0; j >>>= 1){
i ^= j;
}
i ^= j;
// Generate the Huffman codes and for each, make the table entries
x[0] = i = 0; // first Huffman code is zero
p = 0; // grab values in bit order
h = -1; // no tables yet--level -1
w = -l; // bits decoded == (l * h)
u[0] = 0; // just to keep compilers happy
q = 0; // ditto
z = 0; // ditto
// backup over finished tables
mask = (1 << w) - 1; // needed on HP, cc -O bug
while ((i & mask) != x[h]){
h--; // don't need to update q
w -= l;
mask = (1 << w) - 1;
// go through the bit lengths (k already is bits in shortest code)
for (; k <= g; k ++) {
a = c[k];
while (a -- != 0) {
// here i is the Huffman code of length k bits for value *p
// make tables up to required level
while (k > w + l) {
h ++;
w += l; // previous table always l bits
// compute minimum size table less than or equal to l bits
z = g - w;
z = z > l? l : z; // table size upper limit
if ((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table
// too few codes for k-w bit table
f -= a + 1; // deduct codes from patterns left
xp = k;
if (j < z) {
while (++ j < z) { // try smaller tables up to z bits
if ((f <<= 1) <= c[++ xp]) {
break; // enough codes to use up j bits
}
f -= c[xp]; // else deduct codes from patterns
}
}
}
z = 1 << j; // table entries for j-bit table
// allocate new table
if (hn[0] + z > JZlib.MANY) { // (note: doesn't matter for fixed)
return JZlib.Z_DATA_ERROR; // overflow of MANY
}
u[h] = q = /*hp+*/hn[0]; // DEBUG
hn[0] += z;
// connect to last table, if there is one
if (h != 0) {
x[h] = i; // save pattern for backing up
r[0] = (byte) j; // bits in this table
r[1] = (byte) l; // bits to dump before this table
j = i >>> w - l;
r[2] = q - u[h - 1] - j; // offset to this table
System.arraycopy(r, 0, hp, (u[h - 1] + j) * 3, 3); // connect to last table
} else {
t[0] = q; // first table is returned result
}
}
// set up table entry in r
r[1] = (byte) (k - w);
if (p >= n) {
r[0] = 128 + 64; // out of values--invalid code
} else if (v[p] < s) {
r[0] = (byte) (v[p] < 256? 0 : 32 + 64); // 256 is end-of-block
r[2] = v[p ++]; // simple code is just the value
} else {
r[0] = (byte) (e[v[p] - s] + 16 + 64); // non-simple--look up in lists
r[2] = d[v[p ++] - s];
}
// fill code-like entries with r
f = 1 << k - w;
for (j = i >>> w; j < z; j += f) {
System.arraycopy(r, 0, hp, (q + j) * 3, 3);
}
// backwards increment the k-bit code i
for (j = 1 << k - 1; (i & j) != 0; j >>>= 1) {
i ^= j;
}
i ^= j;
// backup over finished tables
mask = (1 << w) - 1; // needed on HP, cc -O bug
while ((i & mask) != x[h]) {
h --; // don't need to update q
w -= l;
mask = (1 << w) - 1;
}
}
}
}
}
// Return Z_BUF_ERROR if we were given an incomplete table
return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
}
int inflate_trees_bits(int[] c, // 19 code lengths
int[] bb, // bits tree desired/actual depth
int[] tb, // bits tree result
int[] hp, // space for trees
ZStream z // for messages
){
int result;
initWorkArea(19);
hn[0]=0;
result = huft_build(c, 0, 19, 19, null, null, tb, bb, hp, hn, v);
if(result == Z_DATA_ERROR){
z.msg = "oversubscribed dynamic bit lengths tree";
}
else if(result == Z_BUF_ERROR || bb[0] == 0){
z.msg = "incomplete dynamic bit lengths tree";
result = Z_DATA_ERROR;
}
return result;
}
int inflate_trees_dynamic(int nl, // number of literal/length codes
int nd, // number of distance codes
int[] c, // that many (total) code lengths
int[] bl, // literal desired/actual bit depth
int[] bd, // distance desired/actual bit depth
int[] tl, // literal/length tree result
int[] td, // distance tree result
int[] hp, // space for trees
ZStream z // for messages
){
int result;
// build literal/length tree
initWorkArea(288);
hn[0]=0;
result = huft_build(c, 0, nl, 257, cplens, cplext, tl, bl, hp, hn, v);
if (result != Z_OK || bl[0] == 0){
if(result == Z_DATA_ERROR){
z.msg = "oversubscribed literal/length tree";
}
else if (result != Z_MEM_ERROR){
z.msg = "incomplete literal/length tree";
result = Z_DATA_ERROR;
}
return result;
// Return Z_BUF_ERROR if we were given an incomplete table
return y != 0 && g != 1? JZlib.Z_BUF_ERROR : JZlib.Z_OK;
}
// build distance tree
initWorkArea(288);
result = huft_build(c, nl, nd, 0, cpdist, cpdext, td, bd, hp, hn, v);
int inflate_trees_bits(int[] c, // 19 code lengths
int[] bb, // bits tree desired/actual depth
int[] tb, // bits tree result
int[] hp, // space for trees
ZStream z // for messages
) {
int result;
initWorkArea(19);
hn[0] = 0;
result = huft_build(c, 0, 19, 19, null, null, tb, bb, hp, hn, v);
if (result != Z_OK || (bd[0] == 0 && nl > 257)){
if (result == Z_DATA_ERROR){
z.msg = "oversubscribed distance tree";
}
else if (result == Z_BUF_ERROR) {
z.msg = "incomplete distance tree";
result = Z_DATA_ERROR;
}
else if (result != Z_MEM_ERROR){
z.msg = "empty distance tree with lengths";
result = Z_DATA_ERROR;
}
return result;
if (result == JZlib.Z_DATA_ERROR) {
z.msg = "oversubscribed dynamic bit lengths tree";
} else if (result == JZlib.Z_BUF_ERROR || bb[0] == 0) {
z.msg = "incomplete dynamic bit lengths tree";
result = JZlib.Z_DATA_ERROR;
}
return result;
}
return Z_OK;
}
int inflate_trees_dynamic(int nl, // number of literal/length codes
int nd, // number of distance codes
int[] c, // that many (total) code lengths
int[] bl, // literal desired/actual bit depth
int[] bd, // distance desired/actual bit depth
int[] tl, // literal/length tree result
int[] td, // distance tree result
int[] hp, // space for trees
ZStream z // for messages
) {
int result;
static int inflate_trees_fixed(int[] bl, //literal desired/actual bit depth
int[] bd, //distance desired/actual bit depth
int[][] tl,//literal/length tree result
int[][] td,//distance tree result
ZStream z //for memory allocation
){
bl[0]=fixed_bl;
bd[0]=fixed_bd;
tl[0]=fixed_tl;
td[0]=fixed_td;
return Z_OK;
}
// build literal/length tree
initWorkArea(288);
hn[0] = 0;
result = huft_build(c, 0, nl, 257, cplens, cplext, tl, bl, hp, hn, v);
if (result != JZlib.Z_OK || bl[0] == 0) {
if (result == JZlib.Z_DATA_ERROR) {
z.msg = "oversubscribed literal/length tree";
} else if (result != JZlib.Z_MEM_ERROR) {
z.msg = "incomplete literal/length tree";
result = JZlib.Z_DATA_ERROR;
}
return result;
}
private void initWorkArea(int vsize){
if(hn==null){
hn=new int[1];
v=new int[vsize];
c=new int[BMAX+1];
r=new int[3];
u=new int[BMAX];
x=new int[BMAX+1];
// build distance tree
initWorkArea(288);
result = huft_build(c, nl, nd, 0, cpdist, cpdext, td, bd, hp, hn, v);
if (result != JZlib.Z_OK || bd[0] == 0 && nl > 257) {
if (result == JZlib.Z_DATA_ERROR) {
z.msg = "oversubscribed distance tree";
} else if (result == JZlib.Z_BUF_ERROR) {
z.msg = "incomplete distance tree";
result = JZlib.Z_DATA_ERROR;
} else if (result != JZlib.Z_MEM_ERROR) {
z.msg = "empty distance tree with lengths";
result = JZlib.Z_DATA_ERROR;
}
return result;
}
return JZlib.Z_OK;
}
static int inflate_trees_fixed(int[] bl, //literal desired/actual bit depth
int[] bd, //distance desired/actual bit depth
int[][] tl,//literal/length tree result
int[][] td //distance tree result
) {
bl[0] = fixed_bl;
bd[0] = fixed_bd;
tl[0] = fixed_tl;
