Motivation:
When an empty hostname is used in DnsNameResolver.resolve*(...) it will never notify the future / promise. The root cause is that we not correctly guard against errors of IDN.toASCII(...) which will throw an IllegalArgumentException when it can not parse its input. That said we should also handle an empty hostname the same way as the JDK does and just use "localhost" when this happens.
Modifications:
- If the try to resolve an empty hostname we use localhost
- Correctly guard against errors raised by IDN.toASCII(...) so we will always noify the future / promise
- Add unit test.
Result:
DnsNameResolver.resolve*(...) will always notify the future.
Motivation:
Currently Netty does not wrap socket connect, bind, or accept
operations in doPrivileged blocks. Nor does it wrap cases where a dns
lookup might happen.
This prevents an application utilizing the SecurityManager from
isolating SocketPermissions to Netty.
Modifications:
I have introduced a class (SocketUtils) that wraps operations
requiring SocketPermissions in doPrivileged blocks.
Result:
A user of Netty can grant SocketPermissions explicitly to the Netty
jar, without granting it to the rest of their application.
Motivation:
Windows 7 hosts file is empty by default (at least on my machine? see
http://serverfault.com/questions/4689/windows-7-localhost-name-resolution-is-handled-within-dns-itself-why
for details and reasoning.
the test relies on the file containing an entry for localhost.
Modifications:
refactor class code to 1st normalize the input host name and then look it up, change the test to verify
that hostnames are normalized in a case-insensitive way before being looked up (which was the intent
of the original test)
Result:
test should pass on vanilla windows 7 (and any other machine with no
localhost in the hosts file). no effect anywhere else or on actual netty
code.
Signed-off-by: radai-rosenblatt <radai.rosenblatt@gmail.com>
Motivation:
Now the ```resolveAll``` method of RoundRobinInetAddressResolver returns results without any rotation and shuffling. As a result, it doesn't force any round-robin for clients that get a result of ```resolveAll``` and use addresses from the result one by one for a connection establishing until success. This commit implements round-robin in RoundRobinInetAddressResolver#resolveAll. These improvements inspired by the discussion here: https://github.com/AsyncHttpClient/async-http-client/issues/1285
Modifications:
Rotate collection from internal ```resolveAll``` call by index, which is incremented every call to RoundRobinInetAddressResolver#resolveAll method.
Random replaced by an incrementing counter, which makes code cheaper and guarantees predictable address order in tests.
Result:
Improved ```RoundRobinInetAddressResolver``` is compatible with clients that use ```resolveAll``` result.
Motivation:
Make small refactoring for recently merged PR #5867 to make the code more flexible and expose aggressive round robin as a NameResolver too with proper code reuse.
Modifications:
Round robin is a method of hostname resolving - so Round robin related code fully moved to RoundRobinInetAddressResolver implements NameResolver<InetAddress>, RoundRobinInetSocketAddressResolver is deleted as a separate class, instance with the same functionality could be created by calling #asAddressResolver.
Result:
New forced Round Robin code exposed not only as an AddressResolver but as a NameResolver too, more proper code and semantic reusing of InetNameResolver and InetSocketAddressResolver classes.
Motivation:
Suppose the domain `foo.example.com` resolves to the following ip
addresses `10.0.0.1`, `10.0.0.2`, `10.0.0.3`. Round robin DNS works by
having each client probabilistically getting a different ordering of
the set of target IP’s, so connections from different clients (across
the world) would be split up across each of the addresses. Example: In
a `ChannelPool` to manage connections to `foo.example.com`, it may be
desirable for high QPS applications to spread the requests across all
available network addresses. Currently, Netty’s resolver would return
only the first address (`10.0.0.1`) to use. Let say we are making
dozens of connections. The name would be resolved to a single IP and
all of the connections would be made to `10.0.0.1`. The other two
addresses would not see any connections. (they may see it later if new
connections are made and `10.0.0.2` is the first in the list at that
time of a subsequent resolution). In these changes, I add support to
select a random one of the resolved addresses to use on each resolve
call, all while leveraging the existing caching and inflight request
detection. This way in my example, the connections would be make to
random selections of the resolved IP addresses.
