Motivation:
JCTools 2.0.2 provides an unbounded MPSC linked queue. Before we shaded JCTools we had our own unbounded MPSC linked queue and used it in various places but gave this up because there was no public equivalent available in JCTools at the time.
Modifications:
- Use JCTool's MPSC linked queue when no upper bound is specified
Result:
Fixes https://github.com/netty/netty/issues/5951
Motivation:
Docker's `--tmpfs` flag mounts the temp volume with `noexec` by default,
resulting in an UnsatisfiedLinkError. While this is good security
practice, it is a surprising failure from a seemingly innocuous flag.
Modifications:
Add a best-effort attempt in `NativeLibraryLoader` to detect when temp
files beng loaded cannot be executed even when execution permissions
are set, often because the `noexec` flag is set on the volume.
Requires numerous additional exclusions to the Animal Sniffer config
for Java7 POSIX permissions manipulation.
Result:
Fixes [#6678].
Motivation:
As we now include native code for multiple platforms we need to generate an uber all jar before release it from the staging repository. For this the uber-staging profile can be used. To create a snapshot uber jar the uber-snapshot profile can be used.
Modifications:
- Add uber-staging and uber-snapshot profile
- Correct comment in pom.xml file to show usage.
Result:
Easier to create snapshot and release uber jars.
Motivation:
To ensure the release plugin works correctly we need to ensure all modules are included during build.
Modification:
- Include all modules
- Skip compilation and tests for native code when not supported but still include the module and build the jar
Result:
Build and release works again
Motivation:
When adding SNIMatcher support we missed to use static delegating methods and so may try to load classes that not exists in Java7. Which will lead to errors.
Modifications:
- Correctly only try to load classes when running on java8+
- Ensure Java8+ related tests only run when using java8+
Result:
Fixes [#6700]
Motivation:
We currently don't have a native transport which supports kqueue https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2. This can be useful for BSD systems such as MacOS to take advantage of native features, and provide feature parity with the Linux native transport.
Modifications:
- Make a new transport-native-unix-common module with all the java classes and JNI code for generic unix items. This module will build a static library for each unix platform, and included in the dynamic libraries used for JNI (e.g. transport-native-epoll, and eventually kqueue).
- Make a new transport-native-unix-common-tests module where the tests for the transport-native-unix-common module will live. This is so each unix platform can inherit from these test and ensure they pass.
- Add a new transport-native-kqueue module which uses JNI to directly interact with kqueue
Result:
JNI support for kqueue.
Fixes https://github.com/netty/netty/issues/2448
Fixes https://github.com/netty/netty/issues/4231
Motivation:
There needs to be some work be done to allow using forbidden API check plugin when using java9.
Modifications:
Skip forbidden API check when using java9
Result:
Builds again with java9
Motivation:
In cases when an application is running in a container or is otherwise
constrained to the number of processors that it is using, the JVM
invocation Runtime#availableProcessors will not return the constrained
value but rather the number of processors available to the virtual
machine. Netty uses this number in sizing various resources.
Additionally, some applications will constrain the number of threads
that they are using independenly of the number of processors available
on the system. Thus, applications should have a way to globally
configure the number of processors.
Modifications:
Rather than invoking Runtime#availableProcessors, Netty should rely on a
method that enables configuration when the JVM is started or by the
application. This commit exposes a new class NettyRuntime for enabling
such configuraiton. This value can only be set once. Its default value
is Runtime#availableProcessors so that there is no visible change to
existing applications, but enables configuring either a system property
or configuring during application startup (e.g., based on settings used
to configure the application).
Additionally, we introduce the usage of forbidden-apis to prevent future
uses of Runtime#availableProcessors from creeping. Future work should
enable the bundled signatures and clean up uses of deprecated and
other forbidden methods.
Result:
Netty can be configured to not use the underlying number of processors,
but rather the constrained number of processors.
https://github.com/netty/netty-tcnative/pull/215
Motivation
OCSP stapling (formally known as TLS Certificate Status Request extension) is alternative approach for checking the revocation status of X.509 Certificates. Servers can preemptively fetch the OCSP response from the CA's responder, cache it for some period of time, and pass it along during (a.k.a. staple) the TLS handshake. The client no longer has to reach out on its own to the CA to check the validity of a cetitficate. Some of the key benefits are:
1) Speed. The client doesn't have to crosscheck the certificate.
2) Efficiency. The Internet is no longer DDoS'ing the CA's OCSP responder servers.
3) Safety. Less operational dependence on the CA. Certificate owners can sustain short CA outages.
4) Privacy. The CA can lo longer track the users of a certificate.
https://en.wikipedia.org/wiki/OCSP_staplinghttps://letsencrypt.org/2016/10/24/squarespace-ocsp-impl.html
Modifications
https://www.openssl.org/docs/man1.0.2/ssl/SSL_set_tlsext_status_type.html
Result
High-level API to enable OCSP stapling
Motivation:
In OpenSslCertificateException we tried to validate the supplied error code but did not correctly account for all different valid error codes and so threw an IllegalArgumentException.