td[0] = fixed_td;
return JZlib.Z_OK;
}
private void initWorkArea(int vsize) {
if (hn == null) {
hn = new int[1];
v = new int[vsize];
c = new int[BMAX + 1];
r = new int[3];
u = new int[BMAX];
x = new int[BMAX + 1];
} else {
if (v.length < vsize) {
v = new int[vsize];
} else {
for (int i = 0; i < vsize; i ++) {
v[i] = 0;
}
}
for (int i = 0; i < BMAX + 1; i ++) {
c[i] = 0;
}
for (int i = 0; i < 3; i ++) {
r[i] = 0;
}
// for(int i=0; i<BMAX; i++){u[i]=0;}
System.arraycopy(c, 0, u, 0, BMAX);
// for(int i=0; i<BMAX+1; i++){x[i]=0;}
System.arraycopy(c, 0, x, 0, BMAX + 1);
}
}
if(v.length<vsize){ v=new int[vsize]; }
for(int i=0; i<vsize; i++){v[i]=0;}
for(int i=0; i<BMAX+1; i++){c[i]=0;}
for(int i=0; i<3; i++){r[i]=0;}
// for(int i=0; i<BMAX; i++){u[i]=0;}
System.arraycopy(c, 0, u, 0, BMAX);
// for(int i=0; i<BMAX+1; i++){x[i]=0;}
System.arraycopy(c, 0, x, 0, BMAX+1);
}
}

View File

@ -8,8 +8,8 @@ modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
@ -34,341 +34,347 @@ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package org.jboss.netty.util.internal.jzlib;
final class Inflate{
static final private int MAX_WBITS=15; // 32K LZ77 window
final class Inflate {
// preset dictionary flag in zlib header
static final private int PRESET_DICT=0x20;
private static final int METHOD = 0; // waiting for method byte
private static final int FLAG = 1; // waiting for flag byte
private static final int DICT4 = 2; // four dictionary check bytes to go
private static final int DICT3 = 3; // three dictionary check bytes to go
private static final int DICT2 = 4; // two dictionary check bytes to go
private static final int DICT1 = 5; // one dictionary check byte to go
private static final int DICT0 = 6; // waiting for inflateSetDictionary
private static final int BLOCKS = 7; // decompressing blocks
private static final int CHECK4 = 8; // four check bytes to go
private static final int CHECK3 = 9; // three check bytes to go
private static final int CHECK2 = 10; // two check bytes to go
private static final int CHECK1 = 11; // one check byte to go
private static final int DONE = 12; // finished check, done
private static final int BAD = 13; // got an error--stay here
static final int Z_NO_FLUSH=0;
static final int Z_PARTIAL_FLUSH=1;
static final int Z_SYNC_FLUSH=2;
static final int Z_FULL_FLUSH=3;
static final int Z_FINISH=4;
private int mode; // current inflate mode
// mode dependent information
private int method; // if FLAGS, method byte
// if CHECK, check values to compare
private final long[] was = new long[1]; // computed check value
private long need; // stream check value
// if BAD, inflateSync's marker bytes count
private int marker;
// mode independent information
private int nowrap; // flag for no wrapper
private int wbits; // log2(window size) (8..15, defaults to 15)
private InfBlocks blocks; // current inflate_blocks state
static final private int Z_DEFLATED=8;
private int inflateReset(ZStream z) {
if (z == null || z.istate == null) {
return JZlib.Z_STREAM_ERROR;
}
static final private int Z_OK=0;
static final private int Z_STREAM_END=1;
static final private int Z_NEED_DICT=2;
static final private int Z_ERRNO=-1;
static final private int Z_STREAM_ERROR=-2;
static final private int Z_DATA_ERROR=-3;
static final private int Z_MEM_ERROR=-4;
static final private int Z_BUF_ERROR=-5;
static final private int Z_VERSION_ERROR=-6;
static final private int METHOD=0; // waiting for method byte
static final private int FLAG=1; // waiting for flag byte
static final private int DICT4=2; // four dictionary check bytes to go
static final private int DICT3=3; // three dictionary check bytes to go
static final private int DICT2=4; // two dictionary check bytes to go
static final private int DICT1=5; // one dictionary check byte to go
static final private int DICT0=6; // waiting for inflateSetDictionary
static final private int BLOCKS=7; // decompressing blocks
static final private int CHECK4=8; // four check bytes to go
static final private int CHECK3=9; // three check bytes to go
static final private int CHECK2=10; // two check bytes to go
static final private int CHECK1=11; // one check byte to go
static final private int DONE=12; // finished check, done
static final private int BAD=13; // got an error--stay here
int mode; // current inflate mode
// mode dependent information
int method; // if FLAGS, method byte
// if CHECK, check values to compare
long[] was=new long[1] ; // computed check value
long need; // stream check value
// if BAD, inflateSync's marker bytes count
int marker;
// mode independent information
int nowrap; // flag for no wrapper
int wbits; // log2(window size) (8..15, defaults to 15)
InfBlocks blocks; // current inflate_blocks state
int inflateReset(ZStream z){
if(z == null || z.istate == null) return Z_STREAM_ERROR;
z.total_in = z.total_out = 0;
z.msg = null;
z.istate.mode = z.istate.nowrap!=0 ? BLOCKS : METHOD;
z.istate.blocks.reset(z, null);
return Z_OK;
}
int inflateEnd(ZStream z){
if(blocks != null)
blocks.free(z);
blocks=null;
// ZFREE(z, z->state);
return Z_OK;
}
int inflateInit(ZStream z, int w){
z.msg = null;
blocks = null;
// handle undocumented nowrap option (no zlib header or check)
nowrap = 0;
if(w < 0){
w = - w;
nowrap = 1;
z.total_in = z.total_out = 0;
z.msg = null;
z.istate.mode = z.istate.nowrap != 0? BLOCKS : METHOD;
z.istate.blocks.reset(z, null);
return JZlib.Z_OK;
}
// set window size
if(w<8 ||w>15){
inflateEnd(z);
return Z_STREAM_ERROR;
}
wbits=w;
z.istate.blocks=new InfBlocks(z,
z.istate.nowrap!=0 ? null : this,
1<<w);
// reset state
inflateReset(z);
return Z_OK;
}
int inflate(ZStream z, int f){
int r;
int b;
if(z == null || z.istate == null || z.next_in == null)
return Z_STREAM_ERROR;
f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
r = Z_BUF_ERROR;
while (true){
//System.out.println("mode: "+z.istate.mode);
switch (z.istate.mode){
case METHOD:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
if(((z.istate.method = z.next_in[z.next_in_index++])&0xf)!=Z_DEFLATED){
z.istate.mode = BAD;
z.msg="unknown compression method";
z.istate.marker = 5; // can't try inflateSync
break;
int inflateEnd(ZStream z) {
if (blocks != null) {
blocks.free(z);
}
if((z.istate.method>>4)+8>z.istate.wbits){
z.istate.mode = BAD;
z.msg="invalid window size";
z.istate.marker = 5; // can't try inflateSync
break;
}
z.istate.mode=FLAG;
case FLAG:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
b = (z.next_in[z.next_in_index++])&0xff;
if((((z.istate.method << 8)+b) % 31)!=0){
z.istate.mode = BAD;
z.msg = "incorrect header check";
z.istate.marker = 5; // can't try inflateSync
break;
}
if((b&PRESET_DICT)==0){
z.istate.mode = BLOCKS;
break;
}
z.istate.mode = DICT4;
case DICT4:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
z.istate.need=((z.next_in[z.next_in_index++]&0xff)<<24)&0xff000000L;
z.istate.mode=DICT3;
case DICT3:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
z.istate.need+=((z.next_in[z.next_in_index++]&0xff)<<16)&0xff0000L;
z.istate.mode=DICT2;
case DICT2:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
