Motivation:
The bounds checking for AsciiString#indexOf and AsciiString#lastIndexOf is not correct and may lead to ArrayIndexOutOfBoundsException.
Modifications:
- Correct the bounds checking for AsciiString#indexOf and AsciiString#lastIndexOf
Result
Fixes https://github.com/netty/netty/issues/7863
* NetUtil valid IP methods to accept CharSequence
Motivation:
NetUtil has methods to determine if a String is a valid IP address. These methods don't rely upon String specific methods and can use CharSequence instead.
Modifications:
- Use CharSequence instead of String for the IP validator methods.
- Avoid object allocation in AsciiString#indexOf(char,int) and reduce
byte code
Result:
No more copy operation required if a CharSequence exists.
Motivation:
We dont protect from overflow and so the timer may fire too early if a large timeout is used.
Modifications:
Add overflow guard and a test.
Result:
Fixes https://github.com/netty/netty/issues/7760.
Motivation:
DefaultPromise's internal state depends upon specific Signal objects. These Signal objects can be used externally which causes the DefaultPromise object API to not function correct and state to become corrupted.
Modifications:
- DefaultPromise shouldn't depend upon Signal for its internal state
Result:
Fixes https://github.com/netty/netty/issues/7707
Motivation:
Currently if user call set/remove/set/remove many times, it will create multiple cleaner task for same index. It may cause OOM due to long live thread will have more and more task in LIVE_SET.
Modification:
Add flag to avoid recreating tasks.
Result:
Only create 1 clean task. But use more space of indexedVariables.
Motivation:
Reflective setAccessible(true) will produce scary warnings on the console when using java9+, while netty still works. That said users may feel uncomfortable with these warnings, we should not try to do it by default when using java9+.
Modifications:
Add io.netty.tryReflectionSetAccessible system property which controls if setAccessible(...) will be used. By default it will bet set to false when using java9+.
Result:
Fixes [#7254].
Motivation:
The ObjectCleanerThread must be a daemon thread as otherwise we may block the JVM from exit. By using a daemon thread we basically give the same garantees as the JVM when it comes to cleanup of resources (as the GC threads are also daemon threads and the CleanerImpl uses a deamon thread as well in Java9+).
Modifications:
Change ObjectCleanThread to be a daemon thread.
Result:
JVM shutdown will always be able to complete. Fixed [#7617].
Motivation:
In environments with a security manager, the reflective access to get the reference to
Throwable#addSuppressed can cause issues that result in Netty failing to load. The main
motivation in this pull request is to remove the use of reflection to prevent issues in
these environments.
Modifications:
ThrowableUtil no longer uses Class#getDeclaredMembers to get the Method that references
Throwable#addSuppressed and instead guards the call to Throwable#addSuppressed with a
Java version check.
Additionally, a annotation was added that suppresses the animal sniffer java16 signature
check on the given method. The benefit of the annotation is that it limits the exclusion
of Throwable to just the ThrowableUtil class and has string text indicating the reason
for suppressing the java16 signature check.
Result:
Netty no longer requires the use of Class#getDeclaredMethod for ThrowableUtil and will
work in environments restricted by a security manager without needing to grant reflection
permissions.
Fixes#7614
Motivation:
ObjectCleaner inovkes a Runnable which may execute user code (FastThreadLocal#onRemoval) and therefore exceptions maybe thrown. If an exception is thrown the cleanup thread will exit prematurely and we may never finish cleaning up which will result in leaks.
Modifications:
- ObjectCleaner should suppress exceptions and continue cleaning
Result:
ObjectCleaner will reliably clean despite exceptions being thrown.
Motivation:
e329ca1 introduced the user of ObjectCleaner in FastThreadLocal but we missed the case to register our cleaner task if FastThreadLocal.set was called only.
Modifications:
- Use ObjectCleaner also when FastThreadLocal.set is used.
- Add test case.
Result:
ObjectCleaner is always used.
