Motivation:
We can remove some classes and duplication if we add default methods
Modifications:
- Add default methods to EventExecutor / EventExecutorGroup / EventLoop / EventLoopGroup
- Remove code duplication
- Remove AbstractEventExecutorGroup as it is not needed anymore
Result:
Cleanup and removal of code-duplication. Also makes it easier for people to implement their custom executors / groups
Motivation:
We wish to separate these two into clearer write/read interfaces.
In particular, we don't want to be able to add listeners to promises, because it makes it easy to add them out of order.
We can't prevent it entirely, because any promise can be freely converted to a future where listeners can be added.
We can, however, discourage this in the API.
Modification:
The Promise interface no longer extends the Future interface.
Numerous changes to make the project compile and its tests run.
Result:
Clearer separation of concerns in the code.
Motivation:
If we don't need the scheduled future, then it will be one less complication when we change Netty Future to no longer extend JDK Future.
It would also result in fewer elements in our API.
Modification:
There was only one real use of ScheduledFuture in our code, in Cache.
This has been changed to wrap an ordinary future with a deadline for implementing the Delayed interface.
All other places were effectively overspecifying by relying on ScheduledFuture.
A few places were also specifying JDK Futures - these have been changed to specify Netty Futures.
Result:
Reduced dependency on the ScheduledFuture interfaces.
Motivation:
Usually the outbound operation should start at the "current" ChanneöHandlercontext which was often not the case
Modifications:
Use the ChannelHandlerContext for closing the connection
Result:
Start the operation on the right position of the pipeline
Motivation:
Our current ChannelFutureListeners are too restrictive in terms of the type of the context. We should lift this a bit
Modifications:
Refactor ChannelFutureListeners to not be an enum and so allow most of its instances to be used with any ChannelOutboundInvoker.
Result:
More flexible usage
Motivation:
The need of cascade from a Future to a Promise exists. We should add some default implementation for it.
Modifications:
- Merge PromiseNotifier into Futures
- Add default cascadeTo(...) methods to Future
- Add tests to FuturesTest
- Replace usage of PromiseNotifier with Future.cascadeTo
- Use combination of map(...) and cascadeTo(...) in *Bootstrap to reduce code duplication
Result:
Provide default implementation of cascadeTo.
Motivation:
Making futures easier to compose, combine, and extend is useful to have as part of the API, since implementing this correctly and efficiently can be tricky.
Modification:
Add `Future.map(Function<V,R>) -> Future<R>` and `Future.flatMap(Function<V,Future<R>>) -> Future<R>` default methods to the `Future` interface.
These methods return new Future instance, that will be completed when the original future completes, and the result will be processed through the given mapping function.
These two methods take care to propagate cancellation and exceptions correctly:
Cancellation propagates both ways between the new and original future.
Failures only propagate from the original future to the returned new Future instance.
Result:
A few convenient methods for modifying and composing futures.
This PR fixes#8523, and perhaps also #2105
Motivation:
The expression "not is success" can mean that either the future failed, or it has not yet completed.
However, many places where such an expression is used is expecting the future to have completed.
Specifically, they are expecting to be able to call `cause()` on the future.
It is both more correct, and semantically clearer, to call `isFailed()` instead of `!isSuccess()`.
Modification:
Change all places that used `!isSuccess()` to mean that the future had failed, to use `isFailed()`.
A few places are relying on `isSuccess()` returning `false` for _incomplete_ futures, and these places have been left unchanged.
Result:
Clearer code, with potentially fewer latent bugs.
Motivation:
We did miss to update some code that setup the EventLoop mock and so did see test-failures due NPE's
Modifications:
Correctly mock the newPromise() method.
Result:
No more test-failures
* Remove deprecated Channel*Handler* classes
Motivation:
There is no need to keep the older adapter and duplex classes around.
Modifications:
- Remove old adapter and duplex classes
- Adjust javadocs
Result:
Cleanup
* Address nit
Motivation:
We should just add `executor()` to the `ChannelOutboundInvoker` interface and override this method in `Channel` to return `EventLoop`.
Modifications:
- Add `executor()` method to `ChannelOutboundInvoker`
- Let `Channel` override this method and return `EventLoop`.
- Adjust all usages of `eventLoop()`
- Add some default implementations
Result:
API cleanup
Motivation:
At the moment the outbound operations of ChannelHandler take a Promise as argument. This Promise needs to be carried forward to the next handler in the pipeline until it hits the transport. This is API choice has a few quirks which we should aim to remove:
- There is a difference between if you add a FutureListener to the Promise or the Future that is returned by the outbound method in terms of the ordering of execution of the listeners. Sometimes we add the listener to the promise while in reality we usually always want to add it to the future to ensure the listerns are executed in the "correct order".