z.istate.need+=((z.next_in[z.next_in_index++]&0xff)<<8)&0xff00L;
z.istate.mode=DICT1;
case DICT1:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
z.istate.need += (z.next_in[z.next_in_index++]&0xffL);
z.adler = z.istate.need;
z.istate.mode = DICT0;
return Z_NEED_DICT;
case DICT0:
z.istate.mode = BAD;
z.msg = "need dictionary";
z.istate.marker = 0; // can try inflateSync
return Z_STREAM_ERROR;
case BLOCKS:
r = z.istate.blocks.proc(z, r);
if(r == Z_DATA_ERROR){
z.istate.mode = BAD;
z.istate.marker = 0; // can try inflateSync
break;
}
if(r == Z_OK){
r = f;
}
if(r != Z_STREAM_END){
return r;
}
r = f;
z.istate.blocks.reset(z, z.istate.was);
if(z.istate.nowrap!=0){
z.istate.mode=DONE;
break;
}
z.istate.mode=CHECK4;
case CHECK4:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
z.istate.need=((z.next_in[z.next_in_index++]&0xff)<<24)&0xff000000L;
z.istate.mode=CHECK3;
case CHECK3:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
z.istate.need+=((z.next_in[z.next_in_index++]&0xff)<<16)&0xff0000L;
z.istate.mode = CHECK2;
case CHECK2:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
z.istate.need+=((z.next_in[z.next_in_index++]&0xff)<<8)&0xff00L;
z.istate.mode = CHECK1;
case CHECK1:
if(z.avail_in==0)return r;r=f;
z.avail_in--; z.total_in++;
z.istate.need+=(z.next_in[z.next_in_index++]&0xffL);
if(((int)(z.istate.was[0])) != ((int)(z.istate.need))){
z.istate.mode = BAD;
z.msg = "incorrect data check";
z.istate.marker = 5; // can't try inflateSync
break;
}
z.istate.mode = DONE;
case DONE:
return Z_STREAM_END;
case BAD:
return Z_DATA_ERROR;
default:
return Z_STREAM_ERROR;
}
}
}
int inflateSetDictionary(ZStream z, byte[] dictionary, int dictLength){
int index=0;
int length = dictLength;
if(z==null || z.istate == null|| z.istate.mode != DICT0)
return Z_STREAM_ERROR;
if(z._adler.adler32(1L, dictionary, 0, dictLength)!=z.adler){
return Z_DATA_ERROR;
blocks = null;
// ZFREE(z, z->state);
return JZlib.Z_OK;
}
z.adler = z._adler.adler32(0, null, 0, 0);
int inflateInit(ZStream z, int w) {
z.msg = null;
blocks = null;
if(length >= (1<<z.istate.wbits)){
length = (1<<z.istate.wbits)-1;
index=dictLength - length;
}
z.istate.blocks.set_dictionary(dictionary, index, length);
z.istate.mode = BLOCKS;
return Z_OK;
}
// handle undocumented nowrap option (no zlib header or check)
nowrap = 0;
if (w < 0) {
w = -w;
nowrap = 1;
}
static private byte[] mark = {(byte)0, (byte)0, (byte)0xff, (byte)0xff};
// set window size
if (w < 8 || w > 15) {
inflateEnd(z);
return JZlib.Z_STREAM_ERROR;
}
wbits = w;
int inflateSync(ZStream z){
int n; // number of bytes to look at
int p; // pointer to bytes
int m; // number of marker bytes found in a row
long r, w; // temporaries to save total_in and total_out
z.istate.blocks = new InfBlocks(z, z.istate.nowrap != 0? null : this,
1 << w);
// set up
if(z == null || z.istate == null)
return Z_STREAM_ERROR;
if(z.istate.mode != BAD){
z.istate.mode = BAD;
z.istate.marker = 0;
}
if((n=z.avail_in)==0)
return Z_BUF_ERROR;
p=z.next_in_index;
m=z.istate.marker;
// search
while (n!=0 && m < 4){
if(z.next_in[p] == mark[m]){
m++;
}
else if(z.next_in[p]!=0){
m = 0;
}
else{
m = 4 - m;
}
p++; n--;
// reset state
inflateReset(z);
return JZlib.Z_OK;
}
// restore
z.total_in += p-z.next_in_index;
z.next_in_index = p;
z.avail_in = n;
z.istate.marker = m;
int inflate(ZStream z, int f) {
int r;
int b;
// return no joy or set up to restart on a new block
if(m != 4){
return Z_DATA_ERROR;
if (z == null || z.istate == null || z.next_in == null) {
return JZlib.Z_STREAM_ERROR;
}
f = f == JZlib.Z_FINISH? JZlib.Z_BUF_ERROR : JZlib.Z_OK;
r = JZlib.Z_BUF_ERROR;
while (true) {
//System.out.println("mode: "+z.istate.mode);
switch (z.istate.mode) {
case METHOD:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
if (((z.istate.method = z.next_in[z.next_in_index ++]) & 0xf) != JZlib.Z_DEFLATED) {
z.istate.mode = BAD;
z.msg = "unknown compression method";
z.istate.marker = 5; // can't try inflateSync
break;
}
if ((z.istate.method >> 4) + 8 > z.istate.wbits) {
z.istate.mode = BAD;
z.msg = "invalid window size";
z.istate.marker = 5; // can't try inflateSync
break;
}
z.istate.mode = FLAG;
case FLAG:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
b = z.next_in[z.next_in_index ++] & 0xff;
if (((z.istate.method << 8) + b) % 31 != 0) {
z.istate.mode = BAD;
z.msg = "incorrect header check";
z.istate.marker = 5; // can't try inflateSync
break;
}
if ((b & JZlib.PRESET_DICT) == 0) {
z.istate.mode = BLOCKS;
break;
}
z.istate.mode = DICT4;
case DICT4:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
z.istate.need = (z.next_in[z.next_in_index ++] & 0xff) << 24 & 0xff000000L;
z.istate.mode = DICT3;
case DICT3:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
z.istate.need += (z.next_in[z.next_in_index ++] & 0xff) << 16 & 0xff0000L;
z.istate.mode = DICT2;
case DICT2:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
z.istate.need += (z.next_in[z.next_in_index ++] & 0xff) << 8 & 0xff00L;
z.istate.mode = DICT1;
case DICT1:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
z.istate.need += z.next_in[z.next_in_index ++] & 0xffL;
z.adler = z.istate.need;
z.istate.mode = DICT0;
return JZlib.Z_NEED_DICT;
case DICT0:
z.istate.mode = BAD;
z.msg = "need dictionary";
z.istate.marker = 0; // can try inflateSync
return JZlib.Z_STREAM_ERROR;
case BLOCKS:
r = z.istate.blocks.proc(z, r);
if (r == JZlib.Z_DATA_ERROR) {
z.istate.mode = BAD;
z.istate.marker = 0; // can try inflateSync
break;
}
if (r == JZlib.Z_OK) {
r = f;
}
if (r != JZlib.Z_STREAM_END) {
return r;
}
r = f;
z.istate.blocks.reset(z, z.istate.was);
if (z.istate.nowrap != 0) {
z.istate.mode = DONE;
break;
}
z.istate.mode = CHECK4;
case CHECK4:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
z.istate.need = (z.next_in[z.next_in_index ++] & 0xff) << 24 & 0xff000000L;
z.istate.mode = CHECK3;
case CHECK3:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
z.istate.need += (z.next_in[z.next_in_index ++] & 0xff) << 16 & 0xff0000L;
z.istate.mode = CHECK2;
case CHECK2:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
z.istate.need += (z.next_in[z.next_in_index ++] & 0xff) << 8 & 0xff00L;
z.istate.mode = CHECK1;
case CHECK1:
if (z.avail_in == 0) {
return r;
}
r = f;
z.avail_in --;
z.total_in ++;
z.istate.need += z.next_in[z.next_in_index ++] & 0xffL;
if ((int) z.istate.was[0] != (int) z.istate.need) {
z.istate.mode = BAD;
z.msg = "incorrect data check";
z.istate.marker = 5; // can't try inflateSync
break;
}
z.istate.mode = DONE;
case DONE:
return JZlib.Z_STREAM_END;
case BAD:
return JZlib.Z_DATA_ERROR;
default:
return JZlib.Z_STREAM_ERROR;
}
}
}
r=z.total_in; w=z.total_out;
inflateReset(z);
z.total_in=r; z.total_out = w;
z.istate.mode = BLOCKS;
return Z_OK;
}
// Returns true if inflate is currently at the end of a block generated
// by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
// implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
// but removes the length bytes of the resulting empty stored block. When
// decompressing, PPP checks that at the end of input packet, inflate is
// waiting for these length bytes.