Motivation:
There is no guarantee that FastThreadLocal.onRemoval(...) is called if the FastThreadLocal is used by "non" FastThreacLocalThreads. This can lead to all sort of problems, like for example memory leaks as direct memory is not correctly cleaned up etc.
Beside this we use ThreadDeathWatcher to check if we need to release buffers back to the pool when thread local caches are collected. In the past ThreadDeathWatcher was used which will need to "wakeup" every second to check if the registered Threads are still alive. If we can ensure FastThreadLocal.onRemoval(...) is called we do not need this anymore.
Modifications:
- Introduce ObjectCleaner and use it to ensure FastThreadLocal.onRemoval(...) is always called when a Thread is collected.
- Deprecate ThreadDeathWatcher
- Add unit tests.
Result:
Consistent way of cleanup FastThreadLocals when a Thread is collected.
Motivation:
When doStartThread throws an exception, e.g. due to the actual executor being depleted of threads and throwing in its rejected execution handler, the STEE ends up in started state anyway. If we try to execute another task in this executor, it will be queued but the thread won't be started anymore and the task will linger forever.
Modifications:
- Ensure we not update the internal state if the startThread() method throws.
- Add testcase
Result:
Fixes [#7483]
Motivation:
In our Recycler implementation we store a reference to the current Thread in the Stack that is stored in a FastThreadLocal. The Stack itself is referenced in the DefaultHandle itself. A problem can arise if a user stores a Reference to an Object that holds a reference to the DefaultHandle somewhere and either not remove the reference at all or remove it very late. In this case the Thread itself can not be collected as its still referenced in the Stack that is referenced by the DefaultHandle.
Modifications:
- Use a WeakReference to store the reference to the Thread in the Stack
- Add a test case
Result:
Ensure a Thread can be collected in a timely manner in all cases even if it used the Recycler.
Motivation:
When system property is empty, the default value should be used.
Modification:
- Correctly use the default value in all cases
- Add unit tests
Result:
Correct behaviour
Motivation:
`AbstractScheduledEventExecutor` uses a standard `java.util.PriorityQueue` to keep track of task deadlines. `ScheduledFuture.cancel` removes tasks from this `PriorityQueue`. Unfortunately, `PriorityQueue.remove` has `O(n)` performance since it must search for the item in the entire queue before removing it. This is fast when the future is at the front of the queue (e.g., already triggered) but not when it's randomly located in the queue.
Many servers will use `ScheduledFuture.cancel` on all requests, e.g., to manage a request timeout. As these cancellations will be happen in arbitrary order, when there are many scheduled futures, `PriorityQueue.remove` is a bottleneck and greatly hurts performance with many concurrent requests (>10K).
Modification:
Use netty's `DefaultPriorityQueue` for scheduling futures instead of the JDK. `DefaultPriorityQueue` is almost identical to the JDK version except it is able to remove futures without searching for them in the queue. This means `DefaultPriorityQueue.remove` has `O(log n)` performance.
Result:
Before - cancelling futures has varying performance, capped at `O(n)`
After - cancelling futures has stable performance, capped at `O(log n)`
Benchmark results
After - cancelling in order and in reverse order have similar performance within `O(log n)` bounds
```
Benchmark (num) Mode Cnt Score Error Units
ScheduledFutureTaskBenchmark.cancelInOrder 100 thrpt 20 137779.616 ± 7709.751 ops/s
ScheduledFutureTaskBenchmark.cancelInOrder 1000 thrpt 20 11049.448 ± 385.832 ops/s
ScheduledFutureTaskBenchmark.cancelInOrder 10000 thrpt 20 943.294 ± 12.391 ops/s
ScheduledFutureTaskBenchmark.cancelInOrder 100000 thrpt 20 64.210 ± 1.824 ops/s
ScheduledFutureTaskBenchmark.cancelInReverseOrder 100 thrpt 20 167531.096 ± 9187.865 ops/s
ScheduledFutureTaskBenchmark.cancelInReverseOrder 1000 thrpt 20 33019.786 ± 4737.770 ops/s
ScheduledFutureTaskBenchmark.cancelInReverseOrder 10000 thrpt 20 2976.955 ± 248.555 ops/s
ScheduledFutureTaskBenchmark.cancelInReverseOrder 100000 thrpt 20 362.654 ± 45.716 ops/s
```
Before - cancelling in order and in reverse order have significantly different performance at higher queue size, orders of magnitude worse than the new implementation.
