Motivation:
It should be possible to call setContent(Unpooled.EMPTY_BUFFER) multiple times just like its possible to do the same with a non empty buffer.
Modifications:
- Correctly reset underlying storage if called multiple times.
- Add tests
Result:
Fixes https://github.com/netty/netty/issues/6418
Motivation:
NPE in `CorsHandler` if a pre-flight request is done using an Origin header which is not allowed by any `CorsConfig` passed to the handler on creation.
Modifications:
During the pre-flight, check the `CorsConfig` for `null` and handle it correctly by not returning any access-control header
Result:
No more NPE for pre-flight requests with unauthorized origins.
Motivation:
Some `if` statements contains common parts that can be extracted.
Modifications:
Extract common parts from `if` statements.
Result:
Less code and bytecode. The code is simpler and more clear.
Motivation:
Finer granularity when configuring CorsHandler, enabling different policies for different origins.
Modifications:
The CorsHandler has an extra constructor that accepts a List<CorsConfig> that are evaluated sequentially when processing a Cors request
Result:
The changes don't break backwards compatibility. The extra ctor can be used to provide more than one CorsConfig object.
Motivation:
NPE in `ClientCookieDecoder` if cookie starts with comma.
Modifications:
Check `cookieBuilder` for `null` in the return.
Result:
No fails NPE on invalid cookies.
Motivation:
Unnecessary flushes reduce the amount of flush coalescing that can happen at higher levels and thus can increase number of packets (because of TCP_NODELAY) and lower throughput (due to syscalls, TLS frames, etc)
Modifications:
Replace writeAndFlush(...) with write(...)
Result:
Fixes https://github.com/netty/netty/issues/7837.
Motivation:
There may be meaningful 'connection' headers that exist on a request
that is used to attempt a HTTP/1.x upgrade request that will be
clobbered.
Modifications:
HttpClientUpgradeHandler uses the `HttpHeaders.add` instead of
`HttpHeaders.set` when adding the 'upgrade' field.
Result:
Fixes#7823, existing 'connection' headers are preserved.
Motivation:
There is a race between both flushing the upgrade response and receiving
more data before the flush ChannelPromise can fire and reshape the
pipeline. Since We have already committed to an upgrade by writing the
upgrade response, we need to be immediately prepared for handling the
next protocol.
Modifications:
The pipeline reshaping logic in HttpServerUpgradeHandler has been moved
out of the ChannelFutureListener attached to the write of the upgrade
response and happens immediately after the writeAndFlush call, but
before the method returns.
Result:
The pipeline is no longer subject to receiving more data before the
pipeline has been reformed.
Motivation:
HttpProxyHandler uses `NetUtil#toSocketAddressString` to compute
CONNECT url and Host header.
The url is correct when the address is unresolved, as
`NetUtil#toSocketAddressString` will then use
`getHoststring`/`getHostname`. If the address is already resolved, the
url will be based on the IP instead of the hostname.
There’s an additional minor issue with the Host header: default port
443 should be omitted.
Modifications:
* Introduce NetUtil#getHostname
* Introduce HttpUtil#formatHostnameForHttp to format an
InetSocketAddress to
HTTP format
* Change url computation to favor hostname instead of IP
* Introduce HttpProxyHandler ignoreDefaultPortsInConnectHostHeader
parameter to ignore 80 and 443 ports in Host header
Result:
HttpProxyHandler performs properly when connecting to a resolved address
Motivation:
When the response is very small, compression will inflate the response.
Modifications:
Add filed io.netty.handler.codec.http.HttpContentCompressor#compressThreshold that control whether the HTTP response should be compressed.
Result:
Fixes#7660.
Motivation:
A Malformed empty header value (e.g. Content-Type: \r\n) will trigger a String index out of range
while trying to parse the multi-part request, using the HttpPostMultipartRequestDecoder.
Modification:
Ensure that the substring() method is called passing the endValue >= valueStart.
In case of an empty header value, the empty header value associated with the header key will be returned.
Result:
Fixes#7620
Motivation:
Usages of HttpResponseStatus may result in more object allocation then necessary due to not looking for cached objects and the AsciiString parsing method not being used due to CharSequence method being used instead.
Modifications:
- HttpResponseDecoder should attempt to get the HttpResponseStatus from cache instead of allocating a new object
- HttpResponseStatus#parseLine(CharSequence) should check if the type is AsciiString and redirect to the AsciiString parsing method which may not require an additional toString call
- HttpResponseStatus#parseLine(AsciiString) can be optimized and doesn't require and may not require object allocation
Result:
Less allocations when dealing with HttpResponseStatus.