- It is quite easy to "loose" a promise by forgetting to use the right method which also takes a promise
- We have no idea what EventExecutor is used for the passed in Promise which may invalid our assumption of threading.
While changing the method signature of the outbound operations of the ChannelHandler is a good step forward we should also take care of just remove all the methods from ChannelOutboundInvoker (and its sub-types) that take a Promise and just always use the methods that return a Future only.
Modifications:
- Change the signature of the methods that took a Promise to not take one anymore and just return a Future
- Remove all operations for ChannelOutboundInvoker that take a Promise.
- Adjust all code to cope with the API changes
Result:
Cleaner API which is easier to reason about and easier to use.
Motivation:
Since most futures in Netty are of the `Void` type, methods like `getNow()` and `cause()` cannot distinguish if the future has finished or not.
This can cause data race bugs which, in the case of `Void` futures, can be silent.
Modification:
The methods `getNow()` and `cause()` now throw an `IllegalStateException` if the future has not yet completed.
Most use of these methods are inside listeners, and so are not impacted.
One place in `AbstractBootstrap` was doing a racy read and has been adjusted.
Result:
Data race bugs around `getNow()` and `cause()` are no longer silent.
Motivation:
We can make things easier for implementations by providing some default methods
Modifications:
- Add default methods to Channel
- Remove code from AbstractChannel
Result:
Easier to implement custom Channel
Motivation:
The generics for the existing futures, promises, and listeners are too complicated.
This complication comes from the existence of `ChannelPromise` and `ChannelFuture`, which forces listeners to care about the particular _type_ of future being listened on.
Modification:
* Add a `FutureContextListener` which can take a context object as an additional argument. This allows our listeners to have the channel piped through to them, so they don't need to rely on the `ChannelFuture.channel()` method.
* Make the `FutureListener`, along with the `FutureContextListener` sibling, the default listener API, retiring the `GenericFutureListener` since we no longer need to abstract over the type of the future.
* Change all uses of `ChannelPromise` to `Promise<Void>`.
* Change all uses of `ChannelFuture` to `Future<Void>`.
* Change all uses of `GenericFutureListener` to either `FutureListener` or `FutureContextListener` as needed.
* Remove `ChannelFutureListener` and `GenericFutureListener`.
* Introduce a `ChannelFutureListeners` enum to house the constants that previously lived in `ChannelFutureListener`. These constants now implement `FutureContextListener` and take the `Channel` as a context.
* Remove `ChannelPromise` and `ChannelFuture` — all usages now rely on the plain `Future` and `Promise` APIs.
* Add static factory methods to `DefaultPromise` that allow us to create promises that are initialised as successful or failed.
* Remove `CompleteFuture`, `SucceededFuture`, `FailedFuture`, `CompleteChannelFuture`, `SucceededChannelFuture`, and `FailedChannelFuture`.
* Remove `ChannelPromiseNotifier`.
Result:
Cleaner generics and more straight forward code.
Motivation:
We should use StandardSocketOptions#IP_MULTICAST_IF as default source when joing multicast groups and only try to use the localAddress if this returns null.
Modifications:
First check if StandardSocketOptions#IP_MULTICAST_IF was set and if so use the network interface when joining mulicast groups
Result:
Fixes https://github.com/netty/netty/issues/11541
Motivation:
Sometimes intellij fails to build because the compiler cant really figure out what to do. We can workaround this by adding some explicit casts.
Modifications:
Add explicits casts
Result:
No more problems with intellij
Motivation:
This class was deprecated, since a better alternative exists in `PromiseCombiner`.
Modification:
Remove `PromiseAggregator`, its Channel companion, and its test.
Result:
Less deprecated code.
Motivation:
TCP FastOpen is a pure optimisation, that is opportunistically applied.
There is no reason to make it specific to the epoll transport, and in the future we could add support to other transports.
Besides, the client-side equivalent, TCP_FASTOPEN_CONNECT, is already transport agnostic.
Modification:
Move the TCP_FASTOPEN channel option from EpollChannelOption to ChannelOption.
Mark the field in EpollChannelOption as deprecated.
Result:
All channel options related to TCP FastOpen are now transport agnostic.
However, we still only actually support TFO on the epoll transport.
Motivation:
We should make variables `final` which are not reinstated again in code to match the code style and makes the code look better.
Modification:
Made couples of variables as `final`.
Result:
Variables marked as `final`.