```
Benchmark (num) Mode Cnt Score Error Units
ScheduledFutureTaskBenchmark.cancelInOrder 100 thrpt 20 139968.586 ± 12951.333 ops/s
ScheduledFutureTaskBenchmark.cancelInOrder 1000 thrpt 20 12274.420 ± 337.800 ops/s
ScheduledFutureTaskBenchmark.cancelInOrder 10000 thrpt 20 958.168 ± 15.350 ops/s
ScheduledFutureTaskBenchmark.cancelInOrder 100000 thrpt 20 53.381 ± 13.981 ops/s
ScheduledFutureTaskBenchmark.cancelInReverseOrder 100 thrpt 20 123918.829 ± 3642.517 ops/s
ScheduledFutureTaskBenchmark.cancelInReverseOrder 1000 thrpt 20 5099.810 ± 206.992 ops/s
ScheduledFutureTaskBenchmark.cancelInReverseOrder 10000 thrpt 20 72.335 ± 0.443 ops/s
ScheduledFutureTaskBenchmark.cancelInReverseOrder 100000 thrpt 20 0.743 ± 0.003 ops/s
```
Motivation:
Fix NullPointerExceptions that occur when running netty-tcnative inside the bootstrap class loader.
Modifications:
- Replace loader.getResource(...) with ClassLoader.getSystemResource(...) when loader is null.
- Replace loader.loadClass(...) with Class.forName(..., false, loader) which works when loader is both null and non-null.
Result:
Support running native libs in bootstrap class loader
Motivation:
Objects of java.util.TreeMap or java.util.TreeSet will become
non-Serializable if instantiated with Comparators, which are not also
Serializable. This can result in unexpected and difficult-to-diagnose
bugs.
Modifications:
Implements Serializable for all classes, which implements Comparator.
Result:
Proper Comparators which will not force collections to
non-Serializable mode.
Motivation:
Even if it's a super micro-optimization (most JVM could optimize such
cases in runtime), in theory (and according to some perf tests) it
may help a bit. It also makes a code more clear and allows you to
access such methods in the test scope directly, without instance of
the class.
Modifications:
Add 'static' modifier for all methods, where it possible. Mostly in
test scope.
Result:
Cleaner code with proper 'static' modifiers.
Motivation:
NativeLibraryLoader uses ClassLoader#getResource method that can return nulls when the resource cannot be found. The returned url variable should be checked for nullity and fail in a more usable manner than a NullPointerException
Modifications:
Fail with a FileNotFoundException
Result:
Fixes [#7222].
Motivation:
When Log4j2Logger is used with PatternLayout (%F:%L)%c.%M, the log message incorrect shows:
(Log4J2Logger.java:73)io.netty.util.internal.PlatformDependent0.debug ....
Modification:
Extend AbstractLogger
Result:
Fixes [#7186].
Motivation:
PR #6811 introduced a public utility methods to decode hex dump and its parts, but they are not visible from netty-common.
Modifications:
1. Move the `decodeHexByte`, `decodeHexDump` and `decodeHexNibble` methods into `StringUtils`.
2. Apply these methods where applicable.
3. Remove similar methods from other locations (e.g. `HpackHex` test class).
Result:
Less code duplication.
Motivation:
A `StringUtil#escapeCsv` creates new `StringBuilder` on each value even if the same string is returned in the end.
Modifications:
Create new `StringBuilder` only if it really needed. Otherwise, return the original string (or just trimmed substring).
Result:
Less GC load. Up to 4x faster work for not changed strings.
Motivation:
`FormattingTuple.getArgArray()` is never used.
In the `MessageFormatter` it is possible to make
some improvements, e.g. replace `StringBuffer`
with `StringBuilder`, avoid redundant allocations, etc.