Motivation:
DefaultHttpDataFactory uses HttpRequest as map keys.
Because of the implementation of "hashCode"" and "equals" in DefaultHttpRequest,
if we use normal maps, HttpDatas of different requests may end up in the same map entry,
causing cleanup bug.
Consider this example:
- Suppose that request1 is equal to request2, causing their HttpDatas to be stored in one single map entry.
- request1 is cleaned up first, while request2 is still being decoded.
- Consequently request2's HttpDatas are suddenly gone, causing NPE, or worse loss of data.
This bug can be reproduced by starting the HttpUploadServer example,
then run this command:
ab -T 'application/x-www-form-urlencoded' -n 100 -c 5 -p post.txt http://localhost:8080/form
post.txt file content:
a=1&b=2
There will be errors like this:
java.lang.NullPointerException
at io.netty.handler.codec.http.multipart.MemoryAttribute.getValue(MemoryAttribute.java:64)
at io.netty.handler.codec.http.multipart.MixedAttribute.getValue(MixedAttribute.java:243)
at io.netty.example.http.upload.HttpUploadServerHandler.writeHttpData(HttpUploadServerHandler.java:271)
at io.netty.example.http.upload.HttpUploadServerHandler.readHttpDataChunkByChunk(HttpUploadServerHandler.java:230)
at io.netty.example.http.upload.HttpUploadServerHandler.channelRead0(HttpUploadServerHandler.java:193)
at io.netty.example.http.upload.HttpUploadServerHandler.channelRead0(HttpUploadServerHandler.java:66)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
at io.netty.handler.codec.MessageToMessageCodec.channelRead(MessageToMessageCodec.java:111)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:310)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:284)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1412)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:943)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:141)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:645)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:886)
at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
at java.lang.Thread.run(Thread.java:748)
Modifications:
Keep identity of requests by using IdentityHashMap
Result:
DefaultHttpDataFactory is fixed.
The ConcurrentHashMap is replaced with a synchronized map, but I think the performance won't be affected much in real web apps.
Motiviation:
In our replace(...) methods we always used validation for the newly created headers while the original headers may not use validation at all.
Modifications:
- Only use validation if the original headers used validation as well.
- Ensure we create a copy of the headers in replace(...).
Result:
Fixes [#5226]
Automatic-Module-Name entry provides a stable JDK9 module name, when Netty is used in a modular JDK9 applications. More info: http://blog.joda.org/2017/05/java-se-9-jpms-automatic-modules.html
When Netty migrates to JDK9 in the future, the entry can be replaced by actual module-info descriptor.
Modification:
The POM-s are configured to put the correct module names to the manifest.
Result:
Fixes#7218.
Motivation:
HttpObjectDecoder will throw a TooLongFrameException when either the max size for the initial line or the header size was exceeed. We have no tests for this.
Modifications:
Add test cases.
Result:
More tests.
Motivation:
DefaultHttpHeader.names() exposes HTTP header names as a Set<String>. Converting the resulting set to an array using toArray(String[]) throws an exception: java.lang.ArrayStoreException: io.netty.util.AsciiString.
Modifications:
- Remove our custom implementation of toArray(...) (and others) by just extending AbstractCollection.
- Add unit test
Result:
Fixes [#7428].
Motivation:
For debugging/logging purpose, it would be convenient to have
HttpHeaders#toString implemented.
DefaultHeaders does implement toString be the implementation is suboptimal and allocates a Set for the names and Lists for values.
Modification:
* Introduce HeadersUtil#toString that provides a convenient optimized helper to implement toString for various headers implementations
* Have DefaultHeaders#toString and HttpHeaders#toString delegate their toString implementation to HeadersUtil
Result:
Convenient HttpHeaders#toString. Optimized DefaultHeaders#toString.
Motivation:
Its possible that cleanup() will throw if invalid data is passed into the wrapped EmbeddedChannel. We need to ensure we still call channelInactive(...) in this case.
Modifications:
- Correctly forward Exceptions caused by cleanup()
- Ensure all content is released when cleanup() throws
- Add unit tests
Result:
Correctly handle the case when cleanup() throws.
Motivation:
https://github.com/netty/netty/issues/7418 reported an issue with writing a LastHttpContent with trailers set.
