- Fixes#2060
- Ensure to return a future/promise implementation that does not fail with 'not registered to an event loop' error for registration operations
- If there is no usable event loop available, GlobalEventExecutor.INSTANCE is used as a fallback.
- Add VoidChannel, which is used when an instantiation of a channel fails.
- Fixes#1808
- Move all methods in ChannelInboundHandler and ChannelOutboundHandler up to ChannelHandler
- Remove ChannelInboundHandler and ChannelOutboundHandler
- Deprecate ChannelInboundHandlerAdapter, ChannelOutboundHandlerAdapter, and ChannelDuplexHandler
- Replace CombinedChannelDuplexHandler with ChannelHandlerAppender
because it's not possible to combine two handlers into one easily now
- Introduce 'Skip' annotation to pass events through efficiently
- Remove all references to the deprecated types and update Javadoc
- Fixes#2003 properly
- Instead of using 'bundle' packaging, use 'jar' packaging. This is
more robust because some strict build tools fail to retrieve the
artifacts from a Maven repository unless their packaging is not 'jar'.
- All artifacts now contain META-INF/io.netty.version.properties, which
provides the detailed information about the build and repository.
- Removed OSGi testsuite temporarily because it gives false errors
during split package test and examination.
- Add io.netty.util.Version for easy retrieval of version information
- Fixes#1912
- Add ChannelHandlerInvoker and its default implementation
- Add pipeline manipulation methods that accept ChannelHandlerInvoker
- Rename Channel(Inbound|Outbound)Invoker to
Channel(Inbound|Outbound)Ops to avoid confusion
- Remove the Javadoc references to the package-private interfaces
- Fixes#1810
- Add a new interface ChannelId and its default implementation which generates globally unique channel ID.
- Replace AbstractChannel.hashCode with ChannelId.hashCode() and ChannelId.shortValue()
- Add variants of ByteBuf.hexDump() which accept byte[] instead of ByteBuf.
- Proposed fix for #1824
UniqueName and its subtypes do not allow getting the previously registered instance. For example, let's assume that a user is running his/her application in an OSGi container with Netty bundles and his server bundle. Whenever the server bundle is reloaded, the server will try to create a new AttributeKey instance with the same name. However, Netty bundles were not reloaded at all, so AttributeKey will complain that the name is taken already (by the previously loaded bundle.)
To fix this problem:
- Replaced UniqueName with Constant, AbstractConstant, and ConstantPool. Better name and better design.
- Sctp/Udt/RxtxChannelOption is not a ChannelOption anymore. They are just constant providers and ChannelOption is final now. It's because caching anything that's from outside of netty-transport will lead to ClassCastException on reload, because ChannelOption's constant pool will keep all option objects for reuse.
- Signal implements Constant because we can't ensure its uniqueness anymore by relying on the exception raised by UniqueName's constructor.
Beside this it also helps to reduce CPU usage as nioBufferCount() is quite expensive when used on CompositeByteBuf which are
nested and contains a lot of components
This ChannelOption allows to tell the DatagramChannel implementation to be active as soon as they are registrated to their EventLoop. This can be used to make it possible to write to a not bound DatagramChannel.
The ChannelOption is marked as @deprecated as I'm looking for a better solution in master which breaks default behaviour with 4.0 branch.
The problem with the old way was that we always set the OP_WRITE when the buffer could not be written
until the write-spin-count was reached. This means that in some cases the channel was still be writable
but we just was not able to write out the data quick enough. For this cases we should better break out the
write loop and schedule a write to be picked up later in the EventLoop, when other tasks was executed.
The OP_WRITE will only be set if a write actual returned 0 which means there is no more room for writing data
and this we need to wait for the os to notify us.
This move less common method patterns to extra methods and so make the nioBuffers() method with most common pattern (backed by one ByteBuffer) small enough for inlining.
This is needed because of otherwise the JDK itself will do an extra ByteBuffer copy with it's own pool implementation. Even worth it will be done
multiple times if the ByteBuffer is always only partial written. With this change the copy is done inside of netty using it's own allocator and
only be done one time in all cases.
Introduce a new interface called MessageSizeEstimator. This can be specific per Channel (via ChannelConfig). The MessageSizeEstimator will be used to estimate for a message that should be written. The default implementation handles ByteBuf, ByteBufHolder and FileRegion. A user is free to plug-in his/her own implementation for different behaviour.
This fixes#1664 and revert also the original commit which was meant to fix it 3b1881b523 . The problem with the original commit was that it could delay handlerRemove(..) calls and so mess up the order or forward bytes to late.
- Remove unnecessary ascending traversal of pipeline in DefaultChannelHandlerContext.freeInbound()
- Move DefaultChannelHandlerContext.teardownAll() to DefaultChannelPipeline
- Previously, failUnflushed() did not run when inFail is true, which made unflushed writes are not released on reentrance. This has been fixed by this commit.
- Also, AbstractUnsafe.outboundBuffer is set to null as early as possible to remove the chance of any write attempts made after the closure.
- Fix a bug in DefaultProgressivePromise.tryProgress() where the notification is dropped
- Fix a bug in AbstractChannel.calculateMessageSize() where FileRegion is not counted
- HttpStaticFileServer example now uses zero copy file transfer if possible.
- Merge MessageList into ChannelOutboundBuffer
- Make ChannelOutboundBuffer a queue-like data structure so that it is nearly impossible to leak a message
- Make ChannelOutboundBuffer public so that AbstractChannel can expose it to its subclasses.
- TODO: Re-enable gathering write in NioSocketChannel
This is often useful if you for example use a ChannelGroup to hold all connected Channels and want to broadcast a message too all of them
except one Channel.
- write() now accepts a ChannelPromise and returns ChannelFuture as most
users expected. It makes the user's life much easier because it is
now much easier to get notified when a specific message has been
written.
- flush() does not create a ChannelPromise nor returns ChannelFuture.
It is now similar to what read() looks like.
DefaultChannelHandlerContext does not trigger exceptionCaught() immediately when ChannelOutboundHandler.write() raises an exception. It just records the exception until flush() is triggered. On invokeFlush(), if there's any exception recorded, DefaultChannelHandlerContext will fail the promise without calling ChannelOutboundHandler.flush(). If more than one exception were raised, only the first exception is used as the cause of the failure and the others will be logged at warn level.
- Remove channelReadSuspended because it's actually same with messageReceivedLast
- Rename messageReceived to channelRead
- Rename messageReceivedLast to channelReadComplete
We renamed messageReceivedLast to channelReadComplete because it
reflects what it really is for. Also, we renamed messageReceived to
channelRead for consistency in method names.
I must admit MesageList was pain in the ass. Instead of forcing a
handler always loop over the list of messages, this commit splits
messageReceived(ctx, list) into two event handlers:
- messageReceived(ctx, msg)
- mmessageReceivedLast(ctx)
When Netty reads one or more messages, messageReceived(ctx, msg) event
is triggered for each message. Once the current read operation is
finished, messageReceivedLast() is triggered to tell the handler that
the last messageReceived() was the last message in the current batch.
Similarly, for outbound, write(ctx, list) has been split into two:
- write(ctx, msg)
- flush(ctx, promise)
Instead of writing a list of message with a promise, a user is now
supposed to call write(msg) multiple times and then call flush() to
actually flush the buffered messages.
Please note that write() doesn't have a promise with it. You must call
flush() to get notified on completion. (or you can use writeAndFlush())
Other changes:
- Because MessageList is completely hidden, codec framework uses
List<Object> instead of MessageList as an output parameter.