int inflateSyncPoint(ZStream z){
if(z == null || z.istate == null || z.istate.blocks == null)
return Z_STREAM_ERROR;
return z.istate.blocks.sync_point();
}
int inflateSetDictionary(ZStream z, byte[] dictionary, int dictLength) {
int index = 0;
int length = dictLength;
if (z == null || z.istate == null || z.istate.mode != DICT0) {
return JZlib.Z_STREAM_ERROR;
}
if (Adler32.adler32(1L, dictionary, 0, dictLength) != z.adler) {
return JZlib.Z_DATA_ERROR;
}
z.adler = Adler32.adler32(0, null, 0, 0);
if (length >= 1 << z.istate.wbits) {
length = (1 << z.istate.wbits) - 1;
index = dictLength - length;
}
z.istate.blocks.set_dictionary(dictionary, index, length);
z.istate.mode = BLOCKS;
return JZlib.Z_OK;
}
private static final byte[] mark = { (byte) 0, (byte) 0, (byte) 0xff, (byte) 0xff };
int inflateSync(ZStream z) {
int n; // number of bytes to look at
int p; // pointer to bytes
int m; // number of marker bytes found in a row
long r, w; // temporaries to save total_in and total_out
// set up
if (z == null || z.istate == null) {
return JZlib.Z_STREAM_ERROR;
}
if (z.istate.mode != BAD) {
z.istate.mode = BAD;
z.istate.marker = 0;
}
if ((n = z.avail_in) == 0) {
return JZlib.Z_BUF_ERROR;
}
p = z.next_in_index;
m = z.istate.marker;
// search
while (n != 0 && m < 4) {
if (z.next_in[p] == mark[m]) {
m ++;
} else if (z.next_in[p] != 0) {
m = 0;
} else {
m = 4 - m;
}
p ++;
n --;
}
// restore
z.total_in += p - z.next_in_index;
z.next_in_index = p;
z.avail_in = n;
z.istate.marker = m;
// return no joy or set up to restart on a new block
if (m != 4) {
return JZlib.Z_DATA_ERROR;
}
r = z.total_in;
w = z.total_out;
inflateReset(z);
z.total_in = r;
z.total_out = w;
z.istate.mode = BLOCKS;
return JZlib.Z_OK;
}
}

View File

@ -42,29 +42,50 @@ public final class JZlib {
public static final int W_GZIP = 2;
// compression levels
static final public int Z_NO_COMPRESSION=0;
static final public int Z_BEST_SPEED=1;
static final public int Z_BEST_COMPRESSION=9;
static final public int Z_DEFAULT_COMPRESSION=-1;
public static final int Z_NO_COMPRESSION = 0;
public static final int Z_BEST_SPEED = 1;
public static final int Z_BEST_COMPRESSION = 9;
public static final int Z_DEFAULT_COMPRESSION = -1;
// compression strategy
static final public int Z_FILTERED=1;
static final public int Z_HUFFMAN_ONLY=2;
static final public int Z_DEFAULT_STRATEGY=0;
public static final int Z_FILTERED = 1;
public static final int Z_HUFFMAN_ONLY = 2;
public static final int Z_DEFAULT_STRATEGY = 0;
static final public int Z_NO_FLUSH=0;
static final public int Z_PARTIAL_FLUSH=1;
static final public int Z_SYNC_FLUSH=2;
static final public int Z_FULL_FLUSH=3;
static final public int Z_FINISH=4;
// flush method
public static final int Z_NO_FLUSH = 0;
public static final int Z_PARTIAL_FLUSH = 1;
public static final int Z_SYNC_FLUSH = 2;
public static final int Z_FULL_FLUSH = 3;
public static final int Z_FINISH = 4;
// return codes
public static final int Z_OK = 0;
public static final int Z_STREAM_END = 1;
public static final int Z_NEED_DICT = 2;
public static final int Z_ERRNO = -1;
public static final int Z_STREAM_ERROR = -2;
public static final int Z_DATA_ERROR = -3;
public static final int Z_MEM_ERROR = -4;
public static final int Z_BUF_ERROR = -5;
public static final int Z_VERSION_ERROR = -6;
// internal stuff
static final int Z_DEFLATED = 8;
static final int MAX_MEM_LEVEL = 9;
static final int DEF_MEM_LEVEL = 8;
static final int MAX_WBITS = 15; // 32K LZ77 window
static final int DEF_WBITS = MAX_WBITS;
static final int MAX_BITS = 15;
static final int PRESET_DICT = 0x20; // preset dictionary flag in zlib header
static final int MANY = 1440;
static final int BL_CODES = 19;
static final int D_CODES = 30;
static final int LITERALS = 256;
static final int LENGTH_CODES = 29;
static final int L_CODES = LITERALS + 1 + LENGTH_CODES;
static final int HEAP_SIZE = 2 * L_CODES + 1;
// Bit length codes must not exceed MAX_BL_BITS bits
static final int MAX_BL_BITS = 7;
static final public int Z_OK=0;
static final public int Z_STREAM_END=1;
static final public int Z_NEED_DICT=2;
static final public int Z_ERRNO=-1;
static final public int Z_STREAM_ERROR=-2;
static final public int Z_DATA_ERROR=-3;
static final public int Z_MEM_ERROR=-4;
static final public int Z_BUF_ERROR=-5;
static final public int Z_VERSION_ERROR=-6;
}

View File

@ -8,8 +8,8 @@ modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
@ -34,116 +34,68 @@ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package org.jboss.netty.util.internal.jzlib;
final class StaticTree{
static final private int MAX_BITS=15;
final class StaticTree {
static final short[] static_ltree = { 12, 8, 140, 8, 76, 8, 204, 8, 44, 8,
172, 8, 108, 8, 236, 8, 28, 8, 156, 8, 92, 8, 220, 8, 60, 8, 188,
8, 124, 8, 252, 8, 2, 8, 130, 8, 66, 8, 194, 8, 34, 8, 162, 8, 98,
8, 226, 8, 18, 8, 146, 8, 82, 8, 210, 8, 50, 8, 178, 8, 114, 8,
242, 8, 10, 8, 138, 8, 74, 8, 202, 8, 42, 8, 170, 8, 106, 8, 234,
8, 26, 8, 154, 8, 90, 8, 218, 8, 58, 8, 186, 8, 122, 8, 250, 8, 6,
8, 134, 8, 70, 8, 198, 8, 38, 8, 166, 8, 102, 8, 230, 8, 22, 8,
150, 8, 86, 8, 214, 8, 54, 8, 182, 8, 118, 8, 246, 8, 14, 8, 142,
8, 78, 8, 206, 8, 46, 8, 174, 8, 110, 8, 238, 8, 30, 8, 158, 8, 94,
8, 222, 8, 62, 8, 190, 8, 126, 8, 254, 8, 1, 8, 129, 8, 65, 8, 193,
8, 33, 8, 161, 8, 97, 8, 225, 8, 17, 8, 145, 8, 81, 8, 209, 8, 49,
8, 177, 8, 113, 8, 241, 8, 9, 8, 137, 8, 73, 8, 201, 8, 41, 8, 169,
8, 105, 8, 233, 8, 25, 8, 153, 8, 89, 8, 217, 8, 57, 8, 185, 8,
121, 8, 249, 8, 5, 8, 133, 8, 69, 8, 197, 8, 37, 8, 165, 8, 101, 8,
229, 8, 21, 8, 149, 8, 85, 8, 213, 8, 53, 8, 181, 8, 117, 8, 245,
8, 13, 8, 141, 8, 77, 8, 205, 8, 45, 8, 173, 8, 109, 8, 237, 8, 29,
8, 157, 8, 93, 8, 221, 8, 61, 8, 189, 8, 125, 8, 253, 8, 19, 9,
275, 9, 147, 9, 403, 9, 83, 9, 339, 9, 211, 9, 467, 9, 51, 9, 307,
9, 179, 9, 435, 9, 115, 9, 371, 9, 243, 9, 499, 9, 11, 9, 267, 9,
139, 9, 395, 9, 75, 9, 331, 9, 203, 9, 459, 9, 43, 9, 299, 9, 171,
9, 427, 9, 107, 9, 363, 9, 235, 9, 491, 9, 27, 9, 283, 9, 155, 9,
411, 9, 91, 9, 347, 9, 219, 9, 475, 9, 59, 9, 315, 9, 187, 9, 443,
9, 123, 9, 379, 9, 251, 9, 507, 9, 7, 9, 263, 9, 135, 9, 391, 9,
71, 9, 327, 9, 199, 9, 455, 9, 39, 9, 295, 9, 167, 9, 423, 9, 103,
9, 359, 9, 231, 9, 487, 9, 23, 9, 279, 9, 151, 9, 407, 9, 87, 9,
343, 9, 215, 9, 471, 9, 55, 9, 311, 9, 183, 9, 439, 9, 119, 9, 375,
9, 247, 9, 503, 9, 15, 9, 271, 9, 143, 9, 399, 9, 79, 9, 335, 9,
207, 9, 463, 9, 47, 9, 303, 9, 175, 9, 431, 9, 111, 9, 367, 9, 239,
9, 495, 9, 31, 9, 287, 9, 159, 9, 415, 9, 95, 9, 351, 9, 223, 9,
479, 9, 63, 9, 319, 9, 191, 9, 447, 9, 127, 9, 383, 9, 255, 9, 511,
9, 0, 7, 64, 7, 32, 7, 96, 7, 16, 7, 80, 7, 48, 7, 112, 7, 8, 7,
72, 7, 40, 7, 104, 7, 24, 7, 88, 7, 56, 7, 120, 7, 4, 7, 68, 7, 36,
7, 100, 7, 20, 7, 84, 7, 52, 7, 116, 7, 3, 8, 131, 8, 67, 8, 195,
8, 35, 8, 163, 8, 99, 8, 227, 8 };
static final private int BL_CODES=19;
static final private int D_CODES=30;
static final private int LITERALS=256;
static final private int LENGTH_CODES=29;
static final private int L_CODES=(LITERALS+1+LENGTH_CODES);
static final short[] static_dtree = { 0, 5, 16, 5, 8, 5, 24, 5, 4, 5, 20,
5, 12, 5, 28, 5, 2, 5, 18, 5, 10, 5, 26, 5, 6, 5, 22, 5, 14, 5, 30,