Modifications:
Add unit test to ensure this issue is fixed in latest netty release.
Result:
Ensure code is correct.
Motivation:
HttpMethod#valueOf shows up on profiler results in the top set of
results. Since it is a relatively simple operation it can be improved in
isolation.
Modifications:
- Introduce a special case map which assigns each HttpMethod to a unique
index in an array and provides constant time lookup from a hash code
algorithm. When the bucket is matched we can then directly do equality
comparison instead of potentially following a linked structure when
HashMap has hash collisions.
Result:
~10% improvement in benchmark results for HttpMethod#valueOf
Benchmark Mode Cnt Score Error Units
HttpMethodMapBenchmark.newMapKnownMethods thrpt 16 31.831 ± 0.928 ops/us
HttpMethodMapBenchmark.newMapMixMethods thrpt 16 25.568 ± 0.400 ops/us
HttpMethodMapBenchmark.newMapUnknownMethods thrpt 16 51.413 ± 1.824 ops/us
HttpMethodMapBenchmark.oldMapKnownMethods thrpt 16 29.226 ± 0.330 ops/us
HttpMethodMapBenchmark.oldMapMixMethods thrpt 16 21.073 ± 0.247 ops/us
HttpMethodMapBenchmark.oldMapUnknownMethods thrpt 16 49.081 ± 0.577 ops/us
Motivation:
In order to determine if a header contains a value we currently rely
upon getAll(..) and regular expressions. This operation is commonly used
during the encode and decode stage to determine the transfer encoding
(e.g. HttpUtil#isTransferEncodingChunked). This operation requires an
intermediate collection and possibly regular expressions for the
CombinedHttpHeaders use case which can be expensive.
Modifications:
- Add a valuesIterator to HttpHeaders and specializations of this method
for DefaultHttpHeaders, ReadOnlyHttpHeaders, and CombinedHttpHeaders.
Result:
Less intermediate collections and allocation overhead when determining
if HttpHeaders contains a name/value pair.
Motivation:
If the HttpUtil class is initialized before HttpHeaders or
EmptyHttpHeaders, EmptyHttpHeaders.INSTANCE will be null. This
can lead to NPEs in code that relies on this field being
non-null. One example is the
LastHttpContent.EMPTY_LAST_CONTENT.trailingHeaders method.
Modifications:
- Move HttpUtil.EMPTY_HEADERS to a private static final inner class
of EmptyHttpHeaders called InstanceInitializer.
- Add tests, that when run in isolation, validate the fix for the issue.
Result:
Any initialization order of HttpUtil, EmptyHttpHeaders or
HttpHeaders will result in EmptyHttpHeaders.INSTANCE being initialized
correctly.
Motivation:
According to RFC 7231 the server may choose to:
```
indicate a zero-length payload for the response by including a
Transfer-Encoding header field with a value of chunked and a message
body consisting of a single chunk of zero-length
```
https://tools.ietf.org/html/rfc7231#page-53
In such cases the exception below appears during decoding phase:
```
java.lang.IllegalArgumentException: invalid version format: 0
at io.netty.handler.codec.http.HttpVersion.<init>(HttpVersion.java:121)
at io.netty.handler.codec.http.HttpVersion.valueOf(HttpVersion.java:76)
at io.netty.handler.codec.http.HttpResponseDecoder.createMessage(HttpResponseDecoder.java:118)
at io.netty.handler.codec.http.HttpObjectDecoder.decode(HttpObjectDecoder.java:219)
```
Modifications:
HttpObjectDecoder.isContentAlwaysEmpty specifies content NOT empty
when 205 Reset Content response
Result:
There is no `IllegalArgumentException: invalid version format: 0`
when handling 205 Reset Content response with transfer-encoding
Motivation:
93130b172a introduced a regression where we not "converted" an empty HttpContent to ByteBuf and just passed it on in the pipeline. This can lead to the situation that other handlers in the pipeline will see HttpContent instances which is not expected.
Modifications:
- Correctly convert HttpContent to ByteBuf when empty
- Add unit test.
Result:
Handlers in the pipeline will see the expected message type.
Motivation:
For use cases that create headers, but do not need to modify them a read only variant of HttpHeaders would be useful and may be able to provide better iteration performance for encoding.
Modifications:
- Introduce ReadOnlyHttpHeaders that is backed by a flat array
Result:
ReadOnlyHttpHeaders exists for non-modifiable HttpHeaders use cases.