Bootstrap methods now return Future<Channel> instead of ChannelFuture
Motivation:
In #8516 it was proposed to at some point remove the specialised ChannelFuture and ChannelPromise.
Or at least make them not extend Future and Promise, respectively.
One pain point encountered in this discussion is the need to get access to the channel object after it has been initialised, but without waiting for the channel registration to propagate through the pipeline.
Modification:
Add a Bootstrap.createUnregistered method, which will return a Channel directly.
All other Bootstrap methods that previously returned ChannelFuture now return Future<Channel>
Result:
It's now possible to obtain an initialised but unregistered channel from a bootstrap, without blocking.
And the other bootstrap methods now only release their channels through the result of their futures, preventing racy access to the channels.
Motivation:
Since Java 7, there are new constructors available that allow us to avoid initialising the stack traces of certain exceptions.
Modification:
Use these constructors instead of overriding Throwable.fillInStackTrace.
Result:
Cleaner code
Motivation:
At the moment we not correctly propagate cancellation in some case when we use the PromiseNotifier.
Modifications:
- Add PromiseNotifier static method which takes care of cancellation
- Add unit test
- Deprecate ChannelPromiseNotifier
Result:
Correctly propagate cancellation of operation
Co-authored-by: Nitesh Kant <nitesh_kant@apple.com>
Motivation:
The TLS handshake must be able to finish on its own, without being driven by outside read calls.
This is currently not the case when TCP FastOpen is enabled.
Reads must be permitted and marked as pending, even when a channel is not active.
This is important because, with TCP FastOpen, the handshake processing of a TLS connection will start
before the connection has been established -- before the process of connecting has even been started.
The SslHandler on the client side will add the Client Hello message to the ChannelOutboundBuffer, then
issue a `ctx.read` call for the anticipated Server Hello response, and then flush the Client Hello
message which, in the case of TCP FastOpen, will cause the TCP connection to be established.
In this transaction, it is important that the `ctx.read` call is not ignored since, if auto-read is
turned off, this could delay or even prevent the Server Hello message from being processed, causing
the server-side handshake to time out.
Modification:
Attach a listener to the SslHandler.handshakeFuture in the EchoClient, that will call ctx.read.
Result:
The SocketSslEchoTest now tests that the SslHandler can finish handshakes on its own, without being driven by 3rd party ctx.read calls.
The various channel implementations have been updated to comply with this behaviour.
Motivation:
At the moment all methods in `ChannelHandler` declare `throws Exception` as part of their method signature. While this is fine for methods that handle inbound events it is quite confusing for methods that handle outbound events. This comes due the fact that these methods also take a `ChannelPromise` which actually need to be fullfilled to signal back either success or failure. Define `throws...` for these methods is confusing at best. We should just always require the implementation to use the passed in promise to signal back success or failure. Doing so also clears up semantics in general. Due the fact that we can't "forbid" throwing `RuntimeException` we still need to handle this in some way tho. In this case we should just consider it a "bug" and so log it and close the `Channel` in question. The user should never have an exception "escape" their implementation and just use the promise. This also clears up the ownership of the passed in message etc.
As `flush(ChannelHandlerContext)` and `read(ChannelHandlerContext)` don't take a `ChannelPromise` as argument this also means that these methods can never produce an error. This makes kind of sense as these really are just "signals" for the underlying transports to do something. For `RuntimeException` the same rule is used as for other outbound event handling methods, which is logging and closing the `Channel`.
Motifications:
- Remove `throws Exception` from signature
- Adjust code to not throw and just notify the promise directly
- Adjust unit tests
Result:
Much cleaner API and semantics.
Motivation:
We need to change the reflection config to match the constructor that is used
Modifications:
Adjust config
Result:
Graal PR jobs pass again
Motivation:
Due a bug we did not pass the correct remote and localaddress to the next handler if the outbound portion of the CombinedChannelDuplexHandler was removed
Modifications:
- Call the correct connect(...) method
- Refactor tests to test that the parameters are correctly passed on
- Remvoe some code duplication in the tests
Result:
CombinedChannelDuplexHandler correctly pass parameters on
Motivation:
This special case implementation of Promise / Future requires the implementations responsible for completing the promise to have knowledge of this class to provide value. It also requires that the implementations are able to provide intermediate status while the work is being done. Even throughout the core of Netty it is not really supported most of the times and so just brings more complexity without real gain.
Let's remove it completely which is better then only support it sometimes.
Modifications:
Remove Progressive* API
Result:
Code cleanup.... Fixes https://github.com/netty/netty/issues/8519
Motivation:
We didnt really have a good use-case for removeListener* and addListeners. Because of this we should just remove these methods and so make things simpler.