5, 1, 5, 17, 5, 9, 5, 25, 5, 5, 5, 21, 5, 13, 5, 29, 5, 3, 5, 19,
5, 11, 5, 27, 5, 7, 5, 23, 5 };
// Bit length codes must not exceed MAX_BL_BITS bits
static final int MAX_BL_BITS=7;
static final StaticTree static_l_desc = new StaticTree(static_ltree,
Tree.extra_lbits, JZlib.LITERALS + 1, JZlib.L_CODES, JZlib.MAX_BITS);
static final short[] static_ltree = {
12, 8, 140, 8, 76, 8, 204, 8, 44, 8,
172, 8, 108, 8, 236, 8, 28, 8, 156, 8,
92, 8, 220, 8, 60, 8, 188, 8, 124, 8,
252, 8, 2, 8, 130, 8, 66, 8, 194, 8,
34, 8, 162, 8, 98, 8, 226, 8, 18, 8,
146, 8, 82, 8, 210, 8, 50, 8, 178, 8,
114, 8, 242, 8, 10, 8, 138, 8, 74, 8,
202, 8, 42, 8, 170, 8, 106, 8, 234, 8,
26, 8, 154, 8, 90, 8, 218, 8, 58, 8,
186, 8, 122, 8, 250, 8, 6, 8, 134, 8,
70, 8, 198, 8, 38, 8, 166, 8, 102, 8,
230, 8, 22, 8, 150, 8, 86, 8, 214, 8,
54, 8, 182, 8, 118, 8, 246, 8, 14, 8,
142, 8, 78, 8, 206, 8, 46, 8, 174, 8,
110, 8, 238, 8, 30, 8, 158, 8, 94, 8,
222, 8, 62, 8, 190, 8, 126, 8, 254, 8,
1, 8, 129, 8, 65, 8, 193, 8, 33, 8,
161, 8, 97, 8, 225, 8, 17, 8, 145, 8,
81, 8, 209, 8, 49, 8, 177, 8, 113, 8,
241, 8, 9, 8, 137, 8, 73, 8, 201, 8,
41, 8, 169, 8, 105, 8, 233, 8, 25, 8,
153, 8, 89, 8, 217, 8, 57, 8, 185, 8,
121, 8, 249, 8, 5, 8, 133, 8, 69, 8,
197, 8, 37, 8, 165, 8, 101, 8, 229, 8,
21, 8, 149, 8, 85, 8, 213, 8, 53, 8,
181, 8, 117, 8, 245, 8, 13, 8, 141, 8,
77, 8, 205, 8, 45, 8, 173, 8, 109, 8,
237, 8, 29, 8, 157, 8, 93, 8, 221, 8,
61, 8, 189, 8, 125, 8, 253, 8, 19, 9,
275, 9, 147, 9, 403, 9, 83, 9, 339, 9,
211, 9, 467, 9, 51, 9, 307, 9, 179, 9,
435, 9, 115, 9, 371, 9, 243, 9, 499, 9,
11, 9, 267, 9, 139, 9, 395, 9, 75, 9,
331, 9, 203, 9, 459, 9, 43, 9, 299, 9,
171, 9, 427, 9, 107, 9, 363, 9, 235, 9,
491, 9, 27, 9, 283, 9, 155, 9, 411, 9,
91, 9, 347, 9, 219, 9, 475, 9, 59, 9,
315, 9, 187, 9, 443, 9, 123, 9, 379, 9,
251, 9, 507, 9, 7, 9, 263, 9, 135, 9,
391, 9, 71, 9, 327, 9, 199, 9, 455, 9,
39, 9, 295, 9, 167, 9, 423, 9, 103, 9,
359, 9, 231, 9, 487, 9, 23, 9, 279, 9,
151, 9, 407, 9, 87, 9, 343, 9, 215, 9,
471, 9, 55, 9, 311, 9, 183, 9, 439, 9,
119, 9, 375, 9, 247, 9, 503, 9, 15, 9,
271, 9, 143, 9, 399, 9, 79, 9, 335, 9,
207, 9, 463, 9, 47, 9, 303, 9, 175, 9,
431, 9, 111, 9, 367, 9, 239, 9, 495, 9,
31, 9, 287, 9, 159, 9, 415, 9, 95, 9,
351, 9, 223, 9, 479, 9, 63, 9, 319, 9,
191, 9, 447, 9, 127, 9, 383, 9, 255, 9,
511, 9, 0, 7, 64, 7, 32, 7, 96, 7,
16, 7, 80, 7, 48, 7, 112, 7, 8, 7,
72, 7, 40, 7, 104, 7, 24, 7, 88, 7,
56, 7, 120, 7, 4, 7, 68, 7, 36, 7,
100, 7, 20, 7, 84, 7, 52, 7, 116, 7,
3, 8, 131, 8, 67, 8, 195, 8, 35, 8,
163, 8, 99, 8, 227, 8
};
static final StaticTree static_d_desc = new StaticTree(static_dtree,
Tree.extra_dbits, 0, JZlib.D_CODES, JZlib.MAX_BITS);
static final short[] static_dtree = {
0, 5, 16, 5, 8, 5, 24, 5, 4, 5,
20, 5, 12, 5, 28, 5, 2, 5, 18, 5,
10, 5, 26, 5, 6, 5, 22, 5, 14, 5,
30, 5, 1, 5, 17, 5, 9, 5, 25, 5,
5, 5, 21, 5, 13, 5, 29, 5, 3, 5,
19, 5, 11, 5, 27, 5, 7, 5, 23, 5
};
static final StaticTree static_bl_desc = new StaticTree(null, Tree.extra_blbits,
0, JZlib.BL_CODES, JZlib.MAX_BL_BITS);
static StaticTree static_l_desc =
new StaticTree(static_ltree, Tree.extra_lbits,
LITERALS+1, L_CODES, MAX_BITS);
final short[] static_tree; // static tree or null
final int[] extra_bits; // extra bits for each code or null
final int extra_base; // base index for extra_bits
final int elems; // max number of elements in the tree
final int max_length; // max bit length for the codes
static StaticTree static_d_desc =
new StaticTree(static_dtree, Tree.extra_dbits,
0, D_CODES, MAX_BITS);
static StaticTree static_bl_desc =
new StaticTree(null, Tree.extra_blbits,
0, BL_CODES, MAX_BL_BITS);
short[] static_tree; // static tree or null
int[] extra_bits; // extra bits for each code or null
int extra_base; // base index for extra_bits
int elems; // max number of elements in the tree
int max_length; // max bit length for the codes
StaticTree(short[] static_tree,
int[] extra_bits,
int extra_base,
int elems,
int max_length
){
this.static_tree=static_tree;
this.extra_bits=extra_bits;
this.extra_base=extra_base;
this.elems=elems;
this.max_length=max_length;
}
StaticTree(short[] static_tree, int[] extra_bits, int extra_base,
int elems, int max_length) {
this.static_tree = static_tree;
this.extra_bits = extra_bits;
this.extra_base = extra_base;
this.elems = elems;
this.max_length = max_length;
}
}

View File

@ -8,8 +8,8 @@ modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
@ -34,332 +34,316 @@ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package org.jboss.netty.util.internal.jzlib;
final class Tree{
static final private int MAX_BITS=15;
static final private int BL_CODES=19;
static final private int D_CODES=30;
static final private int LITERALS=256;
static final private int LENGTH_CODES=29;
static final private int L_CODES=(LITERALS+1+LENGTH_CODES);
static final private int HEAP_SIZE=(2*L_CODES+1);
final class Tree {
// extra bits for each length code
static final int[] extra_lbits = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
// Bit length codes must not exceed MAX_BL_BITS bits
static final int MAX_BL_BITS=7;
// extra bits for each distance code
static final int[] extra_dbits = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5,
5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 };
// end of block literal code
static final int END_BLOCK=256;
// extra bits for each bit length code
static final int[] extra_blbits = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2, 3, 7 };
// repeat previous bit length 3-6 times (2 bits of repeat count)
static final int REP_3_6=16;
static final byte[] bl_order = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4,
12, 3, 13, 2, 14, 1, 15 };
// repeat a zero length 3-10 times (3 bits of repeat count)
static final int REPZ_3_10=17;
static final byte[] _dist_code = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7,
7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29 };
// repeat a zero length 11-138 times (7 bits of repeat count)
static final int REPZ_11_138=18;
static final byte[] _length_code = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9,
10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15,
15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17,
17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19,
19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 28 };
// extra bits for each length code
static final int[] extra_lbits={
0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0
};
static final int[] base_length = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14,
16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192,
224, 0 };
// extra bits for each distance code
static final int[] extra_dbits={
0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13
};
static final int[] base_dist = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48,
64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096,
6144, 8192, 12288, 16384, 24576 };
// extra bits for each bit length code
static final int[] extra_blbits={
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7
};
static final byte[] bl_order={
16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit
// length codes.