Motivation:
7995afee8f introduced a change that broke special handling of WebSockets 00.
Modifications:
Correctly delegate to super method which has special handling for WebSockets 00.
Result:
Fixes [#7362].
Motivation:
HttpObjectEncoder and MessageAggregator treat buffers that are not readable special. If a buffer is not readable, then an EMPTY_BUFFER is written and the actual buffer is ignored. If the buffer has already been released then this will not be correct as the promise will be completed, but in reality the original content shouldn't have resulted in any write because it was invalid.
Modifications:
- HttpObjectEncoder should retain/write the original buffer instead of using EMPTY_BUFFER
- MessageAggregator should retain/write the original ByteBufHolder instead of using EMPTY_BUFFER
Result:
Invalid write operations which happen to not be readable correctly reflect failed status in the promise, and do not result in any writes to the channel.
This change allows to upgrade a plain HTTP 1.x connection to TLS
according to RFC 2817. Switching the transport layer to TLS should be
possible without removing HttpClientCodec from the pipeline,
because HTTP/1.x layer of the protocol remains untouched by the switch
and the HttpClientCodec state must be retained for proper
handling the remainder of the response message,
per RFC 2817 requirement in point 3.3:
Once the TLS handshake completes successfully, the server MUST
continue with the response to the original request.
After this commit, the upgrade can be established by simply
inserting an SslHandler at the front of the pipeline after receiving
101 SWITCHING PROTOCOLS response, exactly as described in SslHander
documentation.
Modifications:
- Don't set HttpObjectDecoder into UPGRADED state if
101 SWITCHING_PROTOCOLS response contains HTTP/1.0 or HTTP/1.1 in
the protocol stack described by the Upgrade header.
- Skip pairing comparison for 101 SWITCHING_PROTOCOLS, similar
to 100 CONTINUE, since 101 is not the final response to the original
request and the final response is expected after TLS handshake.
Fixes#7293.
Motivation:
I am receiving a multipart/form_data upload from a Mailgun webhook. This webhook used to send parts like this:
--74e78d11b0214bdcbc2f86491eeb4902
Content-Disposition: form-data; name="attachment-2"; filename="attached_�айл.txt"
Content-Type: text/plain
Content-Length: 32
This is the content of the file
--74e78d11b0214bdcbc2f86491eeb4902--
but now it posts parts like this:
--74e78d11b0214bdcbc2f86491eeb4902
Content-Disposition: form-data; name="attachment-2"; filename*=utf-8''attached_%D1%84%D0%B0%D0%B9%D0%BB.txt
This is the content of the file
--74e78d11b0214bdcbc2f86491eeb4902--
This new format uses field parameter encoding described in RFC 5987. More about this encoding can be found here.
Netty does not parse this format. The result is the filename is not decoded and the part is not parsed into a FileUpload.
Modification:
Added failing test in HttpPostRequestDecoderTest.java and updated HttpPostMultipartRequestDecoder.java
Refactored to please Netkins
Result:
Fixes:
HttpPostMultipartRequestDecoder identifies the RFC 5987 format and parses it.
Previous functionality is retained.
Motivation:
Before this commit, it is impossible to access the path component of the
URI before it has been decoded. This makes it impossible to distinguish
between the following URIs:
/user/title?key=value
/user%2Ftitle?key=value
The user could already access the raw uri value, but they had to calculate
pathEndIdx themselves, even though it might already be cached inside
QueryStringDecoder.
Result:
The user can easily and efficiently access the undecoded path and query.
Motivation:
An `origin`/`sec-websocket-origin` header value in websocket client is filling incorrect in some cases:
- Hostname is not converting to lower-case as prescribed by RFC 6354 (see [1]).
- Selecting a `http` scheme when source URI has `wss`/`https` scheme and non-standard port.
Modifications:
- Convert uri-host to lower-case.
- Use a `https` scheme if source URI scheme is `wss`/`https`, or if source scheme is null and port == 443.
Result:
Correct filling an `origin` header for WS client.
[1] https://tools.ietf.org/html/rfc6454#section-4
Motivation:
Even if it's a super micro-optimization (most JVM could optimize such
cases in runtime), in theory (and according to some perf tests) it
may help a bit. It also makes a code more clear and allows you to
access such methods in the test scope directly, without instance of
the class.
Modifications:
Add 'static' modifier for all methods, where it possible. Mostly in
test scope.
Result:
Cleaner code with proper 'static' modifiers.