Modifications:
Remove methods
Result:
Cleanup
Motivation:
https://github.com/netty/netty/pull/11348 did remove the void promise API but did miss to remove the VoidChannelGroupFuture.
Modifications:
Remove class
Result:
Cleanup
Motivation:
Sometime in the past we introduced the concept of Void*Promise. As it turned out this was not a good idea at all as basically each handler in the pipeline need to be very careful to correctly handle this. We should better just remove this "optimization".
Modifications:
- Remove Void*Promise and all the related APIs
- Remove tests which were related to Void*Promise
Result:
Less error-prone API
Motivation:
throw exception if there is no method, it never is null, condition is always true
Modification:
remove unnecessary condition
Result:
cleanup
Motivation:
JUnit 5 is more expressive, extensible, and composable in many ways, and it's better able to run tests in parallel.
Modifications:
Use JUnit5 in tests
Result:
Related to https://github.com/netty/netty/issues/10757
Motivation:
NullChecks resulting in a NullPointerException or IllegalArgumentException, numeric ranges (>0, >=0) checks, not empty strings/arrays checks must never be anonymous but with the parameter or variable name which is checked. They must be specific and should not be done with an "OR-Logic" (if a == null || b == null) throw new NullPointerEx.
Modifications:
* import static relevant checks
* Replace manual checks with ObjectUtil methods
Result:
All checks needed are done with ObjectUtil, some exception texts are improved.
Fixes#11170
... number of bytes when using DatagramChannels
Motivation:
In our FixedRecvByteBufAllocator we dont continue to read if the number of bytes is less then what was configured. This is correct when using it for TCP but not when using it for UDP. When using UDP the number of bytes is the maximum of what we want to support but we often end up processing smaller datagrams in general. Because of this we should use contineReading(UncheckedBooleanSupplier) to determite if we should continue reading
Modifications:
- use contineReading(UncheckedBooleanSupplier) for DatagramChannels
Result:
Read more then once in the general case for DatagramChannels with the default config
Motivation:
Allow to configure the maximum number of messages to write per eventloop run. This can be useful to ensure we read data in a timely manner and not let writes dominate the CPU time. This is especially useful in protocols like QUIC where you need to read "fast enough" as otherwise you may not read the ACKs fast enough.
Modifications:
- Add new ChannelOption / config that allows to limit the number of messages to write per eventloop run.
- Respect this setting for DatagramChannels
Result:
Reduce the risk of having WRITES block the processing of other events in a timely manner
Co-authored-by: terrarier2111 <58695553+terrarier2111@users.noreply.github.com>
Motivation:
SslHandler owns the responsibility to flush non-application data
(e.g. handshake, renegotiation, etc.) to the socket. However when
TCP Fast Open is supported but the client_hello cannot be written
in the SYN the client_hello may not always be flushed. SslHandler
may not wrap/flush previously written/flushed data in the event
it was not able to be wrapped due to NEED_UNWRAP state being
encountered in wrap (e.g. peer initiated renegotiation).
Modifications:
- SslHandler to flush in channelActive() if TFO is enabled and
the client_hello cannot be written in the SYN.
- SslHandler to wrap application data after non-application data
wrap and handshake status is FINISHED.
- SocketSslEchoTest only flushes when writes are done, and waits
for the handshake to complete before writing.
Result:
SslHandler flushes handshake data for TFO, and previously flushed
application data after peer initiated renegotiation finishes.
Motivation:
Channels need to have their configurations applied before we can call out to user-code via handlerAdded and initChannel.
Modification:
This adds tests for this behaviour, and fixes their failures.
Result:
Channel initialisers now have access to channel configuration and attributes.
Motivation:
For protocols like QUIC using UDP_SEGMENT (GSO) can help to reduce the
overhead quite a bit. We should support it.
Modifications:
- Add a SegmentedDatagramPacket which can be used to use UDP_SEGMENT
- Add unit test
Result:
Be able to make use of UDP_SEGMENT
Motivation:
To make it possible to experiment with alternative buffer implementations, we need a way to abstract away the concrete buffers used throughout most of the Netty pipelines, while still having a common currency for doing IO in the end.
Modification:
- Introduce an ByteBufConvertible interface, that allow arbitrary objects to convert themselves into ByteBuf objects.
- Every place in the code, where we did an instanceof check for ByteBuf, we now do an instanceof check for ByteBufConvertible.
- ByteBuf itself implements ByteBufConvertible, and returns itself from the asByteBuf method.
Result:
It is now possible to use Netty with alternative buffer implementations, as long as they can be converted to ByteBuf.