static final int Buf_size=8*2;
// see definition of array dist_code below
static final int DIST_CODE_LEN=512;
static final byte[] _dist_code = {
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
};
static final byte[] _length_code={
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
};
static final int[] base_length = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
64, 80, 96, 112, 128, 160, 192, 224, 0
};
static final int[] base_dist = {
0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
};
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. _dist_code[256] and _dist_code[257] are never
// used.
static int d_code(int dist){
return ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>>7)]);
}
short[] dyn_tree; // the dynamic tree
int max_code; // largest code with non zero frequency
StaticTree stat_desc; // the corresponding static tree
// Compute the optimal bit lengths for a tree and update the total bit length
// for the current block.
// IN assertion: the fields freq and dad are set, heap[heap_max] and
// above are the tree nodes sorted by increasing frequency.
// OUT assertions: the field len is set to the optimal bit length, the
// array bl_count contains the frequencies for each bit length.
// The length opt_len is updated; static_len is also updated if stree is
// not null.
void gen_bitlen(Deflate s){
short[] tree = dyn_tree;
short[] stree = stat_desc.static_tree;
int[] extra = stat_desc.extra_bits;
int base = stat_desc.extra_base;
int max_length = stat_desc.max_length;
int h; // heap index
int n, m; // iterate over the tree elements
int bits; // bit length
int xbits; // extra bits
short f; // frequency
int overflow = 0; // number of elements with bit length too large
for (bits = 0; bits <= MAX_BITS; bits++) s.bl_count[bits] = 0;
// In a first pass, compute the optimal bit lengths (which may
// overflow in the case of the bit length tree).
tree[s.heap[s.heap_max]*2+1] = 0; // root of the heap
for(h=s.heap_max+1; h<HEAP_SIZE; h++){
n = s.heap[h];
bits = tree[tree[n*2+1]*2+1] + 1;
if (bits > max_length){ bits = max_length; overflow++; }
tree[n*2+1] = (short)bits;
// We overwrite tree[n*2+1] which is no longer needed
if (n > max_code) continue; // not a leaf node
s.bl_count[bits]++;
xbits = 0;
if (n >= base) xbits = extra[n-base];
f = tree[n*2];
s.opt_len += f * (bits + xbits);
if (stree!=null) s.static_len += f * (stree[n*2+1] + xbits);
}
if (overflow == 0) return;
// This happens for example on obj2 and pic of the Calgary corpus
// Find the first bit length which could increase:
do {
bits = max_length-1;
while(s.bl_count[bits]==0) bits--;
s.bl_count[bits]--; // move one leaf down the tree
s.bl_count[bits+1]+=2; // move one overflow item as its brother
s.bl_count[max_length]--;
// The brother of the overflow item also moves one step up,
// but this does not affect bl_count[max_length]
overflow -= 2;
}
while (overflow > 0);
for (bits = max_length; bits != 0; bits--) {
n = s.bl_count[bits];
while (n != 0) {
m = s.heap[--h];
if (m > max_code) continue;
if (tree[m*2+1] != bits) {
s.opt_len += ((long)bits - (long)tree[m*2+1])*(long)tree[m*2];
tree[m*2+1] = (short)bits;
}
n--;
}
}
}
// Construct one Huffman tree and assigns the code bit strings and lengths.
// Update the total bit length for the current block.
// IN assertion: the field freq is set for all tree elements.
// OUT assertions: the fields len and code are set to the optimal bit length
// and corresponding code. The length opt_len is updated; static_len is
// also updated if stree is not null. The field max_code is set.
void build_tree(Deflate s){
short[] tree=dyn_tree;
short[] stree=stat_desc.static_tree;
int elems=stat_desc.elems;
int n, m; // iterate over heap elements
int max_code=-1; // largest code with non zero frequency
int node; // new node being created
// Construct the initial heap, with least frequent element in
// heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
// heap[0] is not used.
s.heap_len = 0;
s.heap_max = HEAP_SIZE;
for(n=0; n<elems; n++) {
if(tree[n*2] != 0) {
s.heap[++s.heap_len] = max_code = n;
s.depth[n] = 0;
}
else{
tree[n*2+1] = 0;
}
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. _dist_code[256] and _dist_code[257] are never
// used.
static int d_code(int dist) {
return dist < 256? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
}
// The pkzip format requires that at least one distance code exists,
// and that at least one bit should be sent even if there is only one
// possible code. So to avoid special checks later on we force at least
// two codes of non zero frequency.
while (s.heap_len < 2) {
node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
tree[node*2] = 1;
s.depth[node] = 0;
s.opt_len--; if (stree!=null) s.static_len -= stree[node*2+1];
// node is 0 or 1 so it does not have extra bits
}
this.max_code = max_code;
short[] dyn_tree; // the dynamic tree
int max_code; // largest code with non zero frequency
StaticTree stat_desc; // the corresponding static tree
// The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
// establish sub-heaps of increasing lengths:
// Compute the optimal bit lengths for a tree and update the total bit length
// for the current block.
// IN assertion: the fields freq and dad are set, heap[heap_max] and
// above are the tree nodes sorted by increasing frequency.
// OUT assertions: the field len is set to the optimal bit length, the
// array bl_count contains the frequencies for each bit length.
// The length opt_len is updated; static_len is also updated if stree is
// not null.
private void gen_bitlen(Deflate s) {
short[] tree = dyn_tree;
short[] stree = stat_desc.static_tree;
int[] extra = stat_desc.extra_bits;
int base = stat_desc.extra_base;
int max_length = stat_desc.max_length;
int h; // heap index
int n, m; // iterate over the tree elements
int bits; // bit length
int xbits; // extra bits
short f; // frequency
int overflow = 0; // number of elements with bit length too large
for(n=s.heap_len/2;n>=1; n--)
s.pqdownheap(tree, n);
for (bits = 0; bits <= JZlib.MAX_BITS; bits ++) {
s.bl_count[bits] = 0;
}
// Construct the Huffman tree by repeatedly combining the least two
// frequent nodes.
