Add permessage-deflate and deflate-frame WebSocket extension
implementations.
Motivation:
Need to compress HTTP WebSocket frames payload.
Modifications:
- Move UTF8 checking of WebSocketFrames from frame decoder to and
external handler.
- Change ZlibCodecFactory in order to use ZLib implentation instead of
JDK if windowSize or memLevel is different from the default one.
- Add WebSocketServerExtensionHandler and
WebSocketClientExtensionHandler to handle WebSocket Extension headers.
- Add DeflateFrame and PermessageDeflate extension implementations.
Modifications:
When trying out the Http2Client example I noticed that adding a request
payload would not cause a data frame to written. This seems to be
because writeHeaders completes the promise, and then the writeData
call ends up in FlowControlWriter.writeFrame, isDone is true and
the data released and the call aborted and returned.
Adding a new promise for the writeData method allows a data frame to be
written.
Result:
A body/payload can now be sent to the server. The example was updated to
simply echo the payload received back to the calling client.
Motivation:
Collect all bit-level read operations in one class is better. And now it's easy to use not only in Bzip2Decoder. For example, in Bzip2HuffmanStageDecoder.
Modifications:
Created a new class - Bzip2BitReader which provides bit-level reads.
Removed bit-level read operations from Bzip2Decoder.
Improved javadoc.
Result:
Bzip2BitReader allows the reading of single bit booleans, bit strings of arbitrary length (up to 24 bits), and bit aligned 32-bit integers.
Motivation:
Currently when Native.writev(...) is used it is possible to see a JVM segfault because the offset is updated to early.
Modification:
Only update the offset once it is safe to do so.
Result:
No more segfault
Motivation:
epoll transport fails on gathering write of more then 1024 buffers. As linux supports max. 1024 iov entries when calling writev(...) the epoll transport throws an exception.
Thanks again to @blucas to provide me with a reproducer and so helped me to understand what the issue is.
Modifications:
Make sure we break down the writes if to many buffers are uses for gathering writes.
Result:
Gathering writes work with any number of buffers
Motivation:
Need to upgrade HTTP/2 implementation to latest draft.
Modifications:
Various changes to support draft 13.
Result:
Support for HTTP/2 draft 13.
Motivation:
CompositeByteBuf.deallocate generates unnecessary GC pressure when using the 'foreach' loop, as a 'foreach' loop creates an iterator when looping.
Modification:
Convert 'foreach' loop into regular 'for' loop.
Result:
Less GC pressure (and possibly more throughput) as the 'for' loop does not create an iterator
Motivation:
HttpOrSpdyChooser can be simplified so the user not need to implement getProtocol(...) method.
Modification:
Add implementation for the method. The user can override it if necessary.
Result:
Easier usage of HttpOrSpdyChooser.
Motivation:
When system is in short of entrophy, the initialization of
ThreadLocalRandom can take at most 3 seconds. The initialization occurs
when ThreadLocalRandom.current() is invoked first time, which might be
much later than the moment when the application has started. If we
start the initialization of ThreadLocalRandom as early as possible, we
can reduce the perceived time taken for the retrieval.
Modification:
Begin the initialization of ThreadLocalRandom in InternalLoggerFactory,
potentially one of the firstly initialized class in a Netty application.
Make DefaultChannelId retrieve the current process ID before retrieving
the current machine ID, because retrieval of a machine ID is more likely
to use ThreadLocalRandom.current().
Use a dummy channel ID for EmbeddedChannel, which prevents many unit
tests from creating a ThreadLocalRandom instance.
Result:
We gain extra 100ms at minimum for initialSeedUniquifier generation. If
an application has its own initialization that takes long enough time
and generates good amount of entrophy, it is very likely that we will
gain a lot more.
Motivation:
There's no way to recover from a corrupted JSON stream. The current
implementation will raise an infinite exception storm when a peer sends
a large corrupted stream.
Modification:
Discard everything once stream corruption is detected.
Result:
Fixes a buffer leak
Fixes exception storm
Motivation:
When a bind fails AbstractBootstrap will use the GlobalEventExecutor to notify the ChannelPromise. We should use the EventLoop of the Channel if possible.
Modification:
Use EventLoop of the Channel if possible to use the correct Thread to notify and so guaranteer the right order of events.
Result:
Use the correct EventLoop for notification
Motivation:
There is no way for a ChannelHandler to check if the passed in ChannelPromise for a write(...) call is a VoidChannelPromise. This is a problem as some handlers need to add listeners to the ChannelPromise which is not possible in the case of a VoidChannelPromise.
Modification:
- Introduce ChannelFuture.isVoid() which will return true if it is not possible to add listeners or wait on the result.
- Add ChannelPromise.unvoid() which allows to create a ChannelFuture out of a void ChannelFuture which supports all the operations.
Result:
It's now easy to write ChannelHandler implementations which also works when a void ChannelPromise is used.
Motivation:
See GitHub Issue #2536.
Modifications:
Introduce the class JsonObjectDecoder to split a JSON byte stream
into individual JSON objets/arrays.
Result:
A Netty application can now handle a byte stream where multiple JSON
documents follow eachother as opposed to only a single JSON document
per request.
Motivation:
OkResponseHandler is the last handler in the pipeline of the HTTP CORS
example. It is responsible for releasing all messages it handled.
Modification:
Extend SimpleChannelInboundHandler instead of ChannelHandlerAdapter
Result:
Fixed a leak
Motivation:
AbstractByteBufTest.testInternalBuffer() uses writeByte() operations to
populate the sample data. Usually, this isn't a problem, but it starts
to take a lot of time when the resource leak detection level gets
higher.