Modifications:
- Remove `argArray` field from the `FormattingTuple`.
- In `MessageFormatter`:
- replace `StringBuffer` with `StringBuilder`,
- replace `HashMap` with `HashSet` and make it lazy initialized.
- avoid redundant allocations (`substring()`, etc.)
- use appropriate StringBuilder's methods for the some `Number` values.
- Porting unit tests from `slf4j`.
Result:
Less GC load on logging with internal `MessageFormatter`.
Motivation:
IPv4/6 validation methods use allocations, which can be avoided.
IPv4 parse method use StringTokenizer.
Modifications:
Rewriting IPv4/6 validation methods to avoid allocations.
Rewriting IPv4 parse method without use StringTokenizer.
Result:
IPv4/6 validation and IPv4 parsing faster up to 2-10x.
Motivation:
We should only try to load jdk.internal.misc.Unsafe if we run on Java9+ to eliminate noise in the log.
Modifications:
- Move javaVersion() and related methods to PlatformDependent0 to be able to use these in the static initializer without creating a cycle.
- Only try to load jdk.internal.misc.Unsafe when running in Java9+
Result:
Less noise in the log when running pre java9.
Motivation:
`NetUtil`'s methods `isValidIpV6Address` and `getIPv6ByName` incorrectly validate some IPv6 addresses.
Modifications:
- `getIPv6ByName`: add checks for single colon at the start or end.
- `isValidIpV6Address`: fix checks for the count of colons and use `endOffset` instead of `ipAddress.length()` for the cases with the brackets or '%'.
Result:
More correct implementation of `NetUtil#isValidIpV6Address` and `NetUtil#getIPv6ByName`.
Motivation:
Fixes#6681.
Modification:
For the sake of better timer observability, expose the number of pending timeouts through the new HashedWheelTimer.pendingTimeouts method .
Result:
It's now ridiculously easy to observe Netty timer's very basic and yet important metric, the number of pending tasks/timeouts.
Motivation:
NetUtil#isValidIpV6Address and NetUtil#getIPv6ByName allowed an invalid form of mapped IPv4 addresses which lead to accepting invalid IPv6 addresses as valid.
Modifications:
- NetUtil#isValidIpV6Address and NetUtil#getIPv6ByName should only allow 7 colons for an IPv4 address if they are the first 2 characters.
Result:
More correct implementation of NetUtil#isValidIpV6Address and NetUtil#getIPv6ByName
Motivation:
NetUtil#getByName and NetUtil#isValidIpV6Address do not strictly enforce the format of IPv4 addresses that are allowed to be embedded in IPv6 addresses as specified in https://tools.ietf.org/html/rfc4291#section-2.5.5. This may lead to invalid addresses being parsed, or invalid addresses being considered valid. Compression of a single IPv6 word was also not handled correctly if there are 7 : characters.
Modifications:
- NetUtil#isValidIpV6Address should enforce the IPv4-Compatible and IPv4-Mapped are the only valid formats for including IPv4 addresses as specified in https://tools.ietf.org/html/rfc4291#section-2.5.5
- NetUtil#getByName should more stritcly parse IPv6 addresses which contain IPv4 addresses as specified in https://tools.ietf.org/html/rfc4291#section-2.5.5
- NetUtil should allow compression even if the number of : characters is 7.
- NetUtil#createByteArrayFromIpAddressString should use the same IP string to byte[] translation which is used in NetUtil#getByName
Result:
NetUtil#getByName and NetUtil#isValidIpV6Address respect the IPv6 RFC which defines the valid formats for embedding IPv4 addresses.
Motivation:
In cases when an application is running in a container or is otherwise
constrained to the number of processors that it is using, the JVM
invocation Runtime#availableProcessors will not return the constrained
value but rather the number of processors available to the virtual
machine. Netty uses this number in sizing various resources.
Additionally, some applications will constrain the number of threads
that they are using independenly of the number of processors available
on the system. Thus, applications should have a way to globally
configure the number of processors.