// In a first pass, compute the optimal bit lengths (which may
// overflow in the case of the bit length tree).
tree[s.heap[s.heap_max] * 2 + 1] = 0; // root of the heap
node=elems; // next internal node of the tree
do{
// n = node of least frequency
n=s.heap[1];
s.heap[1]=s.heap[s.heap_len--];
s.pqdownheap(tree, 1);
m=s.heap[1]; // m = node of next least frequency
for (h = s.heap_max + 1; h < JZlib.HEAP_SIZE; h ++) {
n = s.heap[h];
bits = tree[tree[n * 2 + 1] * 2 + 1] + 1;
if (bits > max_length) {
bits = max_length;
overflow ++;
}
tree[n * 2 + 1] = (short) bits;
// We overwrite tree[n*2+1] which is no longer needed
s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
s.heap[--s.heap_max] = m;
if (n > max_code) {
continue; // not a leaf node
}
// Create a new node father of n and m
tree[node*2] = (short)(tree[n*2] + tree[m*2]);
s.depth[node] = (byte)(Math.max(s.depth[n],s.depth[m])+1);
tree[n*2+1] = tree[m*2+1] = (short)node;
s.bl_count[bits] ++;
xbits = 0;
if (n >= base) {
xbits = extra[n - base];
}
f = tree[n * 2];
s.opt_len += f * (bits + xbits);
if (stree != null) {
s.static_len += f * (stree[n * 2 + 1] + xbits);
}
}
if (overflow == 0) {
return;
}
// and insert the new node in the heap
s.heap[1] = node++;
s.pqdownheap(tree, 1);
}
while(s.heap_len>=2);
// This happens for example on obj2 and pic of the Calgary corpus
// Find the first bit length which could increase:
do {
bits = max_length - 1;
while (s.bl_count[bits] == 0) {
bits --;
}
s.bl_count[bits] --; // move one leaf down the tree
s.bl_count[bits + 1] += 2; // move one overflow item as its brother
s.bl_count[max_length] --;
// The brother of the overflow item also moves one step up,
// but this does not affect bl_count[max_length]
overflow -= 2;
} while (overflow > 0);
s.heap[--s.heap_max] = s.heap[1];
// At this point, the fields freq and dad are set. We can now
// generate the bit lengths.
gen_bitlen(s);
// The field len is now set, we can generate the bit codes
gen_codes(tree, max_code, s.bl_count);
}
// Generate the codes for a given tree and bit counts (which need not be
// optimal).
// IN assertion: the array bl_count contains the bit length statistics for
// the given tree and the field len is set for all tree elements.
// OUT assertion: the field code is set for all tree elements of non
// zero code length.
static void gen_codes(short[] tree, // the tree to decorate
int max_code, // largest code with non zero frequency
short[] bl_count // number of codes at each bit length
){
short[] next_code=new short[MAX_BITS+1]; // next code value for each bit length
short code = 0; // running code value
int bits; // bit index
int n; // code index
// The distribution counts are first used to generate the code values
// without bit reversal.
for (bits = 1; bits <= MAX_BITS; bits++) {
next_code[bits] = code = (short)((code + bl_count[bits-1]) << 1);
for (bits = max_length; bits != 0; bits --) {
n = s.bl_count[bits];
while (n != 0) {
m = s.heap[-- h];
if (m > max_code) {
continue;
}
if (tree[m * 2 + 1] != bits) {
s.opt_len += ((long) bits - (long) tree[m * 2 + 1]) *
tree[m * 2];
tree[m * 2 + 1] = (short) bits;
}
n --;
}
}
}
// Check that the bit counts in bl_count are consistent. The last code
// must be all ones.
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
// "inconsistent bit counts");
//Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
// Construct one Huffman tree and assigns the code bit strings and lengths.
// Update the total bit length for the current block.
// IN assertion: the field freq is set for all tree elements.
// OUT assertions: the fields len and code are set to the optimal bit length
// and corresponding code. The length opt_len is updated; static_len is
// also updated if stree is not null. The field max_code is set.
void build_tree(Deflate s) {
short[] tree = dyn_tree;
short[] stree = stat_desc.static_tree;
int elems = stat_desc.elems;
int n, m; // iterate over heap elements
int max_code = -1; // largest code with non zero frequency
int node; // new node being created
for (n = 0; n <= max_code; n++) {
int len = tree[n*2+1];
if (len == 0) continue;
// Now reverse the bits
tree[n*2] = (short)(bi_reverse(next_code[len]++, len));
// Construct the initial heap, with least frequent element in
// heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
// heap[0] is not used.
s.heap_len = 0;
s.heap_max = JZlib.HEAP_SIZE;
for (n = 0; n < elems; n ++) {
if (tree[n * 2] != 0) {
s.heap[++ s.heap_len] = max_code = n;
s.depth[n] = 0;
} else {
tree[n * 2 + 1] = 0;
}
}
// The pkzip format requires that at least one distance code exists,
// and that at least one bit should be sent even if there is only one
// possible code. So to avoid special checks later on we force at least
// two codes of non zero frequency.
while (s.heap_len < 2) {
node = s.heap[++ s.heap_len] = max_code < 2? ++ max_code : 0;
tree[node * 2] = 1;
s.depth[node] = 0;
s.opt_len --;
if (stree != null) {
s.static_len -= stree[node * 2 + 1];
// node is 0 or 1 so it does not have extra bits
}
}
this.max_code = max_code;
// The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
// establish sub-heaps of increasing lengths:
for (n = s.heap_len / 2; n >= 1; n --) {
s.pqdownheap(tree, n);
}
// Construct the Huffman tree by repeatedly combining the least two
// frequent nodes.
node = elems; // next internal node of the tree
do {
// n = node of least frequency
n = s.heap[1];
s.heap[1] = s.heap[s.heap_len --];
s.pqdownheap(tree, 1);
m = s.heap[1]; // m = node of next least frequency
s.heap[-- s.heap_max] = n; // keep the nodes sorted by frequency
s.heap[-- s.heap_max] = m;
// Create a new node father of n and m
tree[node * 2] = (short) (tree[n * 2] + tree[m * 2]);
s.depth[node] = (byte) (Math.max(s.depth[n], s.depth[m]) + 1);
tree[n * 2 + 1] = tree[m * 2 + 1] = (short) node;
// and insert the new node in the heap
s.heap[1] = node ++;
s.pqdownheap(tree, 1);
} while (s.heap_len >= 2);
s.heap[-- s.heap_max] = s.heap[1];
// At this point, the fields freq and dad are set. We can now
// generate the bit lengths.
gen_bitlen(s);
// The field len is now set, we can generate the bit codes
gen_codes(tree, max_code, s.bl_count);
}
}
// Reverse the first len bits of a code, using straightforward code (a faster
// method would use a table)
// IN assertion: 1 <= len <= 15
static int bi_reverse(int code, // the value to invert
int len // its bit length
){
int res = 0;
do{
res|=code&1;
code>>>=1;
res<<=1;
}
while(--len>0);
return res>>>1;
}
// Generate the codes for a given tree and bit counts (which need not be
// optimal).
// IN assertion: the array bl_count contains the bit length statistics for
// the given tree and the field len is set for all tree elements.
// OUT assertion: the field code is set for all tree elements of non
// zero code length.
private static void gen_codes(short[] tree, // the tree to decorate
int max_code, // largest code with non zero frequency
short[] bl_count // number of codes at each bit length
) {
short[] next_code = new short[JZlib.MAX_BITS + 1]; // next code value for each bit length
short code = 0; // running code value
int bits; // bit index
int n; // code index
// The distribution counts are first used to generate the code values
// without bit reversal.
for (bits = 1; bits <= JZlib.MAX_BITS; bits ++) {
next_code[bits] = code = (short) (code + bl_count[bits - 1] << 1);
}
// Check that the bit counts in bl_count are consistent. The last code
// must be all ones.