Modifications:
I added another method `newAddressResolver` to
`DnsAddressResolverGroup` which can be overriden much like
`newNameResolver`. The current functionality which creates
`InetSocketAddressResolver` is still used. I added
`RoundRobinDnsAddressResolverGroup` which extends
DnsAddressResolverGroup and overrides the `newAddressResolver` method
to return a subclass of the `InetSocketAddressResolver`. This subclass
is called `RoundRobinInetSocketAddressResolver` and it contains logic
that takes a `resolve` request, does a `resolveAll` under the hood, and
returns a single element at random from the result of the `resolveAll`.
Result:
The existing functionality of `DnsAddressResolverGroup` is left
unchanged. All new functionality is in the
`RoundRobinInetSocketAddressResolver` which users will now have the
option to use.
Motivation:
InetSocketAddressResolver.close() must call close() on the wrapped NameResolver.
Modifications:
Correctly call close() on wrapped NameResolver and added test.
Result:
close() is correctly propergated to the wrapped resolver.
Motivation:
Resolving hosts via the /etc/hosts file should be case-insensitive, e.g. localhost and LOCALHOST refer to the same host, this is the same that is applied to dns queries.
Modifications:
Store hosts Map with lowercase keys, lookup the keys as lowercase
Add to unit test for the hosts file parser to use an UPPERCASE file entry
Add unit test for DefaultHostsFileEntriesResolver to resolve both localhost and LOCALHOST
Result:
host resolution for local hosts file should match the rules applied to "getent hosts" or "ping"
Motivation:
When an InetNameResolver resolves a name, it is expected to reserve the
requested host name in the resolved InetAddress.
DefaultHostsFileEntriesResolver does not preserve the host name. For
example, resolving 'localhost' will return an InetAddress whose address
is '127.0.0.1', but its getHostString() will not return 'localhost' but
just '127.0.0.1'.
Modifications:
Fix the construction of parsed InetAddresses in HostsFileParser
Result:
Host name is preserved in the resolved InetAddress
Motivation:
Javadoc reports errors about invalid docs.
Modifications:
Fix some errors reported by javadoc.
Result:
A lot of javadoc errors are fixed by this patch.
Motivation:
On contrary to `DefaultNameResolver`, `DnsNameResolver` doesn't currently honor hosts file.
Modifications:
* Introduce `HostsFileParser` that parses `/etc/hosts` or `C:\Windows\system32\drivers\etc\hosts` depending on the platform
* Introduce `HostsFileEntriesResolver` that uses the former to resolve host names
* Make `DnsNameResolver` check his `HostsFileEntriesResolver` prior to trying to resolve names against the DNS server
* Introduce `DnsNameResolverBuilder` so we now have a builder for `DnsNameResolver`s
* Additionally introduce a `CompositeNameResolver` that takes several `NameResolver`s and tries to resolve names by delegating sequentially
* Change `DnsNameResolver.asAddressResolver` to return a composite and honor hosts file
Result:
Hosts file support when using `DnsNameResolver`.
Consistent behavior with JDK implementation.
Motivation:
As discussed in #4529, NameResolver design shouldn't be resolving SocketAddresses (or String name + port) and return InetSocketAddresses. It should resolve String names and return InetAddresses.
This SocketAddress to InetSocketAddresses resolution is actually a different concern, used by Bootstrap.
Modifications:
Extract SocketAddress to InetSocketAddresses resolution concern to a new class hierarchy named AddressResolver.
These AddressResolvers delegate to NameResolvers.
Result:
Better separation of concerns.
Note that new AddressResolvers generate a bit more allocations because of the intermediate Promise and List<InetAddress>.