In our CI machine, testInternalBuffer() takes more than 30 minutes,
causing the build timeout when the 'leak' profile is active (paranoid
level resource detection.)
Modification:
Populate the sample data using ThreadLocalRandom.nextBytes() instead of
using millions of writeByte() operations.
Result:
Test runs much faster when leak detection level is high.
Motivation:
When running the Http2Client the data returned from the server, the
"Hello World" string, is supposed to be printed but instead the following
is displayed:
Received message:
Modifications:
Use the aggregated buffer to print out.
Result:
The example now logs the correct data sent from the server:
Received message: Hello World
Motivation:
All of the functionality has been merged into
AbstractHttp2ConnectionHandler.
Modifications:
Removed the Http2PrefaceHandler/Test and all uses.
Result:
Code cleaned up a bit.
Related pull request: #2481 written by @nmittler
Motivation:
Some tests were still sending requests from the test thread rather than
from the event loop.
Modifications:
- Modified the roundtrip tests to use a new utility Http2TestUtil to
perform the write operations in the event loop thread.
- Modified the Http2Client under examples to write all requests in the
event loop thread.
- Added HttpPrefaceHandler and its test which were missing.
- Fixed various inspector warnings
Result:
Tests and examples now send requests in the correct thread context.
Motivation:
Currently it is impossible to build netty on linux system that not define SO_REUSEPORT even if it is supported.
Modification:
Define SO_REUSEPORT if not defined.
Result:
Possible to build on more linux dists.
Motivation:
We use the nanoTime of the scheduledTasks to calculate the milli-seconds to wait for a select operation to select something. Once these elapsed we check if there was something selected or some task is ready for processing. Unfortunally we not take into account scheduled tasks here so the selection loop will continue if only scheduled tasks are ready for processing. This will delay the execution of these tasks.
Modification:
- Check if a scheduled task is ready after selecting
- also make a tiny change in NioEventLoop to not trigger a rebuild if nothing was selected because the timeout was reached a few times in a row.
Result:
Execute scheduled tasks on time.
Motivation:
When we do a (env*)->GetObjectArrayElement(...) call we may created many local references which will only be cleaned up once we exist the native method. Thus a lot of memory can be used and so a StackOverFlow may be triggered. Beside this the JNI specification only say that an implementation must cope with 16 local references.
Modification:
Call (env*)->ReleaseLocalRef(...) to release the resource once not needed anymore.
Result:
Less memory usage and guard against StackOverflow
Motivation:
Because of how we use reference counting we need to check for the reference count before each operation that touches the underlying memory. This is especially true as we use sun.misc.Cleaner.clean() to release the memory ASAP when possible. Because of this the user may cause a SEGFAULT if an operation is called that tries to access the backing memory after it was released.
Modification:
Correctly check the reference count on all methods that access the underlying memory or expose it via a ByteBuffer.
Result:
Safer usage of ByteBuf
Motivation:
DecodeResult is dropped when aggregate HTTP messages.
Modification:
Make sure we not drop the DecodeResult while aggregate HTTP messages.
Result:
Correctly include the DecodeResult for later processing.
Motivation:
When a select rebuild was triggered the reference to the SelectionKey is not updated in AbstractNioChannel. This will cause a CancelledKeyException later.
Modification:
Correctly update SelectionKey reference after rebuild
Result:
Fix exception
Motivation:
When a user tries to use netty on android it currently fails with "Could not find class 'sun.misc.Cleaner'"
Modification:
Encapsulate sun.misc.Cleaner usage in extra class to workaround this isssue.
Result:
Netty can be used on android again
Motivation:
At the moment there is no simple way for a user to check if the native epoll transport can be used on the running platform. Thus the user can only try to instance it and catch any exception and fallback to nio transport.
Modification:
Add Epoll.isAvailable() which allows to check if epoll can be used.
Result:
User can easily check if epoll transport can be used or not
Motivation:
When using openjdk and oracle jdk's nio (while using the nio transport) the ServerSocketChannel uses SO_REUSEADDR by default. Our native transport should do the same to make it easier to switch between the different implementations and get the expected result.
Modification:
Change EpollServerSocketChannelConfig to set SO_REUSEADDR on the created socket.
Result:
SO_REUSEADDR is used by default on servers.
Motivation:
bytesBefore(length, ...), bytesBefore(index, length, ...), and
indexOf(fromIndex, toIndex,...) in ReplayingDecoderBuffer are buggy.
They trigger 'REPLAY even when they don't need to.
Modification:
Implement the buggy methods properly so that REPLAYs are not triggered
unnecessarily.
Result:
Correct behvaior
Motivation:
At the moment we use a lot of unnecessary memory copies in JdkZlibEncoder. This is caused by either allocate a to small ByteBuf and expand it later or using a temporary byte array.
Beside this the memory footprint of JdkZlibEncoder is pretty high because of the byte[] used for compressing.
Modification:
- Override allocateBuffer(...) and calculate the estimatedsize in there, this reduce expanding of the ByteBuf later
- Not use byte[] in the instance itself but allocate a heap ByteBuf and write directly into the byte array
Result:
Less memory copies and smaller memory footprint
If decompression fails, the buffer that contains the decompressed data
is not released. Bzip2DecoderTest.testStreamCrcError() also does not
release the partial output Bzip2Decoder produces.