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
// "inconsistent bit counts");
//Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n ++) {
int len = tree[n * 2 + 1];
if (len == 0) {
continue;
}
// Now reverse the bits
tree[n * 2] = (short) bi_reverse(next_code[len] ++, len);
}
}
// Reverse the first len bits of a code, using straightforward code (a faster
// method would use a table)
// IN assertion: 1 <= len <= 15
private static int bi_reverse(int code, // the value to invert
int len // its bit length
) {
int res = 0;
do {
res |= code & 1;
code >>>= 1;
res <<= 1;
} while (-- len > 0);
return res >>> 1;
}
}

View File

@ -8,8 +8,8 @@ modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
@ -34,178 +34,182 @@ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package org.jboss.netty.util.internal.jzlib;
final public class ZStream{
public final class ZStream {
static final private int MAX_WBITS=15; // 32K LZ77 window
static final private int DEF_WBITS=MAX_WBITS;
public byte[] next_in; // next input byte
public int next_in_index;
public int avail_in; // number of bytes available at next_in
public long total_in; // total nb of input bytes read so far
public byte[] next_out; // next output byte should be put there
public int next_out_index;
public int avail_out; // remaining free space at next_out
public long total_out; // total nb of bytes output so far
public String msg;
Deflate dstate;
Inflate istate;
int data_type; // best guess about the data type: ascii or binary
long adler;
static final private int Z_NO_FLUSH=0;
static final private int Z_PARTIAL_FLUSH=1;
static final private int Z_SYNC_FLUSH=2;
static final private int Z_FULL_FLUSH=3;
static final private int Z_FINISH=4;
static final private int MAX_MEM_LEVEL=9;
static final private int Z_OK=0;
static final private int Z_STREAM_END=1;
static final private int Z_NEED_DICT=2;
static final private int Z_ERRNO=-1;
static final private int Z_STREAM_ERROR=-2;
static final private int Z_DATA_ERROR=-3;
static final private int Z_MEM_ERROR=-4;
static final private int Z_BUF_ERROR=-5;
static final private int Z_VERSION_ERROR=-6;
public byte[] next_in; // next input byte
public int next_in_index;
public int avail_in; // number of bytes available at next_in
public long total_in; // total nb of input bytes read so far
public byte[] next_out; // next output byte should be put there
public int next_out_index;
public int avail_out; // remaining free space at next_out
public long total_out; // total nb of bytes output so far
public String msg;
Deflate dstate;
Inflate istate;
int data_type; // best guess about the data type: ascii or binary
public long adler;
Adler32 _adler=new Adler32();
public int inflateInit(){
return inflateInit(DEF_WBITS);
}
public int inflateInit(boolean nowrap){
return inflateInit(DEF_WBITS, nowrap);
}
public int inflateInit(int w){
return inflateInit(w, false);
}
public int inflateInit(int w, boolean nowrap){
istate=new Inflate();
return istate.inflateInit(this, nowrap?-w:w);
}
public int inflate(int f){
if(istate==null) return Z_STREAM_ERROR;
return istate.inflate(this, f);
}
public int inflateEnd(){
if(istate==null) return Z_STREAM_ERROR;
int ret=istate.inflateEnd(this);
istate = null;
return ret;
}
public int inflateSync(){
if(istate == null)
return Z_STREAM_ERROR;
return istate.inflateSync(this);
}
public int inflateSetDictionary(byte[] dictionary, int dictLength){
if(istate == null)
return Z_STREAM_ERROR;
return istate.inflateSetDictionary(this, dictionary, dictLength);
}
public int deflateInit(int level){
return deflateInit(level, MAX_WBITS);
}
public int deflateInit(int level, boolean nowrap){
return deflateInit(level, MAX_WBITS, nowrap);
}
public int deflateInit(int level, int bits){
return deflateInit(level, bits, false);
}
public int deflateInit(int level, int bits, boolean nowrap){
dstate=new Deflate();
return dstate.deflateInit(this, level, nowrap?-bits:bits);
}
public int deflate(int flush){
if(dstate==null){
return Z_STREAM_ERROR;
}
return dstate.deflate(this, flush);
}
public int deflateEnd(){
if(dstate==null) return Z_STREAM_ERROR;
int ret=dstate.deflateEnd();
dstate=null;
return ret;
}
public int deflateParams(int level, int strategy){
if(dstate==null) return Z_STREAM_ERROR;
return dstate.deflateParams(this, level, strategy);
}
public int deflateSetDictionary (byte[] dictionary, int dictLength){
if(dstate == null)
return Z_STREAM_ERROR;
return dstate.deflateSetDictionary(this, dictionary, dictLength);
}
// Flush as much pending output as possible. All deflate() output goes
// through this function so some applications may wish to modify it
// to avoid allocating a large strm->next_out buffer and copying into it.
// (See also read_buf()).
void flush_pending(){
int len=dstate.pending;
if(len>avail_out) len=avail_out;
if(len==0) return;
if(dstate.pending_buf.length<=dstate.pending_out ||
next_out.length<=next_out_index ||
dstate.pending_buf.length<(dstate.pending_out+len) ||
next_out.length<(next_out_index+len)){
System.out.println(dstate.pending_buf.length+", "+dstate.pending_out+
", "+next_out.length+", "+next_out_index+", "+len);
System.out.println("avail_out="+avail_out);
public int inflateInit() {
return inflateInit(JZlib.DEF_WBITS);
}
System.arraycopy(dstate.pending_buf, dstate.pending_out,
next_out, next_out_index, len);
next_out_index+=len;
dstate.pending_out+=len;
total_out+=len;
avail_out-=len;
dstate.pending-=len;
if(dstate.pending==0){
dstate.pending_out=0;
public int inflateInit(boolean nowrap) {
return inflateInit(JZlib.DEF_WBITS, nowrap);
}
}
// Read a new buffer from the current input stream, update the adler32
// and total number of bytes read. All deflate() input goes through
// this function so some applications may wish to modify it to avoid
// allocating a large strm->next_in buffer and copying from it.
// (See also flush_pending()).
int read_buf(byte[] buf, int start, int size) {
int len=avail_in;
if(len>size) len=size;
if(len==0) return 0;
avail_in-=len;
if(dstate.noheader==0) {
adler=_adler.adler32(adler, next_in, next_in_index, len);
public int inflateInit(int w) {
return inflateInit(w, false);
}
System.arraycopy(next_in, next_in_index, buf, start, len);
next_in_index += len;
total_in += len;
return len;
}
public void free(){
next_in=null;
next_out=null;
msg=null;
_adler=null;
}
public int inflateInit(int w, boolean nowrap) {
istate = new Inflate();
return istate.inflateInit(this, nowrap? -w : w);
}
public int inflate(int f) {
if (istate == null) {
return JZlib.Z_STREAM_ERROR;
}
return istate.inflate(this, f);
}
public int inflateEnd() {
if (istate == null) {
return JZlib.Z_STREAM_ERROR;
}
int ret = istate.inflateEnd(this);
istate = null;
return ret;
}
public int inflateSync() {
if (istate == null) {
return JZlib.Z_STREAM_ERROR;
}
return istate.inflateSync(this);
}
public int inflateSetDictionary(byte[] dictionary, int dictLength) {
if (istate == null) {
return JZlib.Z_STREAM_ERROR;
}
return istate.inflateSetDictionary(this, dictionary, dictLength);
}
public int deflateInit(int level) {
return deflateInit(level, JZlib.MAX_WBITS);
}
public int deflateInit(int level, boolean nowrap) {
return deflateInit(level, JZlib.MAX_WBITS, nowrap);
}
public int deflateInit(int level, int bits) {
return deflateInit(level, bits, false);
}
public int deflateInit(int level, int bits, boolean nowrap) {
dstate = new Deflate();
return dstate.deflateInit(this, level, nowrap? -bits : bits);
}
public int deflate(int flush) {
if (dstate == null) {
return JZlib.Z_STREAM_ERROR;
}
return dstate.deflate(this, flush);
}
public int deflateEnd() {
if (dstate == null) {
return JZlib.Z_STREAM_ERROR;
}
int ret = dstate.deflateEnd();
dstate = null;
return ret;
}
public int deflateParams(int level, int strategy) {
if (dstate == null) {
return JZlib.Z_STREAM_ERROR;
}
return dstate.deflateParams(this, level, strategy);
}
public int deflateSetDictionary(byte[] dictionary, int dictLength) {
if (dstate == null) {
return JZlib.Z_STREAM_ERROR;
}
return dstate.deflateSetDictionary(this, dictionary, dictLength);
}
// Flush as much pending output as possible. All deflate() output goes
// through this function so some applications may wish to modify it
// to avoid allocating a large strm->next_out buffer and copying into it.
// (See also read_buf()).
void flush_pending() {
int len = dstate.pending;
if (len > avail_out) {
len = avail_out;
}
if (len == 0) {
return;
}
if (dstate.pending_buf.length <= dstate.pending_out ||
next_out.length <= next_out_index ||
dstate.pending_buf.length < dstate.pending_out + len ||
next_out.length < next_out_index + len) {
System.out.println(dstate.pending_buf.length + ", " +
dstate.pending_out + ", " + next_out.length + ", " +
next_out_index + ", " + len);
System.out.println("avail_out=" + avail_out);
}
System.arraycopy(dstate.pending_buf, dstate.pending_out, next_out,
next_out_index, len);
next_out_index += len;
dstate.pending_out += len;
total_out += len;
avail_out -= len;
dstate.pending -= len;
if (dstate.pending == 0) {
dstate.pending_out = 0;
}
}
// Read a new buffer from the current input stream, update the adler32
// and total number of bytes read. All deflate() input goes through
// this function so some applications may wish to modify it to avoid
// allocating a large strm->next_in buffer and copying from it.
// (See also flush_pending()).
int read_buf(byte[] buf, int start, int size) {
int len = avail_in;
if (len > size) {
len = size;
}
if (len == 0) {
return 0;
}
avail_in -= len;
if (dstate.noheader == 0) {
adler = Adler32.adler32(adler, next_in, next_in_index, len);
}
System.arraycopy(next_in, next_in_index, buf, start, len);
next_in_index += len;
total_in += len;
return len;
}
public void free() {
next_in = null;
next_out = null;
msg = null;
}
}