Modifications:
- Fix validation by updating to latest netty-tcnative and use CertificateVerifier.isValid
- Add unit tests
Result:
Validation of error code works as expected.
Motivation:
Conscrypt is a Java Security provider that wraps OpenSSL (specifically BoringSSL). It's a possible alternative to Netty-tcnative that we should explore. So this commit is just to enable us to further investigate its use.
Modifications:
Modifying the SslContext creation path to support the Conscrypt provider.
Result:
Netty will support OpenSSL with conscrypt.
Motivation:
Projects may import multiple libraries which use different versions of Netty.
Modifications:
Add 'netty-bom' meta-project that contains the other projects in a dependencyManagement section.
Result:
Developers can import the BOM to enforce specific version of Netty.
Motivation:
We not support all SSLParameters settings so we should better throw if a user try to use them.
Modifications:
- Check for unsupported parameters
- Add unit test
Result:
Less surprising behavior.
Motivation:
We should move the AutobahnTestsuite to an extra module. This allows easier to run only the testsuite or only the autobahntestsuite
Modifications:
Create a new module (testsuite-autobahn)
Result:
Better project structure.
Motivation:
autobahntestsuite-maven-plugin 0.1.4 was released and supports Java9.
Modifications:
Update plugin to be able to run tests on Java9
Result:
Autobahntestsuite can also be run on Java9.
Motivation:
OpenSSL doesn't automatically verify hostnames and requires extract method calls to enable this feature [1]. We should allow this to be configured.
Modifications:
- SSLParamaters#getEndpointIdentificationAlgorithm() should be respected and configured via tcnative interfaces.
Result:
OpenSslEngine respects hostname verification.
[1] https://wiki.openssl.org/index.php/Hostname_validation
Motivation:
We have our own ThreadLocalRandom implementation to support older JDKs . That said we should prefer the JDK provided when running on JDK >= 7
Modification:
Using ThreadLocalRandom implementation of the JDK when possible.
Result:
Make use of JDK implementations when possible.
Motivation:
We missed some stuff in 5728e0eb2cf0d2fe267d25c9f85a0a061dc7ab5f and so the build failed on java9
Modifications:
- Add extra cmdline args when needed
- skip the autobahntestsuite as jython not works with java9
- skip the osgi testsuite as the maven plugin not works with java9
Result:
Build finally passed on java9
Motivation:
Commit 591293bfb4f6a48a311d195303ce772fb801ec95 changed the build to need java8 but missed to adjust the enforce rule as well.
Modifications:
Enforce java8+
Result:
Quickly fail when user tries to compile with pre java8
Motivation:
Java8 is out now for some time and JDK7 is no longer supported officially. We should remove all our backports and just use what the JDK provides us. This also will allow us to use intrinsics that are offered by the JDK implementations.
Modifications:
Remove all backports of jdk8 classes.
Result:
Use what the JDK offers us. This also fixes [#5458]
Motivation:
tcnative was moved into an internal package.
Modifications:
Update package for tcnative imports.
Result:
Use correct package names for tcnative.
Motivation:
We need to pass special arguments to run with jdk9 as otherwise some tests will not be able to run.
Modifications:
Allow to define extra arguments when running with jdk9
Result:
Tests pass with jdk9
Motivation:
As we now need to compile with java8 we should still allow to run the tests with a different java version to ensure everythin also works with java 7 and 6.
Modifications:
Allow to pass "-DtestJavaHome" to the build and so use a different java version during running the tests.
Result:
Be able to run tests with different java versions.
Motivation:
tcnative has updated how constants are defined and removed some constants which are either obsolete or now set directly in tcnative.
Modifications:
- update to compile against tcnative changes.
Result:
Netty compiles with tcnative options changes.
Motivation:
Currently Netty utilizes BIO_new_bio_pair so we can control all FD lifetime and event notification but delegates to OpenSSL for encryption/decryption. The current implementation sets up a pair of BIO buffers to read/write encrypted/plaintext data. This approach requires copying of data from Java ByteBuffers to native memory BIO buffers, and also requires both BIO buffers to be sufficiently large to hold application data. If direct ByteBuffers are used we can avoid coyping to/from the intermediate BIO buffer and just read/write directly from the direct ByteBuffer memory. We still need an internal buffer because OpenSSL may generate write data as a result of read calls (e.g. handshake, alerts, renegotiation, etc..), but this buffer doesn't have to be be large enough to hold application data.
Modifications:
- Take advantage of the new ByteBuffer based BIO provided by netty-tcnative instead of using BIO_read and BIO_write.
Result:
Less copying and lower memory footprint requirement per TLS connection.
Motivation:
We used various mocking frameworks. We should only use one...
Modifications:
Make usage of mocking framework consistent by only using Mockito.
Result:
Less dependencies and more consistent mocking usage.