This has been verified elsewhere, with an alternative buffer implementation.
Support TCP Fast Open for clients and make SslHandler take advantage
Motivation:
- TCP Fast Open allow us to send a small amount of data along side the initial SYN packet when establishing a TCP connection.
- The TLS Client Hello packet is small enough to fit in there, and is also idempotent (another requirement for using TCP Fast Open), so if we can save a round-trip when establishing TLS connections when using TFO.
Modification:
- Add support for client-side TCP Fast Open for Epoll, and also lowers the Linux kernel version requirements to 3.6.
- When adding the SslHandler to a pipeline, if TCP Fast Open is enabled for the channel (and the channel is not already active) then start the handshake early by writing it to the outbound buffer.
- An important detail to note here, is that the outbound buffer is not flushed at this point, like it would for normal handshakes. The flushing happens later as part of establishing the TCP connection.
Result:
- It is now possible for clients (on epoll) to open connections with TCP Fast Open.
- The SslHandler automatically detects when this is the case, and now send its Client Hello message as part of the initial data in the TCP Fast Open flow when available, saving a round-trip when establishing TLS connections.
Co-authored-by: Colin Godsey <crgodsey@gmail.com>
Motivation:
File.createTempFile(String, String)` will create a temporary file in the system temporary directory if the 'java.io.tmpdir'. The permissions on that file utilize the umask. In a majority of cases, this means that the file that java creates has the permissions: `-rw-r--r--`, thus, any other local user on that system can read the contents of that file.
This can be a security concern if any sensitive data is stored in this file.
This was reported by Jonathan Leitschuh <jonathan.leitschuh@gmail.com> as a security problem.
Modifications:
Use Files.createTempFile(...) which will use safe-defaults when running on java 7 and later. If running on java 6 there isnt much we can do, which is fair enough as java 6 shouldnt be considered "safe" anyway.
Result:
Create temporary files with sane permissions by default.
Allow and skip null handlers when adding a vararg list of handlers
Motivation
Allowing null handlers allows for more convenient idioms in
conditionally adding handlers, e.g.,
ch.pipeline().addLast(
new FooHandler(),
condition ? new BarHandler() : null,
new BazHandler()
);
Modifications
* Change addFirst(..) and addLast(..) to skip null handlers, rather than
break or short-circuit.
* Add new unit tests.
Result
* Makes addFirst(..) and addLast(..) behavior more consistent
* Resolves https://github.com/netty/netty/issues/10728
Motivation:
We need to ensure we copy the attributes and options when bootstrap the channel as otherwise we may change the underlying Entry.
This is similar to what was reported in https://github.com/netty/netty-incubator-codec-quic/issues/152.
Modifications:
- Do a copy and re-use methods
- Add unit tests
Result:
Don't affect attributes / options of channels that are already bootstrapped
Motivation:
https in xmlns URIs does not work and will let the maven release plugin fail:
```
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 1.779 s
[INFO] Finished at: 2020-11-10T07:45:21Z
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-release-plugin:2.5.3:prepare (default-cli) on project netty-parent: Execution default-cli of goal org.apache.maven.plugins:maven-release-plugin:2.5.3:prepare failed: The namespace xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" could not be added as a namespace to "project": The namespace prefix "xsi" collides with an additional namespace declared by the element -> [Help 1]
[ERROR]
```
See also https://issues.apache.org/jira/browse/HBASE-24014.
Modifications:
Use http for xmlns
Result:
Be able to use maven release plugin
Motivation:
`DefaultChannelId` uses reflection to access the JMX runtime. This needs some extra config for GraalVM.
Modification:
Add config for GraalVM
Result:
Works when using GraalVM native image
Motivation:
During the last few month we did develop an io_uring based transport which shows very promising performance numbers. To give it more time to bake we will develop it outside of netty in an "incubator" module which will make it clear to users what to expect and also allow us to seperate its release cycle. While the implementation of it is very self contained there are few small adjustments that need to be made in netty itself to allow us to reuse code.
Modifications:
- AbstractChannel: Add method which can be used when a write fails and remove final from one method
- IovArray: Allow to create an IovArray from a ByteBuf instance
- FileDescriptor: Allow to reuse mark close logic via sub-class
Result:
Be able to reuse netty core classes in io_uring incubator repository
Motivation:
We should preferable always release the message before we notify the promise. Thhis has a few advantages:
- Release memory as soon as possible
- Listeners observe the "more correct" reference count
Modifications:
Release message before fail the promises
Result:
Faster releasing of resources. This came up in https://github.com/netty/netty/issues/10723