Motivation:
Sometimes it is useful to do something depending on the Ssl ClientHello (like for example select a SslContext to use). At the moment we only allow to hook into the SNI extension but this is not enough.
Modifications:
Add SslClientHelloHandler which allows to hook into ClientHello messages. This class is now also the super class of AbstractSniHandler
Result:
More flexible processing of SSL handshakes
Motivation:
A new checkstyle version was released which fixes a security vulnerability.
Modifications:
- Update to latest checkstyle version
- Update netty-build to latest version to be compatible with latest checkstyle version
Result:
No more security vulnerability caused by checkstyle during build
Motivation:
Use latest JCTools, bug fixes etc.
Modification:
Change pom to depend on 3.0.0 version, and ignore shaded jar API changes
Result:
Using newer JCTools
Motivation:
"io.netty.leakDetection.maxSampledRecords" was removed in 16b1dbdf92
Modification:
Replaced it with targetRecords
Result:
Use correct flag during test execution
Motivation:
We should include the shaded sources for JCTools in our sources jar to make it easier to debug.
Modifications:
- Adjust plugin configuration to execute plugins in correct order
- Update source plugin
- Add configuration for shade plugin to generate source jar content
Result:
Fixes https://github.com/netty/netty/issues/6640.
Motivation:
21720e4a7865b77d252a4263271663d7ed462440 introduced a change which aimed to enable the not_x86_64 profile when building on a x86_64 platform. Unfortunaly it made an assemption which not holds true and so the profile was already enabled. This lead to the situation that native SSL tests were skipped if non boringssl impl was used.
Modifications:
Fix profile activation to work as expected
Result:
Correctly run aal native SSL tests
Motivation:
Netty currently doesn't build and distribute the test JARs. Having easy access to the test JARs would enable downstream projects (such as GraalVM) to integrate the Netty unit tests in their CI pipeline to ensure continous compatibility with Netty features. The alternative would be to build Netty from source every time to obtain the test jars, however, depending on the CI setup, that may not always be possible.
Modifications:
Modify `pom.xml` to enable generation of test JARs and corresponding source JARs.
Result:
Running the Maven build will create the test JARs and corresponding source JARs. This change was tested locally via `mvn install` and the test JARs are correctly copied under the Maven cache. The expectation is that running `mvn deploy` will also copy the additional JARs to the maven repository.
Motivation:
On MacOS it is not really good enough to check /etc/resolv.conf to determine the nameservers to use. We should retrieve the nameservers using the same way as mDNSResponser and chromium does by doing a JNI call.
Modifications:
Add MacOSDnsServerAddressStreamProvider and testcase
Result:
Use correct nameservers by default on MacOS.
Motivation:
Netty is an asynchronous framework.
If somebody uses a blocking call inside Netty's event loops,
it may lead to a severe performance degradation.
BlockHound is a tool that helps detecting such calls.
Modifications:
This change adds a BlockHound's SPI integration that marks
threads created by Netty (`FastThreadLocalThread`s) as non-blocking.
It also marks some of Netty's internal methods as whitelisted
as they are required to run the event loops.
Result:
When BlockHound is installed, any blocking call inside event loops
is intercepted and reported (by default an error will be thrown).
Motivation:
We can use the `@SuppressJava6Requirement` annotation to be more precise about when we use Java6+ APIs. This helps us to ensure we always protect these places.
Modifications:
Make use of `@SuppressJava6Requirement` explicit
Result:
Fixes https://github.com/netty/netty/issues/2509.
Motivation:
We should use the latest commons-compress release to fix CVE-2019-12402 (even it is only a test dependency)
Modifications:
Update commons-compress to 1.19
Result:
Fix security alert
Motivation:
It is not possible to build Netty on an s390_64 platform.
Modifications:
Modify pom.xml so that s390_64 is acceptable as os.detected.arch.
Result:
Netty can be built on an s390_64 platform.