Modifications:
Rather than invoking Runtime#availableProcessors, Netty should rely on a
method that enables configuration when the JVM is started or by the
application. This commit exposes a new class NettyRuntime for enabling
such configuraiton. This value can only be set once. Its default value
is Runtime#availableProcessors so that there is no visible change to
existing applications, but enables configuring either a system property
or configuring during application startup (e.g., based on settings used
to configure the application).
Additionally, we introduce the usage of forbidden-apis to prevent future
uses of Runtime#availableProcessors from creeping. Future work should
enable the bundled signatures and clean up uses of deprecated and
other forbidden methods.
Result:
Netty can be configured to not use the underlying number of processors,
but rather the constrained number of processors.
Motivation:
As the javadoc of ScheduledExecutorService state:
Zero and negative delays (but not periods) are also allowed in schedule methods,and are treated as requests for immediate execution.
Modifications:
- Correctly handle delay <= 0.
- Add unit tests.
Result:
Fixes [#6627].
Motivation:
When UNSAFE.allocateMemory is returning an address whose high bit is set we currently throw an IllegalArgumentException. This is not correct as it may return a negative number on at least sparc.
Modifications:
- Allow to pass in negative memoryAddress
- Add unit tests
Result:
Correctly validate the memoryAddress and so also work on sparc as expected. Fixes [#6574].
Motivation:
The updated HTTP/1.x RFC allows for header values to be CSV and separated by OWS [1]. CombinedHttpHeaders should remove this OWS on insertion.
[1] https://tools.ietf.org/html/rfc7230#section-7
Modification:
CombinedHttpHeaders doesn't account for the OWS and returns it back to the user as part of the value.
Result:
Fixes#6452
Motivation:
We used some deprecated Mockito methods.
Modifications:
- Replace deprecated method usage
- Some cleanup
Result:
No more usage of deprecated Mockito methods. Fixes [#6482].
Motivation:
When UnorderedThreadPoolEventExecutor.execute / submit etc is called it will consume up to 100 % CPU even after the task was executed.
Modifications:
Add a special wrapper which we will be used in execute(...) to wrap the submitted Runnable. This is needed as ScheduledThreadPoolExecutor.execute(...) will delegate to submit(...) which will then use decorateTask(...). The problem with this is that decorateTask(...) needs to ensure we only do our own decoration if we not call from execute(...) as otherwise we may end up creating an endless loop because DefaultPromise will call EventExecutor.execute(...) when notify the listeners of the promise.
Result:
Fixes [#6507].
Motivation:
We used various mocking frameworks. We should only use one...
Modifications:
Make usage of mocking framework consistent by only using Mockito.
Result:
Less dependencies and more consistent mocking usage.
Motivation:
When comparing MAC addresses searching for the best MAC address, if
locally-administered address (e.g., from a Docker container) is compared
against an empty MAC address, the empty MAC address will be marked as
preferred. In cases this is the only available MAC address, this leaves
Netty using a random machine ID instead of using a perfectly valid
machine ID from the locally-adminstered address.
Modifications:
This commit modifies the MAC address logic so that the empty MAC address
is not preferred over a locally-administered address. This commit also
simplifies the comparison logic here.
Result:
Empty MAC addresses will not be preferred over locally-administered
addresses thus permitting the default machine ID to be the
locally-adminstered MAC address if it is the only available MAC address.
Motivation:
codec-http2 couples the dependency tree state with the remainder of the stream state (Http2Stream). This makes implementing constraints where stream state and dependency tree state diverge in the RFC challenging. For example the RFC recommends retaining dependency tree state after a stream transitions to closed [1]. Dependency tree state can be exchanged on streams in IDLE. In practice clients may use stream IDs for the purpose of establishing QoS classes and therefore retaining this dependency tree state can be important to client perceived performance. It is difficult to limit the total amount of state we retain when stream state and dependency tree state is combined.
Modifications:
- Remove dependency tree, priority, and weight related items from public facing Http2Connection and Http2Stream APIs. This information is optional to track and depends on the flow controller implementation.