Signed-off-by: Tatsushi Inagaki <e29253@jp.ibm.com>
Motivation:
We just released a new version of netty-tcnative.
Modifications:
Bump up to netty-tcnative 2.0.26.Final
Result:
Use latest netty-tcnative release
Motivation:
At the moment it is not possible to build netty on a power 8 systems.
Modifications:
- Improve detection of the possibility of using Conscrypt
- Skip testsuite-shading when not on x86_64 as this is the only platform for which we build tcnative atm
- Only include classifier if on x86_64 for tcnative as dependency as this is the only platform for which we build tcnative atm
- Better detect if UDT test can be run
Result:
Fixes https://github.com/netty/netty/issues/9479
Motivation:
Users' runtime systems may have incompatible dynamic libraries to the ones our
tcnative wrappers link to. Unfortunately, we cannot determine and catch these
scenarios (in which the JVM crashes) but we can make a more educated guess on
what library to load and try to find one that works better before crashing.
Modifications:
1) Build dynamically linked openSSL builds for more OSs (netty-tcnative)
2) Load native linux libraries with matching classifier (first)
Result:
More developers / users can use the dynamically-linked native libraries.
Motivation:
Since both projects (to some extend) rely on classifier parsing via the
os-maven-plugin, they should ideally use the same version in case the parsing
changed.
Modifications:
Upgrade os-maven-plugin from 1.6.0 to 1.6.2
Result:
Same os-maven-plugin with same parsing logic.
Motivation:
Netty homepage(netty.io) serves both "http" and "https".
It's recommended to use https than http.
Modification:
I changed from "http://netty.io" to "https://netty.io"
Result:
No effects.
Motivation:
The first final version of GraalVM was released which deprecated some flags. We should use the new ones.
Modifications:
Removes the use of deprecated GraalVM native-image flags
Adds a flag to initialize netty at build time.
Result:
Do not use deprecated flags
Motivation:
When trying to use graalvm and build netty we currently fail because our build configuration is not compatible with it.
Modification:
- Skip plugins that are not supported when graal is used
- Correctly configure surefire plugin for graal so it not produces a NPE
Result:
We can build and test with graalvm.
Motivation:
GraalVM native images are a new way to deliver java applications. Netty is one of the most popular libraries however there are a few limitations that make it impossible to use with native images out of the box. Adding a few metadata (in specific modules will allow the compilation to success and produce working binaries)
Modification:
Added properties files in `META-INF` and substitutions classes (under `internal.svm`) will solve the compilation issues. The substitutions classes are not visible and do not have a public constructor so they are not visible to end users.
Result:
Fixes#8959
This fix is very conservative as it applies the minimum config required to build:
* pure netty servers
* vert.x applications
* grpc applications
The build is having trouble due to checkstyle which does not seem to be able to find the copyright notice on property files.
Motivation:
We should update to netty-tcnative 2.0.25.Final as it fixes a possible segfault on systems that use openssl < 1.0.2 and for which we compiled with gcc.
See https://github.com/netty/netty-tcnative/pull/457
Modifications:
Update netty-tcnative
Result:
No more segfault possible.
Motivation:
4079189f6bd3e2c26ec443f24a204ffe144f1ada changed the dependency to netty-tcnative-borinssl-static but it should still be netty-tcnative.
Modifications:
Change back to netty-tcnative
Result:
Correct dependency is used
Motivation:
BoringSSL allows to customize the way how key signing is done an even offload it from the IO thread. We should provide a way to plugin an own implementation when BoringSSL is used.
Modifications:
- Introduce OpenSslPrivateKeyMethod that can be used by the user to implement custom signing by using ReferenceCountedOpenSslContext.setPrivateKeyMethod(...)
- Introduce static methods to OpenSslKeyManagerFactory which allows to create a KeyManagerFactory which supports to do keyless operations by let the use handle everything in OpenSslPrivateKeyMethod.
- Add testcase which verifies that everything works as expected
Result:
A user is able to customize the way how keys are signed.