- Move all dependency tree, priority, and weight related code from DefaultHttp2Connection to WeightedFairQueueByteDistributor. This is currently the only place which cares about priority. We can pull out the dependency tree related code in the future if it is generally useful to expose for other implementations.
- DefaultHttp2Connection should explicitly limit the number of reserved streams now that IDLE streams are no longer created.
Result:
More compliant with the HTTP/2 RFC.
Fixes https://github.com/netty/netty/issues/6206.
[1] https://tools.ietf.org/html/rfc7540#section-5.3.4
Motivation:
The HttpProxyHandler is expected to be capable of issuing a valid CONNECT request for a tunneled connection to an IPv6 host.
Modifications:
- Correctly format the IPV6 address.
- Add unit tests
Result:
HttpProxyHandler works with IPV6 as well. Fixes [#6152].
Motivation:
DefaultChannelId provides a regular expression which validates if a user provided MAC address is valid. This regular expression may allow invalid MAC addresses and also not allow valid MAC addresses.
Modifications:
- Introduce a MacAddressUtil#parseMac method which can parse and validate the MAC address at the same time. The regular expression check before hand is additional overhead if we have to parse the MAC address.
Result:
Fixes https://github.com/netty/netty/issues/6132.
Motivation:
c2f4daa7398a9363fde8e51bf52c0d0323f870a5 added a unit test but used a too small test timeout.
Modifications:
Increase timeout.
Result:
Test should have enough time to complete on the CI.
Motivation:
InternalLoggerFactory either sets a default logger factory
implementation based on the logging implementations on the classpath, or
applications can set a logger factory explicitly. If applications wait
too long to set the logger factory, Netty will have already set a logger
factory leading to some objects using one logging implementation and
other objets using another logging implementation. This can happen too
if the application tries to set the logger factory twice, which is
likely a bug in the application. Yet, the Javadocs for
InternalLoggerFactory warn against this saying that
InternalLoggerFactory#setLoggerFactory "should be called as early as
possible and shouldn't be called more than once". Instead, Netty should
guard against this.
Modications:
We replace the logger factory field with an atomic reference on which we
can do CAS operations to safely guard against it being set twice. We
also add an internal holder class that captures the static interface of
InternalLoggerFactory that can aid in testing.
Result:
The logging factory can not be set twice, and applications that want to
set the logging factory must do it before any Netty classes are
initialized (or the default logger factory will be set).
Motivation:
We need to ensure the tracked object can not be GC'ed before ResourceLeak.close() is called as otherwise we may get false-positives reported by the ResourceLeakDetector. This can happen as the JIT / GC may be able to figure out that we do not need the tracked object anymore and so already enqueue it for collection before we actually get a chance to close the enclosing ResourceLeak.
Modifications:
- Add ResourceLeakTracker and deprecate the old ResourceLeak
- Fix some javadocs to correctly release buffers.
- Add a unit test for ResourceLeakDetector that shows that ResourceLeakTracker has not the problems.
Result:
No more false-positives reported by ResourceLeakDetector when ResourceLeakDetector.track(...) is used.
Motivation:
HashWheelTimerTest has busy/wait and sleep statements which are not necessary. We also depend upon a com.google.common.base.Supplier which isn't necessary.
Modifications:
- Remove buys wait loops and timeouts where possible
Result:
HashWheelTimerTest more explicit in verifying conditions and less reliant on wait times.
Motivation:
If the rate at which new timeouts are created is very high and the created timeouts are not cancelled, then the JVM can crash because of out of heap space. There should be a guard in the implementation to prevent this.
Modifications:
The constructor of HashedWheelTimer now takes an optional max pending timeouts parameter beyond which it will reject new timeouts by throwing RejectedExecutionException.
Result:
After this change, if the max pending timeouts parameter is passed as constructor argument to HashedWheelTimer, then it keeps a track of pending timeouts that aren't yet expired or cancelled. When a new timeout is being created, it checks for current pending timeouts and if it's equal to or greater than provided max pending timeouts, then it throws RejectedExecutionException.